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H I G H L I G H T S

• Predictive uncertainty of models was

estimated using the QR and UNEEC

methods.

• RandomForestmodel had the lower un-

certainty band width based on the both

methods.

• Groundwater nitrate (NO3) concentra-

tions were predicted using RF, SVM,

and KNN.

• Random Forest model outperformed

other models in terms of predictive

performance.

• Hydraulic conductivity and elevation

had the highest contribution to the

modelling.
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Although estimating the uncertainty of models used for modelling nitrate contamination of groundwater is es-

sential in groundwater management, it has been generally ignored. This issue motivates this research to explore

the predictive uncertainty of machine-learning (ML) models in this field of study using two different residuals

uncertainty methods: quantile regression (QR) and uncertainty estimation based on local errors and clustering

(UNEEC). Prediction-interval coverage probability (PICP), the most important of the statistical measures of un-

certainty,was used to evaluate uncertainty. Additionally, three state-of-the-artMLmodels including support vec-

tor machine (SVM), random forest (RF), and k-nearest neighbor (kNN) were selected to spatially model

groundwater nitrate concentrations. The models were calibrated with nitrate concentrations from 80 wells

(70%of the data) and then validatedwith nitrate concentrations from34wells (30% of the data). Both uncertainty

and predictive performance criteria should be consideredwhen comparing and selecting the best model. Results
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highlight that the kNNmodel is the best model because not only did it have the lowest uncertainty based on the

PICP statistic in both the QR (0.94) and the UNEEC (in all clusters, 0.85–0.91) methods, but it also had predictive

performance statistics (RMSE= 10.63, R2 =0.71) that were relatively similar to RF (RMSE= 10.41, R2 =0.72)

and higher than SVM (RMSE = 13.28, R2 = 0.58). Determining the uncertainty of ML models used for spatially

modelling groundwater-nitrate pollution enables managers to achieve better risk-based decision making and

consequently increases the reliability and credibility of groundwater-nitrate predictions.

© 2019 Elsevier B.V. All rights reserved.
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1. Introduction

Nitrate pollution of groundwater can have severe impacts on human

health, issues such as cancer (e.g., esophageal, lymphatic, and gastric

cancers) and methemoglobinemia in infants and pregnant women

(Suthar et al., 2009; Panagopoulos et al., 2011), and on the environment,

such as causing ecological disruption and eutrophication throughout

the hydrological system (Neshat et al., 2015; Wheeler et al., 2015;

Stelzer and Scott, 2018). Groundwater-pollution modelling can aid

managers of water resources and environmental protection in their

quests to prevent groundwater pollution and to improve its quality

(Almasri, 2008; Takizawa, 2008; Locatelli et al., 2019).

Recent studies have adopted novel approaches to assess groundwa-

ter contamination and to map nitrate hazards using different machine-

learning (ML) and/or data-mining models including; artificial neural

networks (ANN) (Panagopoulos et al., 2011; Ostad-Ali-Askari et al.,

2017), boosted regression trees (BRT) (Ransom et al., 2017), support-

vector machines (SVM) (Rodriguez-Galiano et al., 2018), random for-

ests (RF) (Anning et al., 2012; Nolan et al., 2014; Rodriguez-Galiano

et al., 2014, 2018; Wheeler et al., 2015), classification and regression

trees (CART) (Rodriguez-Galiano et al., 2018), Dempster–Shafer (DS)

(Rahmati and Melesse, 2016), and multivariate discriminant analysis

(MDA) (Sajedi-Hosseini et al., 2018). Nolan et al. (2015) compared the

capability of BRT, ANN, and Bayesian networks (BN) to predict nitrate

concentration (in shallow groundwater of the Central Valley, Califor-

nia), but did not investigate or consider uncertainties. Sajedi-Hosseini

et al. (2018) used ensemble modelling, including the three ML models,

BRT, MDA, and SVM, to assess and produce groundwater-pollution

qualitative maps from a dataset that merely indicated the presence or

absence of pollution. Ransom et al. (2017) developed a hybrid ML

model combining both numerical and empirical outputs for the Central

Valley Textural Model (CVTM) and the BRT groundwater reduction-

oxidation (redox) model to predict nitrate concentration in the Central

Valley aquifer, California. Results from the hybridmodel which included

25 predictors (final model) provided a higher accuracy compared to or-

dinary kriging, universal kriging, and multiple linear regression. In an-

other study, Messier et al. (2019) used the RF model for classification

modelling using transformed nitrate values assigned to three categories

of b1 mg/L, 1–5 mg/L, and ≥ 5 mg/L to predict groundwater nitrate of

22,000 private wells in North Carolina. The RF classification model had

superior performance than censored maximum-likelihood regression

(CMLR), RF, SVM, ANN, OK, and gradient-boosted machine (GBM)

