
applied
sciences

Article

Feature Adaptive and Cyclic Dynamic Learning Based
on Infinite Term Memory Extreme Learning Machine

Ahmed Salih AL-Khaleefa 1,* , Mohd Riduan Ahmad 1, Azmi Awang Md Isa 1,

Mona Riza Mohd Esa 2, Ahmed AL-Saffar 3 and Mustafa Hamid Hassan 4

1 Broadband and Networking (BBNET) Research Group, Centre for Telecommunication and Research
Innovation (CeTRI), Fakulti Kejuruteraan Elektronik dan Kejuruteraan Komputer (FKEKK),
Universiti Teknikal Malaysia Melaka (UTeM), Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia;
riduan@utem.edu.my (M.R.A.); azmiawang@utem.edu.my (A.A.M.I.)

2 Institute of High Voltage and High Current (IVAT), School of Electrical Engineering, Faculty of Engineering,
Universiti Teknologi Malaysia (UTM), 81310 Skudai, Johor Bharu, Malaysia; monariza@utm.my

3 Faculty of Computer System and Software Engineering, University Malaysia Pahang (UMP),
26300 Gambang, Pahang, Malaysia; ahmed_saffar5@siswa.ukm.edu.my

4 Faculty of Computer Science and Information Technology, Universiti Tun Hussein Onn Malaysia,
86400 Batu Pahat, Johor, Malaysia; mustafa.hamid.alani@gmail.com

* Correspondence: ahmed.salih89@siswa.ukm.edu.my; Tel.: +60-112-122-2077

Received: 28 January 2019; Accepted: 27 February 2019; Published: 2 March 2019
����������
�������

Abstract: Online learning is the capability of a machine-learning model to update knowledge without
retraining the system when new, labeled data becomes available. Good online learning performance
can be achieved through the ability to handle changing features and preserve existing knowledge
for future use. This can occur in different real world applications such as Wi-Fi localization and
intrusion detection. In this study, we generated a cyclic dynamic generator (CDG), which we used to
convert an existing dataset into a time series dataset with cyclic and changing features. Furthermore,
we developed the infinite-term memory online sequential extreme learning machine (ITM-OSELM)
on the basis of the feature-adaptive online sequential extreme learning machine (FA-OSELM) transfer
learning, which incorporates an external memory to preserve old knowledge. This model was
compared to the FA-OSELM and online sequential extreme learning machine (OSELM) on the basis
of data generated from the CDG using three datasets: UJIndoorLoc, TampereU, and KDD 99. Results
corroborate that the ITM-OSELM is superior to the FA-OSELM and OSELM using a statistical t-test.
In addition, the accuracy of ITM-OSELM was 91.69% while the accuracy of FA-OSELM and OSELM
was 24.39% and 19.56%, respectively.

Keywords: online learning; extreme learning machine; cyclic dynamics; transfer learning; knowledge
preservation; Feature Adaptive

1. Introduction

Machine learning has a wide range of applications in the era of artificial intelligence. Massive
data generation and storage facilitate the extraction and transfer of useful knowledge from data,
enabling machines to become as smart as humans. Examples of machine learning-based extraordinary
technologies include autonomous cars [1], biometric based human identification [2], time series
forecasting in different domains [3], security [4], and computer vision [5].

The neural network uses a mathematical structure to gain and store knowledge, which is relevant
to machine learning. Furthermore, neural networks can be used for prediction and classification.
The classical approach of training neural networks is to provide labeled data, and the use of training
algorithms such as backpropagation [6] and machines’ extreme learning [7]. For some applications,

Appl. Sci. 2019, 9, 895; doi:10.3390/app9050895 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0002-6746-6011
http://www.mdpi.com/2076-3417/9/5/895?type=check_update&version=1
http://dx.doi.org/10.3390/app9050895
http://www.mdpi.com/journal/applsci

