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Abstract—Exposure to physical therapy in rehabilitation shows
a major interest in recent years. Even though the detection of
gait events based on Electromyography (EMG) signals help the
development of various assistive devices, the main issue arises
on how to utilize EMG signals especially for two phases, stance
and swing. Previous works had proposed various classification
model of EMG signals for five and seven phases. However, the
performance of the classification model for any individual has not
been explored. Thus, this study investigate the generalization of
classification model for two gait phases, stance and swing based
on EMG signals. The model was developed by extracting five time
domain (TD) features and fed into a classifier, artificial neural
network (ANN). Eight participants were divided into two groups
that is learned data and unlearned data. The ANN model was
designed based on learned data with levenberg maquardt (LM)
training algorithm. Then, the model will be further evaluated
with EMG signals of both unlearned data and learned data
to observe the generalization of ANN model. The ANN model
gained 87.4% of classification accuracy in discriminatiing stance
phase and swing phase. This study found the generalization of
the ANN model were acceptable with 87.5% for learned data
and 77% for unlearned data. Future works could enhance the
classification accuracy with different TD features and number of
hidden neurons for ANN.

Keywords—EMG signals, time domain features, ANN, gait
phases

I. INTRODUCTION

Gait events detection is an important topic in recent research
since it provides an effective method for medical treatment
especially in rehabilitation. The analysis of gait events facil-
itate the assessment of parkinson’s disease [1] and children
with cerebral palsy [2]. Furthermore, detection of gait events
is a continuing concern within the development for assistive
devices in rehabilitation such as hip knee (HK) exoskeletons,
ankle foot (AF) orthoses, and knee ankle foot (KAF) orthoses
as been reviewed by Yan et al. [3]. They also highlighted gait
events, stance phase and swing phase are the main locus in
the development of KAF, HK, active and passive AF orthoses.
The stance phase begins as heel strike (HS) with the ground,
while swing phase begin as the toe off (TO) from the ground.
These phases have a positive effect when using AF orthoses
based on ankle kinematics as proven by Nikamp et al. [4].
Thus, the stance phase and swing phase are enough to control

the active motors in assistive devices for functional electrical
stimulation.

Electromyography (EMG) signals were reported to be useful
not only for diagnosing patients with neuromuscular diseases
[2], but also for gait phase detection [5]–[9]. According to
Nardo et al. [10], the variability between the subjects were
low especially during walking on the ground. The EMG
signals is known as the electrical manifestations activation
of neuromuscular originated in the muscles during relaxation
and/or contractions. In intent recognition and onset gait ini-
tiation for transfemoral amputees, it has been revealed that
the combination of mechanical or kinematic sensors with
EMG signals seemed to have a promising potential [11], [12].
With this approach, users are able to operate electric-powered
wheelchair [13] and robot arm [14] using their own muscles.
In addition, the ankle positioning and EMG signals had been
used as an inputs to control the passive AF orthoses [15].
Since the EMG signals are difficult to analyze, the pattern was
categorized into stance and swing phases through visual obser-
vation. To overcome this problem, an interpretation of EMG
signals during stance and swing phases could improve the
development of AF orthoses of previous study. The overview
of current research with previous study [15] was illustrated in
Fig 1. Note that this study focuses on signal processing.

The detection of gait events based on EMG signals has been
thoroughly examined. According to Nazmi et al., machine
learning approach widely applied for a periodic pattern such as
EMG signals [16]. The adaptive neuro fuzzy inference system
(ANFIS) was sucessfully predicting the seven phases of gait in
the child with cerebral palsy less than 30 ms [5]. Nonetheless,
this study could benefit in development of HK orthoses as
they recorded the EMG signals from the right and left vastus
lateralis muscles. Besides that, the classification accuracy of
eight gait phases were obtained between 80% to 90% with time
domain (TD) features and LDA as a classifier [17]. However,
this may be applicable for HKAF orthoses, as the EMG signals
are collected from quadriceps, hamstring, gastrocnemius and
tibialis anterior muscles.