methods. Juntakut et al. (2019) estimated long-term nitrate concentra-

tions in groundwater using the CART model in eastern Nebraska. The

CART model achieved success in terms of both nitrate prediction and

identification of the potential factors associated with higher nitrate-

contamination zones. Finally, Knoll et al. (2019) compared the perfor-

mance of four ML including MLR, CART, RF, and BRT for predicting ni-

trate concentrations of groundwater in Hesse state, Germany. Their RF

model outperformed the others.

Although most of these studies generally improved the ability to

predict nitrate concentration in groundwater, to the best of our knowl-

edge, the assessment of uncertainty associatedwith groundwater pollu-

tion modelling has been disregarded. Indeed, the above studies only

evaluated models' performance and disregarded models' uncertainties.

It is well known that uncertainty is inherent in modelling (Solomatine

and Shrestha, 2009), and therefore it is critical to report it transparently

in decision-support tools (Uusitalo et al., 2015).

There are various sources of uncertainty; it can be related to pre-

dictors, model parameters, and model structure, etc. (Solomatine

and Shrestha, 2009). Importantly, most of the uncertainty-

assessment methods deal only with single sources of uncertainty.

For instance, Bayesian methods only analyze the uncertainty associ-

ated with input data andMonte Carlomethods only assess the uncer-

tainty in parameters (Solomatine and Shrestha, 2009). Since the

contribution of different sources of errors is not completely known

and separating their roles is often difficult, especially in hydrogeol-

ogy, an overall assessment of uncertainty is, in practice, feasible.

Understanding the total model uncertainty rather than the uncer-

tainty resulting from individual sources is more important for

decision-makers, particularly those in water resources management

(Solomatine and Shrestha, 2009). In this paper we consider two

methods, quantile regression (QR) (Bassett and Koenker, 1978) and

uncertainty estimation based on local errors and clustering (UNEEC)

(Shrestha et al., 2006; Shrestha and Solomatine, 2006), to quantify

the uncertainty of modelling groundwater pollution. Although both

methods account for all sources of uncertainty, they differ in their

methodological complexity. QR and UNEEC have been used in a

broad range of applications: hydrological studies (e.g., Weerts

et al., 2011; López López et al., 2014; Dogulu et al., 2015), economics

(Taylor, 2007; Kudryavtsev, 2009), meteorology (Friederichs and

Hense, 2007; Cannon, 2011), wind forecasting (Møller et al., 2008),

and agriculture (Barnwal and Kotani, 2013). To predict

groundwater-nitrate concentration, three state-of-the-art ML

models – SVM, RF, and kNN were used to model groundwater-

nitrate concentrations spatially. The main objectives of this research

are to: 1) quantify the predictive uncertainty of different ML models

–SVM, RF, and kNN– to model groundwater-nitrate concentrations

with QR and UNEEC; 2) determine the most robust model in terms

of predictive uncertainty and capability; and 3) assess the relation-

ships between geo-environmental factors and groundwater-nitrate

concentration.

2. Material and methods

2.1. Study area and data sets

The study area is the Andimeshk-Dezful region, Khuzestan province,

Iran (Fig. 1). The region covers an area of 2464.75 km2 between 48°01′

and 48°46′ E and 31°58′ and 32°33′ N and contains approximately

385,000 residents. Unconsolidated surface material in the region de-

rives primarily from the Quaternary as low-level pediment-fans and

valley-terrace deposits (Qft2). This region is part of the Zagros Struc-

tural Zone (Heyvaert and Baeteman, 2007; Rahmati and Melesse,

2016). The climate is semi-arid with about 341mmof annual precipita-

tion. Summer is usually hot anddry.Winter iswhen the greatest portion

of the region's precipitation falls (about 200mm).Mean dailyminimum

temperature is 7.5 °C in winter and themean daily maximum tempera-

ture is 46 °C in summer. In Iran, groundwater is the primary water

source; over 85% is used for drinking water and for agriculture (irriga-

tion). The study of the groundwater pollutants like nitrate can aid deci-

sion makers' control and management of water quality.
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Groundwater-nitrate concentrations were measured by the Iranian

Department of Water Resources Management (IDWRM) at 114 loca-

tions during May 2017 (Fig. 1). The highest nitrate values (≥75 mg/l)

are in the southern parts of the region. There are patches in thewestern

and northwestern sections of the study area that have nitrate concen-

trations that exceed the standard (≤50 mg/l) for safe drinking water

(WHO, 2011). Data describing several geo-environmental variables

were compiled for the study region: elevation (m), hydraulic conductiv-

ity (m/s), distance from stream (m), lineament density (km/km2), and

land use.