Appl. Sci. 2019, 9, 895 2 of 17

data cannot be obtained in advance although it can be provided in chunks to the neural network.
The training algorithm then uses these chunks to update the neural network’s knowledge. An example
of this training algorithm is the online sequential extreme learning machine (OSELM) [8]. Knowledge
is not recorded in this approach, unlike one-shot training where data are generally available. However,
data are provided partially with respect to dimensionality. Thus, the record or chunk of data does not
contain all feature types at a given point in time. For instance, features represent sensor data, while
some sensors are inactive all the time. Researchers have then developed the feature-adaptive OSELM
(FA-OSELM) that can facilitate knowledge transfer [9] to resolve this issue. However, this approach is
subject to knowledge loss, which results from the omission of input that corresponds to the disabled
features. Input weights are therefore forgotten. When these inputs become active again, the neural
network must wait until new knowledge is gained from future data, but old knowledge gained from
such inputs is already lost.

Classifiers are categorized on the basis of their learning and prediction approaches. Some classifiers
are regarded as supervised because they require labeled data [10], others as non-supervised because
they do not require labeled data [10]. Some classifiers are regarded as offline because they require
offline learning [11], whereas others are classified as online and are based on streamed data [8].
In online classifiers, where data are subject to changes in dimensionality, learning transfer enables
old knowledge in the new classifier with a new dimension, yet it does not guarantee knowledge
preservation after a series of changes in the dimension because learning transfer is a Markov system.

This article aims to extend an FA-OSELM classifier with external memory, which would allow old
knowledge preservation whenever needed. Old knowledge is represented by neural network weights
and is labeled according to the pattern of active features, i.e., infinite-term memory online sequential
extreme learning machine (ITM-OSELM). The rest of the article is organized as follows. Sections 2–4
tackle problem formulation, literature review, and methodology, respectively. Section 5 discusses
the experimental results and analysis. Section 6 presents the conclusions and recommendations for
future works.

2. Literature Review

In the previous section, we highlighted the problem of emphasized transfer learning. The transfer
learning process involves transferring knowledge from one person to another, and is normally
conducted between two domains—one that can easily collect data, while the other faces difficulty
collecting data [12]. However, transfer learning is valuable when performed in the same domain and a
new learner is required, while knowledge is transferred to the previous learner.

In Ref. [13], the authors employed an online approach to quickly adapt the “black box” classifier
for the new test data set, without keeping the classifier or evaluating the original optimization criterion.
A continuous number was represented by a threshold, which determines the class by considering the
original classifier outputs. In addition, points near the original boundary are reclassified by employing
a Gaussian process regression scheme. In the context of a classifier cascade, this general procedure that
showed performance surpassing state-of-the-art results in face detection based on a standard data set
can be employed.

The study presented in Ref. [9] focused on transfer learning for the extreme learning machine
(ELM), which put forward a FA-OSELM algorithm allowing the original model’s transfer to a new
one by employing few data having new features. This approach evaluates the new model’s suitability
for the new feature dimensions. These experiments showed that the FA-OSELM is highly accurate
by employing even a small amount of new data, and is considered an efficient approach that allows
practical lifelong indoor localization. Transfer learning integration was done in various fields, such as
sensing, computer vision, and estimation. However, these works did not focus on enhancing the
classifier’s prediction in online mode by considering the learned classifier from the previous block of
data. The cyclic dynamic data are a useful application for such a problem, in which previous knowledge
can be employed to forecast coming classes due to the fact that cycles occur in sequential data.

Appl. Sci. 2019, 9, 895 3 of 17

The work conducted in Ref. [14] describes a novel type of extreme learning machine with the
capability of preserving older knowledge, using external memory and transfer learning; ITM-OSELM.
In this study, the authors applied the concept to Wi-Fi localization and showed good performance
improvement in the context of cyclic dynamic and feature adaptability of Wi-Fi navigation. However,
the approach has not been generalized to other cyclic dynamic scenarios in the machine learning field,
and its applicability has not been verified in various types of cyclic dynamics.

