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 With the innovative progresses in power electronics in recent years, 

photovoltaic (PV) systems emerged as one of the promising sources for 

electricity generation at the distribution network. Nonetheless, connection of 

PV power plants to the utility grid under abnormal conditions has become a 

significant issue and novel grid codes should be recommend. The low-

voltage ride-through (LVRT) capability is one of the challenges faced by the 

integration of PV power stations into electrical grid under abnormal 

conditions. This work firstly provides a discussion on recent control schemes 

for PV power plants to enhance the LVRT capabilities. Next, a control 

scheme for a three-phase four-leg grid-connected PV inverter under 

unbalanced grid fault conditions using synchronous reference frame 

proportional integral (SRFPI) controller is proposed. Simulation studies are 

performed to investigate the influence of the control strategy on the 

PV inverter.  
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1. INTRODUCTION  

In recent years, there has been an increasing interest in integration of photovoltaic (PV) power 

plants in the modern power systems [1-3]. The global growth in solar PV installation capacity all over the 

world from 2005 to 2016 is shown in Figure 1 [4]. As can be observed, the capacity of the installed PV 

system had surprisingly increased. However, the high penetration of photovoltaic PV systems in the power 

grid may deteriorate the stability and power quality of the utility grid [5]. On the other hand, investigators 

have also examined the negative effects of the utility grid on PV power plants, such as the impacts of grid 

faults on solar PV power systems [6].  

PV systems should guarantee a robust and safe performance under grid faults to offer 

valuable ancillary services such as voltage stability for the utility grid. Nonetheless, to reach a reliable 

operation during grid fault conditions, a number of technical issues have to be resolved [7]. In other words, 

the PV systems must be able to stay in connection to the utility grid under grid faults for reactive power 

injection [8]. The unregulated output power of PV power station under abnormal conditions can be regulated 

through power converters, and the power system reliability can be guaranteed depending on the performance 

of these power converters. Therefore, PV systems should be controlled properly at their point of common 

coupling (PCC) to keep PV systems connected to the utility grid under grid faults. In other words, 
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PV systems lose their sinusoidal appearance as a consequence of abnormal grid conditions. Oscillations in 

the output power is a challenging control issue, and the main cause of tripping PV systems from the network.  

One critical component for any PV is the effectiveness of its operation under grid faults [9]. 

Developments in the conventional control solutions for power electronic interfaces in PV systems can fulfill 

the tight requirements imposed by the grid operator and provide the required stability, reliability and power 

quality during transient grid faults. Reactive power support, voltage recovery, frequency stability and 

ensuring that the PV systems remain connected to the grid without generating overcurrent are the main 

requirements of PV generation systems under grid faults. Therefore, power and energy engineers everywhere 

are pondering the challenges of operation of PV power station under abnormal conditions, as it is the most 

way to improve the power quality, stability and reliability of utility grid with the high penetration of the PV 

systems [10]. To achieve the stable operation and appropriate integration, it is required for PV systems to 

provide a low-voltage ride-through (LVRT) capability and maintain grid functionality during fault  

conditions [11].  

 

 

 
 

Figure 1. The global growth in solar PV installation capacity all over the world from 2005 to 2016  [4] 

 

 

Even though many studies have been done to handle the challenging problems of supporting utility 

grid during abnormal conditions, there appears to be an absence of a comprehensive study on LVRT methods 

in PV systems. Moreover, smart microgrids are now standardized in most of countries; therfore, a review on 

LVRT control techniques and proposing an improved control scheme for security operational criterion for PV 

inverter is required. Therfore, in this paper, a control scheme for a three-phase four-leg grid-connected PV 

inverter under abnormal conditions using synchronous reference frame proportional integral (SRFPI) 

controller is suggested. The rest of this work has been divided into four parts. Section 2 presents the LVRT 

requirements in PV systems. Section 3 presents the existing LVRT control approaches for PV systems. 

Proposed control strategy and simulation results are given in Section 4. The conclusion is also given in 

section 5. 

 

 

2. LVRT IN PV SYSTEMS  

Voltage stability issues, fault detection, current control and oscillation of the active and the reactive 

powers are recognized as a serious concern in distribution networks under abnormal conditions with the 

increasing level of PV system penetration [12]. Grid faults are the leading cause of over-voltage and over-

current at the both DC and AC sides of PV inverters and the oscillation of output powers at the PCC of the 

PV system [13]. Under abnormal conditions, the inverter must be disconnected from the power grid as the 

voltage and current exceed their limits. Generally, for continuous operation of the PV systems under 

abnormal conditions, the voltage should not be more than 1.10 p.u and less than 0.85 p.u [14, 15]. Under 

abnormal conditions, reactive power injection can be provided by PV systems for supporting the grid and 

regulating the amplitude of output voltages.  