2.2. Methodology

The geo-environmental variables (Fig. 2) are used as inputs for

modelling the groundwater nitrate concentration using three ML

methods including SVM, RF, and kNN (these models are described

in the Section 2.2.2). The models were calibrated and validated

(with a ratio 70 to 30) using the target value of nitrate concentration

and values of the predictive factors at the location of each well. After

ensuring the models' performance, groundwater-nitrate concentra-

tions were predicted for the other parts of the region (areas without

Fig. 1. Map of the study area (Andimeshk-Dezful, Iran) showing the location of the 114 well-sampling points (W01 – W114).
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recorded nitrate concentrations). More details of the methods used

are described below.

2.2.1. Groundwater nitrate conditioning factors

These five groundwater-nitrate conditioning factors –elevation, hy-

draulic conductivity (K), distance from stream (DFS), lineament density,

and land use– were input as potential predictors of nitrate

concentrations.

2.2.1.1. Elevation. A digital elevation model (DEM), with pixel size 10

× 10 m was obtained from IDWRM. The region slopes from north to

south; elevation varies from 253 to 16 m a.s.l (Fig. 2a).

2.2.1.2. Hydraulic conductivity (K). Hydraulic conductivity influences

subsurface flow rates, groundwater recharge, and the mobility of con-

taminants in the saturated zone (Bouwer, 2002; Jiang et al., 2010). Hy-

draulic conductivity data were obtained from the IDWRM and

estimated based on a combination of pumping test (with piezometers

and observation wells) and geoelectrical measurements (Fig. 2b).

2.2.1.3. Distance from stream (DFS). The interface between surface water

and groundwater in rivers and streams is an active area of nitrate re-

moval and retention (Hedin et al., 1998), so DFS could be a good predic-

tor of nitrate concentrations. DFSwas calculated using the DEM and the

Euclidean tool in ArcGIS, the maximum DFS in this study was 11,705 m

(Fig. 2c).

Fig. 2. The groundwater-nitrate concentration predictive variables: (a) elevation, (b) hydraulic conductivity (K), (c) distance from stream (DFS), (d) lineament density, and (e) land use.
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2.2.1.4. Lineament density. Lineament density indirectly reflects ground-

water potential as lineaments generally denote a permeable zone

(Magesh et al., 2012). Detection of lineaments, surface-subsurface

structures (e.g., geologic faults, fractures, etc.), is regarded as necessary

for groundwater studies (e.g., Gupta and Srivastava, 2010; Oh et al.,

2011; Nampak et al., 2014). Lineaments have been defined by Hobbs

(1904) as “significant lines of landscape that reveal the hidden architec-

ture of the rock basement.” Lineament structures are formed by a vari-

ety of geological and geomorphological processes and their nature are

related to faulting in Earth's crust (Jordan and Schott, 2005; Nkono

et al., 2018). In this study, the automatic method (MATLAB-based

code) introduced by Soto-Pinto et al. (2013) was used to detect linea-

ments patterns in Landsat 8 images (2015–2016) and to produce a den-

sity map using the line-density tool in ArcGIS software (Fig. 2d).

2.2.1.5. Land use. A land use and land cover map of the study was ob-

tained from IDWRM (Fig. 2e). Surfaces are classified as bare land, dry

farming, range land, riparian zone, urban, wetland, and irrigated agri-

culture; this last category covers the largest portion of the study area

(Fig. 2e).

2.2.2. Machine learning models

Three ML models (SVM, RF, and kNN) were selected that are com-

monly used in groundwater-pollution modelling (e.g., Rodriguez-

Galiano et al., 2018). It is beyond the scope of this study to evaluate

and compare the performance of the ML models used here, however,

to quantify uncertainties of the models, their predictive performance

needs to be determined.