For AF orthoses, EMG signals recorded on the lower limb
muscles such as tibialis anterior (TA) and medial gastroc-
nemius (mGas) are preferred to represent the stance and
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Fig. 1. An overview in developing EMG control systems

swing phases [18]. By using both muscles, an artificial neural
networks (ANN) model proposed by Nazmi et al. [8] success-
fully discriminated the EMG signals during stance and swing
phases. In particular, ANN are useful for complex classifica-
tion tasks. In addition, ANN are not only can represent both
linear and nonlinear relationship, but also able to establish the
relationship directly from the modelled [7]. This statement has
been proven with 96.7% and 88.4% of accuracy in classifying
neuromuscular diseases [19] and upper limb movement [20],
respectively. Even so, the generalization of ANN model for
lower limb has not been investigated. Therefore, this study
evaluates the generalization of ANN model by extracting TD
features of EMG signals collected on lower leg muscles, TA
and mGas.

II. METHODOLOGY

Eight healthy male subjects aged between 23 and 26 years
(age=23.6±1.9 years, height=169.8±6.9cm; mean±sd) par-
ticipated in this study with range body mass index (BMI)
between 21.5 and 23. The participants were recruited from the
Shibaura Institute of Technology’s student population. Their
details are shown in Table I.

The inclusion criteria of this study included no history
of nerve or physiological injuries that could affect the gait
pattern during walking. The experimental protocol for this
study was approved by the ethical committee of College of
Systems Engineering and Science at Shibaura Institute of
Technology, Japan. As the investigation of this study was
focused on the lower leg, the participants were required to

TABLE I
DEMOGRAPHIC DATA OF THE SUBJECTS

Subjects Age Height Weight Body Mass
(years) (cm) (kg) Index (BMI)

S1 23 178 68 21.5
S2 25 166 60 21.7
S3 23 167 63 22.5
S4 23 163 62 23.3
S5 23 168 65 23.0
S6 26 183 74 22.1
S7 23 168 58 20.6
S8 23 165 60 22.0

do some movements such as dorsiflexion and plantar flexion
to obesrve the activation of TA and mGas muscles. The timing
of stance and swing phases was based on the timing of HS
and TO from the footswitch data. The footswitch data were
recorded by placing two force sensing resistors at the hallux
and heel under the sole of foot [21], [22], after cleaning with
wet tissues.

The surface EMG signals were collected from TA and mGas
muscles with a reference electrode located at the patella. The
placement of electrodes are following the recommendations by
Surface Electromyography for the Non-Invasive Assessment.
Then, a two-channelled EMG device (Nihon Kohden, Japan)
will processed the surface EMG signals with range (± 2.5V).
A multichannel amplifier (Nihon Kohden, Japan) amplified the
surface EMG signals with bandwidth filtering from 15 to 1000
Hz.

Both EMG and footswitch devices were connected to 64
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Fig. 2. The experimental setup

Ch analog-to-digital converters (Model ZO-928, NAC, Japan)
as shown in Fig. 2. Using Cortex software, the sampling
frequency of surface EMG signals and footswitch data were set
to 1000 Hz. For initial warm up, each subject were instructed
to walk on the treadmill for 30 seconds at a constant speed of
3 km/h at a self-selected comfortable pace. Then, the subjects
underwent the tasks by walking on the treadmill using similar
speed but for 60 seconds.

The surface EMG signals and footswitch data were further
processed offline to investigate the walking pattern in respect
to the muscle activation for each subject as reported in
previous studies [10], [23]. In this study, the segmented surface
EMG signals are highpass and lowpass filtered at 20 Hz and
500 Hz cut-off frequency with second order Butterworth [24],
respectively. The entire data set of surface EMG signals was
then divided into windowing segments, adjacent overlapping.