All the reviewed articles have aimed at providing their models with some type of transfer learning;
however, taking the concept of transfer learning as a need for incremental learning based approaches
and enabling restoration of knowledge gained from older chunks of data in the scenarios of cyclic
dynamic has not been tackled explicitly in the literature. There is a need for such models in various
real life applications like Wi-Fi navigation where people visits previously visited places frequently,
also in intrusion detection systems when newer attacks follows behavior similar to older attacks with
addition of new features, etc.

The goal of this article is to develop a generalized ITM-OSELM model and to build a simulator
for cyclic dynamic. We then used our model to both validate and evaluate ITM-OSELM performance
in feature adaptive and cyclic dynamic situations.

3. Problem Formulation

Given the sequential data xt = (xit) i ∈ {1, 2, . . . n}, t = 1, 2, . . . T and their corresponding labels
yt, yt ∈ {1, 2..C}, the xt dimension is fixed when yt is fixed; yt repeats itself through time. The learning
transfer (LT) model transfers knowledge from classifier St1 to classifier St2 when d(xt1) 6= d(xt2). LT is
assumed to have been called for moments t2, t3 due to dimensionality change, where d(xt1) 6= d(xt2)

and d(xt1) = d(xt3). The following steps are performed to optimize the performance of St3:

1. Use LT to transfer knowledge from St2 to St3.

2. Use external memory to add knowledge of St1 to St3.

The first step is responsible for maintaining the knowledge accumulated from training, while
the second step is responsible for restoring knowledge lost from the disappearance of old features.
Figure 1 conceptually depicts the formulation problem.

 ‐

 ‐
 ‐

 ‐

 ‐

 ‐

 𝑥 𝑥 𝑖 ∈ 1, 2, … 𝑛 , 𝑡 1,2, … 𝑇 𝑦 𝑦 ∈ 1, 2. . 𝐶 𝑥 𝑦 𝑦
 𝑆 𝑆 𝑑 𝑥 𝑑 𝑥 𝑡 𝑡 𝑑 𝑥 𝑑 𝑥 𝑑 𝑥 𝑑 𝑥

 𝑆

 𝑆 𝑆 .
 𝑆 𝑆

 Figure 1. Evolution of classifiers over time based on feature changes.

Figure 1 shows the classifier and depicts its evolution according to the type of active features in
vector xt. The active features at moment t1 are 1, 2, and 3, which continue for time T1. However, the

Appl. Sci. 2019, 9, 895 4 of 17

feature dimension changed to active features 1, 2, 3, 4, and 5 at time t2 = t1 + T1. This process requires
classifier changes from St1, where the input vector is (1, 2, and 3) to St2 with input vectors (1, 2, 4,
and 5). Learning transfer was applied to maintain the knowledge gained from St1, which ensured the
transfer of knowledge related to inputs 1 and 2. Furthermore, features 4 and 5 were new. Hence, new
data taught the classifier about these new features. Feature 3 did not undergo learning transfer due
to the fact that it was no longer active, and, therefore, external memory (EM) was used to preserve
it. Features (1, 2, 4, and 5) were assumed active during time T2. Moreover, features 4 and 5 were
deactivated during t3 = t2 + T2, whereas feature 3 was reactivated. Thus, a new classifier was rebuilt
on the basis of the following steps:

1. Perform transfer learning TL to move related knowledge to inputs 1 and 2 from St2 to St3.

2. Use external memory to move knowledge related to 3 from EM to St3.

Classifier St and external memory EMt are Markov models; they were represented according to
the state flow diagram depicted in Figure 2. where the event feature change (FC) moves the system
from one state to another.