2.2.2.1. Support vector machine (SVM). SVM is a technique that uses sta-

tistical learning theory (Dixon and Candade, 2008), first introduced by

Vapnik and Mukherjee (2000). It is one of the most cogent prediction

methods using the dimension theory of Vapnik Chervonenk and the

structural-risk minimization principle, and it can be used to solve prob-

lems in quadratic programming (Cortes and Vapnik, 1995). This classi-

fication method is a non-parametric statistical monitoring method

(Mountrakis et al., 2011) that forms and reforms the boundaries of clas-

ses using an optimization algorithm (Sajedi-Hosseini et al., 2018). In

this study, the most popular kernel function (i.e., radial) was imple-

mented with the e1071 package (Meyer et al., 2017) in R software.

The ‘tune’ function tunes the kernel parameterswith a grid search of pa-

rameter ranges. In this study, the best values for the parameters Gamma

and Cost were 0.041 and 9.19, respectively. They were determined

using the ‘tune’ function in e1071.

2.2.2.2. Random forest (RF). RF, an ensemble-tree method developed by

Breiman (2001), can identify linear and nonlinear relationships be-

tween variables for classification and regression objectives (Elith et al.,

2008). For regression objectives, RF can accurately produce the condi-

tional mean of a dependent variable. It generates many decision trees

and aggregates the predictions through bootstrap aggregation by aver-

aging the predictions obtained from multiple decision trees (Liaw and

Wiener, 2002a, 2002b; Tien Bui et al., 2017). In this study, RF was de-

ployed in R software using the ‘randomforest’ package (Liaw and

Wiener, 2002a, 2002b). The key parameters of the models, the number

of trees and the best size of the nodes, were optimized with the objec-

tive function of root mean squared error (RMSE). The RF model explic-

itly measures the importance of variables through two metrics: the

mean decrease in the Gini Index (GI) and the percentage of increase in

RMSE (Hollister et al., 2016). Since the GI has a bias in its calculation

of variable importance (Strobl et al., 2007; Hollister et al., 2016), we

measured the importance of variables through the percentage of in-

crease in RMSE using RF. The results of RF indicate that the optimum

number of trees considered is 2000 and the best node size is 13.

2.2.2.3. The k-nearest neighbor (kNN). kNN is a non-parametric model

able to identify non-linear and complex relationships among observa-

tions (McRoberts et al., 2007; Mansuy et al., 2014). In this method, a

metric (Euclidean distance) is used to measure the similarity of dis-

tances to the target. In kNN there are two parameters, nearest neighbors

(k) and the power term (p), that are used to design this approach. The

value of k can be determined from a reference dataset and input vari-

ables, while p is based on weight–distance relationships and measures

the degree of similarity of the contribution of each k to the simulation

output (Botula et al., 2013). A trial-and-error methodology was used

to find the optimal value of the kNNmodel parameters to predict the ni-

trate concentration. The best value for the power parameter in this

study is 2.25 and for the number of nearest-neighbors is 14 (based on

the objective function of RMSE).

2.2.3. Accuracy assessment

After calibration, the models were validated with the 30% of cases

that were not used for training. Model accuracy was evaluated using

RMSE and the coefficient of determination (R2). Moreover, a graphical

comparison was conducted using Taylor diagrams (Taylor, 2001),

which enable visualization of the models' performances using correla-

tion coefficients, RMSE, and standard deviations (SD) (Choubin et al.,

2017).

Fig. 3. Spatial prediction of nitrate concentrations (mg/l) using (a) SVM, (b) RF and (c) kNNmodels.
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2.2.4. Uncertainty assessment

The quantile regression (QR) and the uncertainty estimation based

on local errors and clustering (UNEEC) methods were used to assess

the predictive uncertainty of the models. These methods evaluate the

model residuals and consider all sources of uncertainty, which is in con-

trast to the classic methods (such as Monte Carlo-based methods) in

which the estimate usually regards only one source of uncertainty

(Solomatine and Shrestha, 2009).