In order to remain PV inverters connected to the distribution networks as well as to provide reactive 

power improvement and frequency stability during fault conditions, the general LVRT requirements of PV 

generation systems should be considered [16]. Even though LVRT regulation issues for wind farms is a well-

developed research topic, for PV inverters, it is not as well established as other distributed generations like 

doubly-fed wind turbine generator system. Moreover, the specific requirements and standards of LVRT 

regulation issues vary from country to country [17]. The LVRT limiting curves defined by different countries 

is depicted in Figure 2. As seen, the maximum reactive power injection is needed, whenever the voltage drop 
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value is above the curve for a given specific time, and the PV system must remain connected to the power 

grid. However, the maximum reactive power injection can be limited by the inverter’s active power and 

apparent power. Moreover, reference generation control methods are needed for PV systems to calculate the 

current that must be injected into the system. Therefore, it requires the design of improved reference 

generation control strategies to extend the controllability of the PV system by cancelling the oscillation of 

output powers under grid faults. In the next section, available LVRT methods for PV systems are presented.  

 

 

 
 

Figure 2. LVRT requirements defined by different countries [4] 

 

 

3. LVRT CONTROL STRATEGIES FOR PV SYSTEMS 

Al-Durra et al. [18], propose LVRT control strategies for a three-phase quasi Z source (QZS) PV 

inverter under voltage sag. The control of the shoot-through duty cycle give the ability to the QZS inverter to 

provide any desired output AC voltage. The proposed controllers have the ability to operate in the maximum 

power, regulate the inverter DC-link voltage, maintain the grid voltage at the desired level, provide voltage 

ride-through capability and keep the DC-link voltage within the acceptable limits. In this study, three LVRT 

control schemes are implemented using control modification in the system and hardware modification in the 

circuit topology to enhance the LVRT capability of the system. 

In [19], a continuous mixed p-norm (CMPN) algorithm-based adaptive proportional-integral (PI) 

regulator is proposed to improve the LVRT ability of PV inverters. This scheme tune the gain of PI regulator 

online and without optimization methods. The maximum power point tracking (MPPT) operation is achieved 

using the DC-DC converter. It is implemented using the fractional open circuit voltage scheme. The DC-DC 

power converter controller implemented using the duty cycle of transistor. 

Lin et al. [20], present a Takagi-Sugeno-Kang type probabilistic fuzzy neural network controller 

with asymmetric membership function (TSKPFNN-AMF) for a PV system under abnormal conditions. The 

DC-link bus voltage controller and PV-MPPT control scheme are used to guarantee the power balance under 

abnormal conditions. In order to adequately guarantee the active power balance between boost converter and 

three phase power converter in abnormal conditions, a dual mode operation strategy is suggested. Reactive 

power control and output current control without exceeding the maximum current limit are the main 

responsibility of the inverter of the PV system.  

In [21], a recurrent fuzzy cerebellar model articulation neural network (RFCMANN) LVRT control  

strategy for a PV system under abnormal condition is proposed. To reach this purpose, a VSI operating in a 

current control mode is used as the single-stage three-phase PV unit. To calculate the ratio of the feeded 

reactive current in abnormal condition, a novel formula is suggested. It is introduced based on the voltage 

unbalance factor. A modified signed distance is also presented to convert the two variables of input space 

into sole variable and to minimize the complication of the proposed scheme. 

In [11], a feedback linearizing control (FLC) with sliding mode LVRT scheme for a PV system is 

suggested. The proposed control scheme contains normal and abnormal conditions. The proposed scheme 

under normal conditions is implemented based on the maximum power transfer from the photovoltaic system 

to the power system with the MPPT operation of the inverter. The suggested scheme under normal conditions 

is also responsible for controlling the DC-link voltage and the current at the inverter-grid side. On the other 

hand, the active power is controlled under grid faults to minimize the current surplus, while the reactive 

power is fed to keep away from the inverter disconnection. To improve the robustness of controller to 

uncertainties a sliding mode approach is used in the proposed scheme.  

N.H. Saad et al. [22], propose an improved particle swarm optimization (IPSO) method based on 

modulation index swarm to increase the LVRT capability of a two-stage PV system as shown in Figure 3, 

under abnormal condition. The proposed scheme contains a three-phase three level inverter and a DC-DC 
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converter on the basis of current-source full-bridge power converter with an embedded high-frequency 

transformer and rectifier. In [23], an improved PR-based LVRT control scheme for a PV system under 

unbalanced grid voltages is proposed. The PR controller has the ability to regulate the PV system output 

variables based on symmetrical components of three-phase grid voltage. The use of symmetrical components 

including positive and negative sequence components in the current controller do not introduce any delay or 

error in the control system. Hence, dynamic regulation performance of the proposed controller under 

abnormal condition is enhanced. Moreover, the LVRT ability of grid-connected PV system is enhanced. The 

negative sequence components of grid currents under grid faults can be effectively compensated using the 

proposed PR controller. Additionally, the oscillations in the output power and current can be eliminated with 

the proposed control scheme. 
 