 𝑥 𝑡 𝑇

 𝑡 𝑡 𝑇
 𝑆 𝑆

 𝑆

 𝑇
 𝑡 𝑡 𝑇

 𝑆 𝑆
 𝑆

 𝑆 𝐸𝑀

 ‐
 ‐ ‐

 𝑑 𝑥 , 𝑦 𝑘 1, 2 … 𝑁 𝑖 ∈ 1, 2, … 𝑛 𝑦 𝑦 ∈ 1, 2. . 𝐶
 𝐷 𝑥 , 𝑦 𝑖 ∈ 1, 2, … 𝑛 , 𝑡 1, 2, … 𝑁 𝑦
 𝑥
 𝑥 𝑦

 ‐ 𝐷 𝑥 , 𝑦 , 𝑖 1,2 … 𝑁 ,

𝑦 𝑦 1𝐶 𝑠𝑖𝑛 2𝜋𝑡𝑇 1 ,
𝐷 𝑦 , , 𝑖 1,2 … 𝑅, 𝑡 1,2, … 𝐿 ,

 𝐷 𝑦 𝑦 𝑦 , 𝑦 𝑅

Figure 2. (a) Markov model of classifier, and (b) Markov model of external memory (EM).

4. Methodology

Section 4 presents the methodology we followed in this article. Cyclic dynamic time series
generation is provided in Section 4.1, while the transfer learning model is presented in Section 4.2.
The external memory model for the ITM-OSELM is discussed in Section 4.3. In Sections 4.4 and 4.5,
the ITM-OSELM algorithm and the evaluation analysis of the ITM-OSELM algorithm are presented.

4.1. Generating Cyclic Dynamic Time Series Data

The combined record in dataset D is assumed as dk = (xik, yk) k = 1, 2 . . . N, i ∈ {1, 2, . . . n} yi,
yi ∈ {1, 2..C}. The goal was to build a mathematical model that converts dataset D into a time series
dataset Dt = (xit, yt) i ∈ {1, 2, . . . n}, t = 1, 2, . . . N of cyclic nature. Cyclic means that label yt is
repeated every time T. xik, is assumed to have a changing dimension, which is constrained by the
condition that the dimension of xt is fixed when yt is fixed. The time series of cyclic dynamic is found
based on the following model:

In order to elaborate the pseudo-code that is presented in Algorithm 1, we present the equations:

D = {(xi, yi), i = 1, 2 . . . N}, (1)

yt =

{⌈

(ymax − 1)
C

sin

(

2πt

T

)⌉

+ 1
}

, (2)

Dt = {(yt,i), i = 1, 2 . . . R, t = 1, 2, . . . L}, (3)

where:

D denotes the original dataset;

ymax denotes the maximum code of the classes in D;

yt the class that is extracted from D at moment t;

Appl. Sci. 2019, 9, 895 5 of 17

yt,i denotes the class yt at the moment t and it is repeated for R times in the time series; and

L the number of distinct samples in the time series.

Algorithm 1 exhibits the generation pseudocode. Moreover, the nature of cyclic dynamic can be
changed on the basis of value T that represents the period, and value R that represents the number of
records in each class. The general form of generation is to change R randomly from one class to another.

Algorithm 1. Pseudocode for converting a dataset into cyclic dynamic with a feature-adaptive time series.

Inputs

D //dataset
R //number of records per sample
L //Length of time series
C //Number of classes
T //period of the time series
Outputs

Dt //time series data
Start

D = GenerateActiveFeatures(D); //to encode the non-active features for every class
t = 1
for i = 1 until L

y = sin(2*pi*t/T)
yt = Quantize(y, C) //Quantize the value y according to the number of classes in D
for j = 1 until R

xt = Extract(yt, D) //extracts random samples from D with the label y
Dt(t).x = xt
Dt(t).y = yt
t = t + 1

Endfor2
Endfor1

The pseudocode starts with class generation using the sin function, which is then quantized
according to the number of classes in the dataset. The corresponding active features are given from the
function Extract(). Finally, the record is provided to the time series data.