The QR was originally developed by Bassett and Koenker (1978) for

economics applications. It can be used to determine the distribution

error. QR is a linear statistical method for estimating the quantiles con-

ditional functions, of the prediction and distribution, based on possible

causal relationships within the entire data set (Koenker and Hallock,

2001). The method describes the conditional quantiles distribution as

functions of observed covariates and does not make any presumptions

about the shape of the distribution the data. In this method, for each

Fig. 4. Uncertainty bands predicted by UNEEC method for modeled nitrate concentrations (a: SVM; b: RF; c: kNN).
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quantile τ, there is a linear relationship between the observed (y) and

predicted (ŷ) data as Eq. (1):

y ¼ aτ ŷþ bτ ð1Þ

where aτand bτ are the slope and intercept of the QR, which are calcu-

lated by minimizing the sum of residuals (Eq. (2)):

min
X

J

j¼1

ρτ y j− aτ ŷ j þ bτ

� �� �

ð2Þ

Fig. 5. Uncertainty bands predicted by QR method for modeled nitrate concentrations (a: SVM; b: RF; c: kNN).
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where yjand ŷ jare jth sample from a dataset, and ρτ is the QR function of

the τth quantile:

ρτ ∈ j

� �

¼
τ−1ð Þ:∈ j;∈ jb0
τ:∈ j;∈ j ≥0

� �

ð3Þ

The QR function (Eq. (3)) is used for the residuals (∈j) which are the

differences between the observed and predicted data for the selected

quantile τ (here quantiles of 5% to 95%). So, Eq. (3) can be used for cal-

culation of any quantile τ. To estimate uncertainty using QR, all individ-

ual ML methods were trained using the training dataset (inputs and

output variables) and the outputs (nitrate-concentration values) for

all cells in the study area were calculated. Then, for each desired

quantile (i.e., 0.05 and 0.95), the QRmodelwas calibrated using the pre-

dicted nitrate values (from each ML model) as input values and the ob-

served nitrate values from training data set as output values. Finally, the

desired quantiles (i.e., 0.05 and 0.95) of the nitrate values were calcu-

lated with the calibrated QR model based on the predicated nitrate

values (by each ML model) as inputs for the whole study area. In this

study, the QR was conducted in the R software using the ‘quantreg’

package (Koenker, 2013).

UNEEC, a non-linear regression model, was introduced by Shrestha

et al. (2006) and Shrestha and Solomatine (2006) and can be used to es-

timate the error-distribution quantiles. UNEEC deduces the residual un-

certainty relying on the status of the simulated systemwith a clustering

method. Fuzzy c-means clustering, a soft-clusteringmethod, has the ca-

pacity to reduce the uncertainty in identifying themembers of a cluster

(Dodangeh et al., 2014). Therefore, it was used in the UNEEC method.

There are several steps that occur (Solomatine and Shrestha, 2009):

(i) training aMLmodel based on the predictors (inputs) and the nitrate

values (outputs) and calculated residuals, (ii) clustering the input

vectors (the values of the predictors for each sample) and associated re-

siduals using fuzzy c-means clustering, (iii) constructing the empirical

probability distribution function (pdf) of themodel errors for each clus-

ter. To construct the empirical probability distribution function, the

clusters were sorted, in ascending order, by the value of the error in

each, then, using Eq. (4), quantiles (for example pth quantile) were es-

timated:

ecpi ¼ ϵt ; t :
X

t

k¼1

μ i;kbp
X

n

t¼1

μ i;t ð4Þ

where ϵt is error correspond to observation

t, t is maximumvalue that satisfied the above inequality, μi, t is member-

ship value of tth observation to cluster i and eci
p is pth quantile associ-

ated with cluster i.

The next step (iv), involved the calculation of the membership

values of each input vector of the training and testing datasets (in

each cluster) and the estimation of the associated quantiles of residuals

using Eq. (5):

ept ¼

Pc
i¼1 μ

2=m
i;t ecpi

Pc
i¼1 μ

2=m
i;t

ð5Þ

where et
p is value of pth quantile of errors for tth input vector, eci

p is value

of pth quantile of errors for cluster i, μi, tis the membership function of

the tth input vector for cluster i, m is the smoothing exponential coeffi-

cient, and c total number of the clusters. (vi) the prediction interval of

the model output (nitrate concentration) was constructed with Eq. (6)

for each cell in study area:

ypt ¼ ŷt þ ep ð6Þ

where yt
p is pth quantile for tth output data (nitrate concentration).

Quantiles 5% (U5) and 95% (U95) are necessary to estimate 90% predic-

tion interval. In the current research, UNEEC was run with MATLAB

software.

