Mohammad Asyraf, Mohammad Asyraf and Anwar, Mahmood and Islam, Sumaiya and Debnath, Sujan and Wong, Jerren and Izman, S. (2019) Evolution of electrical behavior due to nanosilver concentration influence on nanosilver-doped poly-phenylene-sulfide polymer conductor. JOM, 71 (9). pp. 3293-3297. ISSN 1047-4838
Full text not available from this repository.
Official URL: http://dx.doi.org/10.1007/s11837-019-03654-x
Abstract
Conductive polymers have been attracting increasing interest in recent years. Their properties such as corrosion resistance and moldability have shown their potential as an alternative production material to conventional metals such as copper and tin. Among those that have benefited from the application of conductive polymers are the semiconductor and microelectronics industry due to their low conductivity requirements. However, there are still some challenges in high voltage applications because of the limited charge transfer capabilities in high-energy transmission utilizing high-voltage electricity. This includes poly(1,4-phenylene sulfide) or PPS, which has had various dopants such as copper particles added to enhance the electrical properties. Silver is also known to be an excellent electrical conductor and, in nanoparticle form, could diffuse effectively into the polymer matrix and improve its electrical behavior. A set of experiments were carried out to study the organometallic behavior of nanosilver-doped poly(1,4-phenylene sulfide) (PPS) with six different mixing ratios. SEM micrographs have shown an interesting change in electrical properties in the overall polymer morphology. It was observed that there was a change in the electrical conductivity of the PPS as the concentration of nanosilver increased. The results from this study could contribute to the establishment of more effective parameters in the doping of PPS with nanosilver, and pave the way to the development of improved conductive polymers for high-voltage electrical energy transmissions.
Item Type: | Article |
---|---|
Uncontrolled Keywords: | electrical behavior, concentration of nanosilver |
Subjects: | T Technology > TJ Mechanical engineering and machinery |
Divisions: | Mechanical Engineering |
ID Code: | 89374 |
Deposited By: | Widya Wahid |
Deposited On: | 09 Feb 2021 08:26 |
Last Modified: | 09 Feb 2021 08:26 |
Repository Staff Only: item control page