4.2. Learning Model Transfer

The FA-OSELM has been adopted in the study as the transfer learning model without
compromising the generality. Ref. [9] put forward this model that aims to transfer weight values from
the old to the new classifier. Assuming that hidden nodes (L) have similar amounts, the FA–OSELM
provides an input–weight transfer matrix P, and an input–weight supplement vector Qi, which allow
conversion from the old weights ai to the new weight a′i, according to the equation considering feature
change magnitude from mt to mt+1:

{

a′i = ai·P + Qi

}L
i=1, (4)

where:

P =

P11 · · · P1mt+1
...

. . .
...

Pmt1 · · · Pmtmt+1

mt×mt+1

, (5)

Qi =
[

Q1 . . . Qmt+1

]

1 × mt+1. (6)

The following rules must be followed by matrix P:

Appl. Sci. 2019, 9, 895 6 of 17

• One ‘1’ is assigned to each line; the remaining are all ‘0’;

• One ‘1’ is assigned to each column at most; the remaining are all ‘0’;

• Pij = 1 implies that original feature vector’s ith dimension will become the jth dimension defining
the new feature vector post that the feature dimension has changed.

When an increase emerges in the feature dimension, Qi acts as a supplement. In addition,
the corresponding input’s weight is added by Qi for the new adding features. The rules mentioned
below are part of Qi:

• Lower feature dimensions imply that Qi can be applied for an all-zero vector. Thus, the new
adding features do not need any additional corresponding input weight.

• In cases when an increase emerges in the feature dimension, should the ith item of a′i represent
the new feature, then a random generation must be applied for the ith item of Qi, which is based
on the ai distribution.

4.3. External Memory Model for ITM-OSELM

The external memory in ITM-OSELM functions by storing the weights associated with the features,
which at a certain time t, become disabled. Classifiers are offered by EM, with weights associated
with these features in case features are reactivated. Furthermore, this process verifies the classifiers
qualification for prediction through the initial knowledge gained from EM. Provided that the classifier
has already gained knowledge from TL, this knowledge is complemented by EM, given that TL
employs the previous classifier for feeding EM. However, knowledge associated with new active
features is unavailable with the previous classifier. EM structure is shown in Figure 3. Matrix with
input size N signifies EM, which denotes the total number of features present in the system. Moreover,
L signifies the number of columns, which denotes the number of hidden neurons associated with the
classifier. Memory update occurs only when a change emerges in the number of features, which is
done by storing weight values for features that become non-active. This memory is employed when
changes in the number of features occur when initializing the classifiers for the features’ weights that
turn active.

 ′ ′
 𝑃 1

 𝑄
 𝑄

 𝑄

 𝑄 ‐

 𝑎
 𝑄
 𝑎

 ‐

 ‐

 ‐

 ‐

Figure 3. ITM-OSELM network and its two sources of updates: external memory EM and transfer
learning TL.

4.4. ITM-OSELM Algorithm

This section presents the ITM-OSELM algorithm. Data are presented to this classifier as chunks
in a sequential manner, which have no label once provided. These labels become available after

Appl. Sci. 2019, 9, 895 7 of 17

prediction, which permits the sequential training of the classifier. This is a normal OSELM training,
although the weights initialization in the OSELM is not fully random. Two sources of information
were used: the TL, which is responsible for transferring the weights from previous classifiers; and the
EM, which is responsible for providing the weights from the external memory. The old weights must
be stored in the EM once a new classifier is created to replace an old classifier. For computational time
analysis, the needed time is calculated for the process conducted in each chunk of data. Algorithm 2
exhibits the ITM-OSELM algorithm.

Algorithm 2. Pseudocode for the ITM-OSELM algorithm used to calculate accuracy.