There are several statistical measures of uncertainty to evaluate and

compare performances of QR and UNEEC methods. In this study, two

statistics, mean prediction interval (MPI) and prediction interval cover-

age probability (PICP), were used as suggested by Shrestha and

Solomatine (2006).MPI is the average of thewidths of the prediction in-

tervals, where the lower values of MPI indicate lower uncertainty (i.e., a

value of zero indicates no uncertainty) (Eq. (7)). PICP is the probability

that the observed values are within the prediction intervals (between

5% to 95%); each is computed for a significance level of 1– α

(e.g., 90%) (Eq. (8)). The method with a PICP near the confidence level

(i.e., 90% with some tolerance) is the best method. MPI and PICP values

are calculated as:

MPI ¼
1

n

X

n

t¼1

PLuppert −PLlower
t

� �

ð7Þ

PICP ¼
1

n

X

n

t¼1

C;C ¼ 1; PLlower
t bytbPL

upper
t

0; otherwise

� �

ð8Þ

where yt is observed value, PLt
lower and PLt

upper are lower and upper pre-

diction limits respectively.

The PICP is themore important measurement of uncertainty as it in-

dicates the number of observations that fall within the estimated inter-

val (Dogulu et al., 2015). Therefore, MPI is used as a supplementary

metric: between models with similar PICP values, the one with a

lower MPI is regarded as the better model (Muthusamy et al., 2016).

3. Results and discussion

3.1. Spatial prediction of nitrate concentrations in groundwater

The groundwater-nitrate concentrationmaps generated by SVM, RF,

and kNN show similar spatial patterns; they each predict high nitrate

concentrations in the southern part of the study area (Fig. 3). The spatial

detail of themodels differs. The SVMmodel produced nitrate concentra-

tions between 11 and 104 mg/l (Fig. 3a). Similar to the SVM, the RF

model (Fig. 3b) predicted nitrate concentrations increasing from north

to south with levels ranging from 20 to 92 mg/l. The kNN model also

predicted nitrate concentrations increasing from north and east to the

south with amounts from 18 to 101 mg/l (Fig. 3c).

Table 1

Uncertainty results using the UNEEC method.

Model Uncertainty statistic Train Test

Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 2 Cluster 3 Cluster 4 Cluster 5

SVM PICP 0.93 0.91 0.90 0.89 0.79 0.79 0.76 0.79

MPI 30.23 27.63 28.32 28.62 30.17 27.92 28.36 29.74

RF PICP 0.91 0.88 0.88 0.88 0.68 0.65 0.65 0.65

MPI 17.84 16.71 16.93 16.41 17.83 16.82 17.10 16.66

kNN PICP 0.91 0.93 0.94 0.93 0.85 0.88 0.88 0.91

MPI 36.02 36.08 37.21 35.62 35.91 36.30 37.52 36.13

SVM: support vector machine; RF: random forest; kNN: k-nearest neighbor; PICP: prediction interval coverage probability; MPI: mean prediction interval.
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3.2. Uncertainty assessment

Uncertainty bands for each ML model were determined using

UNEEC and QR methods (Figs. 4 and 5). More observations fall within

the estimated interval in kNN model than in the other two. In addition,

the results of the UNEEC method and the values of PICP and MPI for all

clusters were summarized (Table 1). As explained above, the PICP met-

ric is themost important value to assess uncertainty. In the testing step,

the kNN model had the lowest uncertainty in each cluster (PICP =

0.85–0.91), followed by SVM (PICP = 0.76–0.79) and RF (PICP =

0.65–0.68). However, the PICP was closer to the 90% confidence level

for kNN model than for either SVM or RF. Since the PICP values for the

models were not equivalent, the MPI measure was not considered in

judging the certainty of the models.

The QR, like the UNEEC method, calculated that the kNNmodel had

the lowest uncertainty (PICP = 0.94) compared to SVM (PICP = 0.74)

and RF (PICP = 0.59) (Table 2). Since the PICP measurements for the

three models are very different, there was no need to compare the

MPI values. Thus, based on the results of both the UNEEC and QR

methods, the kNN model contained less uncertainty than did the other

models.