Meaningful information for both TA and mGas muscles
will be interpreted using five TD features. The surface EMG
signals and footswitch data are grouped into two categories
that is learned data and unlearned data. Learned data were
collected from the EMG signal of the first seven subjects
while unlearned data were EMG signals of the remaining one
subject. The learned data will be used to develop the model
and unlearned data to determine the generalization of the ANN
model.

Root mean square (RMS) is widely used in represneting the
surface EMG signals [25]. For RMS feature, the mathematical
definition can be expressed as (1).

RMS =

√√√√ 1

n

n∑
i=1

x2i (1)

where n is the number of observations.

Standard deviation (SD) for data set is the positive square
root of the variance whereas it shows how much variation or
dispersion exits from the mean. Also, variance measures the
variability existing in a set of data by finding the difference
between each data point and the mean by squaring the value.
The SD is large if the data are widely spread around the mean
and will be smaller for a data set more clustered around the
mean. The standard deviation is defined as (2).

SD =

√√√√ 1

n

n∑
i=1

(yi − µ)2 (2)

where n is the number of observations and µ is the mean.
Mean absolute value (MAV) is mostly popular features ap-

plied in extracting the surface EMG signals [26]. MAV feature
is defined as an mean of absolute value of the surface EMG
signals amplitude within a segment, that can be expressed as
(3).

MAV =
1

n

n∑
i=1

|xi| (3)

where n is the number of observations.
The complexity of the surface EMG signals can be mea-

sured using waveform length (WL) feature. WL feature is a
summation length of surface EMG signals within the time
segment. It can be calculated by using (4).

WL =
n−1∑
i=1

|xi+1 − xi| (4)

where n is the number of observations.
The sequence firing point of surface EMG signals is related

with Integrated EMG (IEMG) feature. Definition of IEMG
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feature is a cumulative absolute values of surface EMG signals,
which can be calculated as (5).

IEMG =
n∑

i=1

|xi| (5)

where n denotes length of the EMG signals, xi represents the
surface EMG signals within a segment i. The TD features of
each muscles during stance and swing phases in 30 cycles for
each subject will be extracted and fed into the ANN classifier.
In total, 245673 datasets with input and target vectors of stance
and swing phases of learned data were computed into the
ANN.

In this study, multilayer perceptron (MLP) of ANN
model with its basic architecture network was applied. The
model consists of three layers of the feed forward in-
cluded input layer, hidden layer and output layer. Gener-
ally, the input vector M with N rows can be expressed as
m1,m2, ...,mN . Each input was weighted by corresponding
element w1,1, w2,1..., wS1,N of the weight matrix, W1 and
S1 represent the number of neurons. For hidden neurons,
10 tan-sigmoid neurons are considered as it performed better
compared with 20 and 30 hidden neurons [20]. In our case, the
RMS, SD, MAV, WL and IEMG feature of TA muscles were
assigned as m1, m2, m3, m4, and m5 respectively. Meanwhile,
m6, m7, m8, m9, and m10 represent RMS, SD, MAV, WL
and IEMG feature of mGas muscles. The data for training
input were divided randomly with 70% for training, 15% for
validation and 15% for testing.

Moving on, a suitable training algorithm was required to
adjust the synaptic biases and weights at different layers
after designing the ANN model. ANN consists two types of
training algorithm that is levenberg maquardt (LM) and scaled
conjugate gradient (SCG). According to Ibrahimy et al. [20],
LM training algorithm more powerful and was faster than SCG
training algorithm as it train moderately-sized, fed-forward
neural networks for hand movements based on the numerical
optimization. It is an agreement in identification of the driver’s
steering behaviour [27]. Thus, LM training algorithm were
evaluated to test it capability and performance in ANN.

Without computing the Hessian matrix, LM training al-
gorithm was designed to approach the second-order training
speed. The Hessian matrix can be approximated as Equation 6
and the gradient can be calculated as (7).