 

 
 

Figure 3. Block diagram of the PV system in [22] 
 
 

Sun et al. [24], propose an improved LVRT control strategy based on symetrical components for a 

QZS inverter used for grid-connected PV power station. Whenever the power grid voltage disturbance is 

detected, the system holds the value of shoot-through duty ratio and cancels the MPPT scheme until the fault 

clears so as to enhance the stability of DC-link voltage during the LVRT period. When the power grid 

voltage gets back to normal, the system recovers the double-loop control and the MPPT control. 

In [25], authors have presented a transformerless three-level photovoltaic power converter and the 

consequences of the unbalanced faults on the inverter’s neutral point for LVRT operation are figured out. 

Moreover, new proposed control techniques are carried out to further balance the voltage oscillations on the 

neutral point of the inverter under unbalanced faults. In [26], Ma and his research group investigate a three-

phase system, which offers six current control freedoms with a zero-sequence current path to alleviate both 

active and reactive power fluctuations and inject sinusoidal currents as well. However, the constant dc source 

has been used, the drawbacks of the unbalanced faults on the capacitive DC-link have not been investigated. 

Cardenas et al. [27], assume that the DC-link voltage is to be constant. This assumption is inappropriate in 

terms of the unbalanced fault as overall power would not be zero and the ripple would be produced to the 

DC-link voltage. 

Afshari et al.[28], propose a model for PV source at the input side system, the performance of the 

proposed technique is only evaluated through simulations. The proposed control strategy including two 

operational modes, MPPT and non-MPPT modes, which they may operate under unbalanced conditions. The 

authors of [29], illustrated the LVRT operation of current source grid-connected PV inverters under 

unbalanced voltages. Moreover, the proposed method developed negative sequence current reference to 

abolish active power double frequency fluctuations at the Ac side of the current source grid connected PV 

inverter. Guo et al.[30], proposed a new fault ride through FRT control strategy for grid connected inverters. 

In the proposed method a pick current can control within the rated value effectually. A flexible control 

strategy for three-phase PV inverters operating under unbalanced faults is discussed, nevertheless, the control 

of the renewable energy source has not been explored. 

 

 

4. CONTROL STRATEGY AND SIMULATION RESULTS 

In order to compensate positive and negative components, a proportional integral controller in the 

dq frame is proposed in this part. The three-phase four-leg power converter used in [31], is used for 

simulations. Figure 4 shows the structure of the SRFPI current controller used for the four-leg power 

converter. As seen, three-phase currents in the αβ frame converted into positive and negative dq currents in 

the SRF firstly, and then the currents in the dq frame are compensated using four PI controllers. Finally, the 

signals in the dq frame are converted into the αβ frame for generating gate signals for the pulse width 

modulation. 
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Figure 4. SRFPI current controller 
 
 

The controller has been applied in a three-phase four-leg PV inverter. The voltage is 155.56 V peak 

at 50 Hz. Simulation studies are carried out by means of the DIgSILENT Power Factory software. 

The parameters of the four-leg inverter are: DC bus voltage: 380V, filter capacitance: 2.2μF, filter 

inductance: 11mH, fundamental frequency 50Hz, switching frequency 20kHz, damping resistance 3.5Ω. 

The output active and reactive power of the PV inverter under unbalanced grid faults condition is 

depicted in Figure 5. As seen, the active power oscillation is mitigated using the positive and negative control 

scheme from 0s to 0.25s. Aditionally, the reactive power oscillation is removed by the control scheme from 

0.25s to 0.5s. The positive and negative currents in the dq frame are also illustrated in Figure 6, which shows 

a precise controllability on the current controller. Figure 7 also shows the three-phase output current of the 

four-leg PV inverter and its neutral current under abnormal condition. The SRFPI controller has the ability to 

mitigate the active power or reactive power oscillation under abnormal conditions using four current control 

freedoms; however, it is not enough to attain acceptable performances under this condition. Therefore, more 

research on this topic needs to improve the controllability of the converter with the zero sequence current 

path, with six current control freedoms in order to cancel the oscillations of the active and the reactive power 

at the same time. 
 
 

 
 

Figure 5. Output active and reactive power under unbalanced grid faults 
 
 

 
 

Figure 6. Positive and negative currents in the dq frame 
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Figure 7. The output currents of the four-leg PV inverter  
 

 

5. CONCLUSION 

This paper presented a review of recent LVRT control schemes for PV power stations operating 

under abnormal conditions. To meet the new grid code needs in the previous studies, several methods to cope 

with fault detection, current control, and power balance in a PV system are presented. This paper has also 

proposed a control scheme for the three-phase PV converter under unbalanced grid faults in the dq frame 

using four PI controllers. Among the main contributions of the suggested technique is the elimination of the 

double grid frequency fluctuations in the active or reactive power under unbalanced faults by controlling the 

positive and negative sequence currents. However, further work is required to mitigate the oscillations of the 

active and the reactive power simultaneously. 
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