3.3. Evaluating prediction performance

The goodness-of-fit and predictive performance of the models were

also quantified usingRMSE andR2metrics (Table 3). In the training step,

the RF model produced a better prediction of groundwater-nitrate con-

centrations (RMSE = 4.69, R2 = 0.96) than did SVM (RMSE = 8.76, R2

=0.82) and kNN (RMSE=10.85, R2=0.74). The goodness-of-fit of the

model shows howwell themodel fit the training dataset. The prediction

and generalization abilities of the model cannot be evaluated using the

goodness-of-fit of the model because it is measured by the data that

were used to calibrate the model (Henseler and Sarstedt, 2013). The

predictive performance (i.e., the accuracy of the model in the testing

step) reflects the ability of the model to accurately predict. Results indi-

cated that the RF (RMSE = 10.41, R2 = 0.72) performance was slightly

better than that of the kNNmodel (RMSE = 10.63, R2 = 0.71) and the

SVM (RMSE = 13.28, R2 = 0.58). The visualization of the models' per-

formance using the Taylor diagram also confirmed these results

(Fig. 6). According to the Taylor criteria (i.e., correlation, standard devi-

ation, and RMSE), the RF and the kNN had higher correlations with ob-

served nitrate concentrations and lower RMSE compared to the did the

SVM model.

3.4. A ranking of the models

There are numerousMLmodels; each hasweaknesses, strengths and

assumptions. In reality there is no singlemodel that is absolutely correct

and always best among the suite of models (Elith et al., 2002). Similarly,

different model structures can produce different results (Goetz et al.,

2015). Furthermore, models with similar predictive performance levels

do not necessarily have similar uncertainties; this attribute may affect

environmental management and water resources planning decisions.

Therefore, it is difficult to identify the bestML algorithm. In this section,

both predictive performance and uncertainty criteria were considered

simultaneously to rank the models.

Although the RF model had the highest performance for predicting

nitrate concentrations, it contained the greatest uncertainty (i.e., it

ranked third). Though there are advantages to using RF (e.g., Anning

et al., 2012; Knoll et al., 2019), there are some limitations: i) it underes-

timates high values and overestimates low values; and ii) it cannot pre-

dict beyond the range of response values because of the averaging that it

does in all regression trees (Horning, 2010; Hengl et al., 2015; Cheng

et al., 2019; Shiferaw et al., 2019). That the uncertainty of models pro-

vides insight into groundwater-nitrate pollutionmanagement is impor-

tant. This study provides a practical analysis of predictive performance

and uncertainty of ML models to shed light on the spatial modelling of

groundwater-nitrate concentration.

SVM had the lowest predictive performance. But the SVMhad lower

uncertainty than the RFmodel, but higher than the kNN. This result con-

firms the results of Rodriguez-Galiano et al. (2018)which compared the

performance of RF, SVM, and CART models for spatial predictions of ni-

trate concentrations in groundwater. Their results indicated that the

SVM was the least accurate of the three.

The kNN can be regarded as the best model (of the three) for spa-

tially modelling groundwater-nitrate pollution as its predictive perfor-

mance was similar to that of the RF model (i.e., which had the highest

predictive performance), but its uncertainty (based on UNEEC and QR

analyses) was the lowest of the three. These results affirm those of

McRoberts (2012) and Zhang et al. (2013) who demonstrated that

kNNproduces small error ratios and good error distributions. An advan-

tage of the kNN is that it does not need to prescribe detailed solutions to

the input–output mapping (Liu et al., 2016). Another advantage is its

non-parametric nature, making it well suited to analyze non-linear

and complex relationships (Nemes et al., 2006; Abedi et al., 2018). Re-

searchers have used the kNN because of its capacity to predict a large

set of attributes simultaneously (e.g., Mittal et al., 2018; Kuang et al.,

2019; Lee et al., 2019). Therefore, it is a cost- and time-effective model-

ling approach to use in spatially extensive regions (Beaudoin et al.,

2014). Though it has these advantages, there are also drawbacks to

using the kNN model. An important issue is the optimal number of

nearest neighbors (k) that can affect classification patterns (Jung et al.,

2013). Another disadvantage is the underestimation and overestima-

tion of values in the extremes of the range (Magnussen et al., 2010;

Beaudoin et al., 2014).

3.5. Variable importance

One of themain advantages of the RFmodel is it enables assessment

of the importance of the predictive factors used in the modelling pro-

cess. Variable importance is assessed using the calculation of the index

of the percentage of increase of MSE (Fig. 7). The higher the MSE per-

centage, the higher is the importance of the variable considered. Results

clearly showed that hydraulic conductivity and elevation are the two

most important variables for predicting nitrate concentrations in

groundwater with MSE equal to 117% and 95%, respectively, after re-

moval of the variable from the modelling.

These findings are consistent with those of Peña-Haro et al. (2011a,

2011b)who found that the hydraulic conductivity factor has a strong in-

fluence on the spatial and temporal migration of nitrate concentration

in groundwater and, therefore, on the optimal N-fertilizer use rate.