Inputs

Dt = {D0, D1,} //sequence of labeled data
N //total number of features
L //number of hidden neurons
g //type of activation function
Outputs

yp //predicted classes
Ac //prediction accuracy
Starts

activeFeatures = checkActive(D(0))
currentClassifier = initiateClassifier(activeFeatures, L)
currentEM = initiate(N, L)
yp = predict(currentClassifer,D(0).x,g)
Ac(0) = calculateAccuracy(yp,D(0).y)
currentClassifier = OSELM(currentClassifier,D(0).x,D(0).y,g)
for each chunck D(i) of data

[Change,activeFeatures,newActive,oldActive] = checkActive(D(i),D(i-1))
if(Change)

nextEM = EMUpdateEM(currentEM,oldActive)
nextClassifier = transferLearning(currentClassifier,activeFeatures)
nextClassifier = updateNewActive(nextEM,newActive)
currentClassifer = nextClassifier
currentEM = nextEM

end
yp = predict(currentClassifier,D(i).x,g)
Ac(i) = calculateAccuracy(yp,D(i).y)
currentClassifier = OSELM(currentClassifier,D(i).x,D(i).y,g)

endfor1

Function checkActive() takes two vectors of feature IDs: the first one in the previous moment
and the second one in the current moment. This function has another role of comparing the two
IDs to determine which features become active or inactive. The role of EMUpdateEM() is to take
the current EM and old active features, and save their corresponding weights in the EM. The role of
updateNewActive() is to take new memory and new active features, in order to build and restore their
weights from the memory.

4.5. Evaluation Analysis of ITM-OSELM

This section analyzes the ITM-OSELM and examines the relationship among the characteristics of
the times series, such as the number of features and its change rate, number of classes, period of signal
on one side, and classifier accuracy on the other side.

Typical evaluation measures for classification were used: true positive (TP), false positive (FP),
true negative (TN), and false negative (FN). Positive class was selected as any of the classes, while the
other classes were regarded as negative. The average of true/false and positive/negative for all classes

Appl. Sci. 2019, 9, 895 8 of 17

were used to calculate TP, TN, FP, and FN. Furthermore, accuracy, precision, and recall were calculated
on the basis of these measures.

5. Experimental Work and Results

Cyclic dynamic generator (CDG) results were generated for three datasets, wherein two datasets;
TampereU and UJIndoorLoc, belonged to Wi-Fi localization; and one belonged to other machine
learning areas; KDD99 from cloud security.

This experiment aimed to generalize the cyclic dynamic concept to other machine-learning fields,
where the classifier is required to remember old knowledge that was already gained but might not be
preserved due to its dynamic features. The data were repeated for three cycles, and the number of
active features in each cycle was not changed, in order to allow investigation of performance changes
in the cyclic dynamic situation. Furthermore, accuracy and time results were generated. Section 5.1
provides the datasets description. Model characterization with respect to the number of neurons and
regularization factor, as well as the accuracy results are presented in Sections 5.2 and 5.3, respectively.

5.1. Datasets Description

The Knowledge Discovery and Data Mining (KDD) competition in 1999 offered tKDD99
dataset [15], which was given by Lee and Stolfo [16]. Pfahringer [17] differentiated such data from
others by employing a mixture of boosting and bagging. After winning the first place in a competition,
this work has been considered a benchmark by researchers. Generally, these data concern the area
of security, specifically intrusion detection, and are therefore considered crucial in machine learning.
Output classes are segmented into five divisions: user 2 root (U2R), denial of service (DOS), root 2
local (R2L), probe, and normal. This dataset includes 14 attack types in testing and 24 attack types
in training, generating a total of 38 attacks. Theoretically, the 14 new attacks examine the capability
of intrusion detection system (IDS) for generalization to unknown attacks, and these new attacks are
barely identified by machine learning-based IDS [18].