H = JJTJ (6)

g = JT e (7)

where J is the Jacobian matrix. The J matrix much less
complex than computing the Hessian matrix as it can be
calculated through a standard back-propagation technique. By
using this approximation, the LM training algorithm was
applied to the Hessian matrix with the following Newton-like
update as defined in (8).

xk+1 = xk − [JTJ + µI]−1JT e (8)

The step-size of gradient descent becomes small if the value
µ is large. An overall process of this study were illustrated in
Fig. 3.

Fig. 3. Research flow of this study

III. RESULT AND DISCUSSIONS

An example of footswitch data and surface EMG signals
during stance phase and swing phase within five seconds
were shown in Fig. 4. It can be seen TA muscle activates
more during swing phase than stance phase. Meanwhile, mGas
muscle activates during stance phase.

The performance and network responses for five TD features
of learned in terms of stop epochs, time elapsed and regression
(R) value data for each training sessions is shown in Table II.
In the table, classification rate were divided into three; training
(TR), validation (V) and test (Te). The time taken to build the
ANN model were between 24.33 to 39.48 seconds. Nonethe-
less, the time elapsed does not effect the classification rate
of the ANN model. Meanwhile, the R value equals to one
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Fig. 4. The EMG signals recorded on TA and mGas muscles with HS and
TO detection

suggests the relationship between the targets and outputs of
the model are closed.

TABLE II
COMPARISON OF CLASSIFICATION PERFORMANCE USING LM TRAINING

ALGORITHM OF ANN

Number of Stop Time R Classification rate (%)
train epochs elapsed Tr V Te

1 133 24.33 0.79517 87.2 87.2 87.1
2 225 24.17 0.79558 87.8 87.3 87.5
3 338 39.48 0.79544 87.5 87.3 87.5

An overall accuracy of classification rate of ANN model
were 87.2%, 87.7% and 87.4% for train 1, 2 and 3, respectively
as shown in Fig. 5. The average classification accuracy for
ANN model was 87.4%. As aforementioned, the study will
further evaluated the ANN model with learned data and
unlearned data for generalization.

Table III presents the result of classification accuracy for
both learned data and unlearned data. Comparing with the
footswitch data, the ANN model successfully classified the
stance and swing phases approximately 92% and 81%, re-
spectively for learned data. The small difference in percentage
of classification accuracy indicate that LM training algorithm
performed well in ANN model. This finding is consistent with
that of Ibrahim et al. [20].

On the other hand, the percentage difference between
footswitch data and ANN model for unlearned in detecting
stance phase and swing phase data was approximately 29%

Fig. 5. Overall classification rate for each train of ANN model

and 10%, respectively. A possible explaination for this might
be that the ANN model dependent on the training datasets. The
large percentage difference in stance phase effect the overall
accuracy of classification.

All in all, the generalization of ANN model were reliable as
overall classification percentage for learned data and unlearned
data were 87.5% and 77%, respectively. Although learned data
had shown a better performance than unlearned data, it can be
concluded the detection of stance phase and swing phase of
classification model, ANN may applicable for any individual.
However, future works could enhance the performance of
ANN model by using other TD features, number of hidden
neurons and training algorithm.

TABLE III
CLASSIFICATION PERFORMANCE OF ANN WITH RESPECT TO REFERENCE

DATA FOR EACH DATA

Data Footswitch (%) ANN (%)
Stance Swing Stance Swing Overall
phase phase phase phase

Learned 61 39 55.8 31.7 87.5
Unlearned 67 33 47.3 29.7 77.0

IV. CONCLUSION

This work evaluate the generalization of ANN model in
discriminating the stance phase and swing phase of gait.
An ANN model with LM training algorithm using five TD
features gained 87.4% of accuracy in classifying stance phase
and swing phase. This study revealed the ANN model was
applicable for any individual based on the generalization result
for both learned data and unlearned data. One interesting
finding, the ANN model performed better with learned data
compared with unlearned data. The classification accuracy
might be improve by redesigned the ANN model near future.
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