Table 3

Goodness-of-fit and predictive performance of the models.

Model Goodness-of-fit Predictive performance

RMSE R2 RMSE R2

SVM 8.76 0.82 13.28 0.58

RF 4.69 0.96 10.41 0.72

kNN 10.85 0.74 10.63 0.71

Table 2

Uncertainty results using the QR method.

Model Uncertainty statistic Train Test

SVM PICP 0.93 0.74

MPI 30.77 31.76

RF PICP 0.93 0.59

MPI 13.52 13.59

kNN PICP 0.93 0.94

MPI 32.85 34.35

SVM: support vector machine; RF: random forest; kNN: k-nearest neighbor; PICP: predic-

tion interval coverage probability; MPI: mean prediction interval.
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Regional groundwater flow and the stream–aquifer interaction strongly

depend on hydraulic conductivity (Erdal and Cirpka, 2016). However, it

is a spatially variable factor and is related to porosity and aquifer char-

acteristics (Salamon et al., 2007; Vrettas and Fung, 2015). Therefore, hy-

draulic conductivity is an important factor for groundwater

management and should be discerned using different geostatistical

techniques and field investigations (pumping tests, etc.) (Zhou et al.,

2014). Moreover, elevation regulates the flushing of nitrates, and it

has an important effect on leaching and export (from soil), and transfer-

ence of nitrate (Creed and Band, 1998; Jiang et al., 2012). Lower eleva-

tions have more opportunities than high elevations to allow

infiltration of nitrate into an aquifer, as flat topography encourages

water accumulation and allows more time to infiltrate (Sahoo et al.,

2016; Shrestha and Luo, 2018). Also, agricultural lands are more often

at lower elevations. Nitrogen from agricultural land is therefore more

likely available in areas with low elevation. In the other words, high-

lands are not as favorable for agricultural activities, and thus see lower

amounts of nitrogen fertilizer; less nitrate contamination can occur in

these areas. Other important variables were land use, distance from

stream, and lineament density (Fig. 7). Therefore, the N-fertilizer

application would be best guided by the spatial variation of hydraulic

conductivity and topographical characteristics.

4. Conclusions

Although several ML models have been used to spatially modelling

nitrate concentrations in groundwater, the uncertainty of these models

has not yet been investigated in this field of study. After evaluating the

predictive capabilities of three ML models (kNN, SVM, and RF), the un-

certainty of each was determined using the QR and UNEEC methods.

The following conclusions can be drawn:

• The results demonstrate that in an evaluation of models in terms of

both predictive performance and uncertainty, the determination

that amodel is the absolute best remains critical. In this study, thepre-

dictive performance of the kNN (RMSE = 10.63, R2 = 0.71) was sim-

ilar to the RF (RMSE = 10.41, R2 = 0.72) and more than the SVM

(RMSE = 13.28, R2 = 0.58), but its uncertainty determined with the

QR and UNEEC methods was lowest. Although the predictive perfor-

mance of the RF model was superior (slightly better than the kNN),

it was the inferior model in terms of the uncertainty. Therefore, the

kNN is the relatively best model for predicting nitrate concentrations

in groundwater, considering both its predictive performance and its

level of uncertainty.

• Spatial prediction of nitrates showed that it was strongly correlated

with the highest hydraulic conductivity and the lowest elevations.

The low elevations and high hydraulic conductivity increase the

leaching and transfer of the nitrates from the surface and subsurface

to groundwater in these regions.

• Because they use algebraic calculations, both QR and UNEEC methods

have low running times. Hence, both can be easily used to estimate

predictive uncertainty in ML and data-mining models when model-

ling nitrate concentration of groundwater.

• In this study, the proportions of the training (and validation) datasets

(i.e., of well sampling points) was selected according to the literature:

70% for training and 30% for validation purposes. However, the train-

ing dataset size may affect model performance and predictive uncer-

tainties. Therefore, it is recommended that further research be

conducted that uses other training sample proportions to determine

its effects on predictive uncertainty.

• Although the results of theMLmodels used in this studywere good or

excellent, the maps produced cannot be regarded as representative

for seasonal or interannual fluctuations. Due to a lack of continuous

sampling of nitrate concentrations, assessing seasonal and interan-

nual fluctuations of the concentrations is not possible. It was a main

limitation of this research, hence, further studies focusing on the

role of spatio-temporal variations of nitrate and the attendant uncer-

tainties is suggested.
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