From Wi-Fi-based localization, two additional datasets, TampereU and UJIIndoorLoc, were
employed. Three buildings of Universitat Jaume I were included in the UJIIndoorLoc database, which
consist of at least four levels covering an area of almost 110,000 m2 [19]. For classification applications,
this database was used in building identification, regression, actual floor, and actual determination of
latitude and longitude. In 2013, UJIIndoorLoc was built in almost 25 Android devices with 20 distinct
users. The database includes 19,937 training or reference records and 1111 validation or test records.
In addition, the 529 attributes possess Wi-Fi fingerprints, consisting of information source coordinates.

An indoor localization database; the TampereU dataset, was employed for evaluating the IPSs
that rely on WLAN/Wi-Fi fingerprint. Lohan and Talvitie developed the database to test indoor
localization techniques [20]. Two buildings of the Tampere University of Technology with three and
four levels were accounted in TampereU. Moreover, the database includes 1478 reference or training
records about the first building, 489 test attributes, and 312 attributes pertaining to the second building.
This database also stored the Wi-Fi fingerprint (309 wireless access points WAPs) and coordinates
(longitude, latitude, and height).

5.2. Characterization

A characterization model is required for each of the classifiers and datasets. This model aims to
identify the best model settings in terms of neuron numbers, and the value of the regularization factor.
To address this aim, a mesh surface was generated. Every point in the mesh represents the testing
accuracy with respect to a certain value of neuron numbers and regularization factor. Figure 4 exhibits
the mesh generated from each of the three datasets. Moreover, every point in the surface of the mesh
had a different accuracy according to the number of hidden neurons and regularization value. The aim
of this study was to select the point with the best accuracy. The regularization parameter was based on

Appl. Sci. 2019, 9, 895 9 of 17

the relationship between accuracy and regularization factor (C). The number of hidden neurons was
selected on the basis of their relationship with (L), which represents the number of hidden neurons.

 −
 −

 −

(b) (c)

Figure 4. Characterization model represented in mesh for the accuracy relation between the number of
hidden neurons and regularization factor. (a) TampereU; (b) UJIndoorLoc; and (c) KDD99 datasets.

To extract the values of C and L, the mesh was mapped to C versus the accuracy curve, or L
versus the accuracy curve, respectively. The three dataset curves are shown in Figure 5, while the
results for L and C that achieved the best accuracy for each of the three models are given in Table 1.

Table 1. Selected values for regularization factor regularization factor (C) and number of hidden
neurons (L), and their corresponding accuracy for the three datasets.

Dataset C L Accuracy

TampereU 2−6 750 0.8501

UJIndoorLoc 2−9 850 0.6841

KDD99 2−14 600 0.9977

Appl. Sci. 2019, 9, 895 10 of 17

 ‐
 ‐

 ‐ ‐

Figure 5. Projections of the mesh on accuracy vs. regularization factor, and accuracy vs. number
of neurons in hidden layers for the three datasets TampereU, UJIIndoorLoc, and KDD99. (a) Mesh
representation of the relation between the accuracy, L, and C for ELM classifier based on TampereU
dataset (b) relation between the accuracy and C for ELM classifier based on TampereU dataset.
(c) relation between the accuracy and L for ELM classifier based on TampereU dataset. (d) relation
between the accuracy, L, and C for ELM classifier based on UJIIndoorLoc dataset. (e) relation between
the accuracy and C for ELM classifier based on UJIIndoorLoc dataset. (f) relation between the accuracy
and L for ELM classifier based on UJIIndoorLoc dataset.

Appl. Sci. 2019, 9, 895 11 of 17

5.3. Accuracy Results

Accuracy was generated for the study’s developed model ITM-OSELM, and, for the two
benchmarks, FA-OSELM and OSELM, in addition to the accuracy results. Figures 6–9 represent
the detailed accuracy with respect to chunks, and the overall accuracy in each cycle for the three
datasets, respectively. Each point in the curve indicates the accuracy of one chunk in the sequential
data. The chunks are coming in sequential manner because the data represents a time series data.

Analyzing the curves, for the initial cycle, the ITM-OSELM, FA-OSELM, and OSELM had similar
performances because the models did not have previous knowledge to remember. In the second and
third cycles, the ITM-OSELM was superior to the others, which was attributed to the comparison
among their knowledge preservation aspects. FA-OSELM had transfer learning capability. However,
transfer learning is a Markov type, which means it only remembers a previous state and brings its
values to the current. ITM-OSELM, however, can restore older knowledge whenever necessary. On the
other side, FA-OSELM and OSELM had similar performance regardless of repeating the cycle.

 ‐
 ‐

 ‐
 ‐

Figure 6. Accuracy change with respect to data chunks for three cycles using the TampereU dataset.

 ‐
 ‐

 ‐
 ‐

Figure 7. Accuracy change with respect to data chunks for three cycles using the UJIndoorLoc dataset.

Appl. Sci. 2019, 9, 895 12 of 17

 ‐
 ‐

 ‐
 ‐

 Figure 8. Accuracy change with respect to data chunks for three cycles using the KDD99 dataset.

 ‐

 ‐

 ‐
 ‐ ‐
 ‐

 ‐ ‐

‐
‐

‐
‐

‐
‐

Figure 9. Overall accuracy for the three models with respect to cycles. (a) TampereU; (b) UJIndoorLoc;
and (c) KDD99 datasets.

Appl. Sci. 2019, 9, 895 13 of 17

For further elaboration, we present Table 2, which provides the numerical values of the accuracies
of each cycle for each of the three models. We observe that ITM-OSELM has achieved the highest
accuracies for the three datasets in the second and third cycles. The best achieved accuracy for
ITM-OSELM has been achieved in UJIndoorLoc where the overall accuracy in the third cycle was
91.69% while the accuracy of FA-OSELM and OSELM was 24.39% and 19.56%, respectively, for the
third cycle. This emphasizes the superiority of ITM-OSELM over FA-OSELM and OSELM. On the
other side, we observe the increase of the learning performance in ITM-OSELM when the accuracy has
been increased from 16.48% in the first cycle to 88.36% in the second and 91.69% in the third cycle.

Table 2. The overall accuracy in each cycle for ITM-OSELM, FA- OSELM and OSELM in the
three datasets.

Dataset Algorithm Cycle 1 Cycle 2 Cycle 3

TampereU dataset
ITM-OSELM 28.73% 81.17% 81.61%
FA-OSELM 28.55% 28.25% 21.11%

OSELM 35.12% 26.28% 13.33%

UJIndoorLoc
dataset

ITM-OSELM 16.48% 88.36% 91.69%
FA-OSELM 13.12% 17.94% 24.39%

OSELM 30.06% 17.14% 19.56%

KDD99 dataset

ITM-OSELM 33.91% 65.83% 75.86%
FA-OSELM 45.91% 41.58% 50.81%

OSELM 18.27% 17.39% 3.75%

Table 3 was generated, where ITM-OSELM’s learning capability performance was quantified and
compared to that of FA-OSELM and ITM-OSELM, from one cycle to another. This comparison included
the learning improvement percentage during all cycles. The highest learning percentage from one cycle
to another was achieved for ITM-OSELM in all three datasets; thus, ITM-OSELM was the best in terms
of gaining knowledge from one cycle to another. The other two models showed negative learning
rates; hence, they were not capable of carrying knowledge from one cycle to another. Moreover,
the ITM-OSELM achieved better learning improvement in Cycles 2 to 1 of 182.52% compared to Cycles
3 to 1 of 0.54%, yet this improvement was not due to less capability but performance saturation as
accuracy reached ~100% in the Cycle 3.

Table 3. Learning improvement percentage of the three models with respect to cycles, percentage of
the three models with respect to cycles.

Dataset Algorithms Cycle 2 vs. Cycle 1 Cycle 3 vs. Cycle 2

TampereU dataset
ITM-OSELM 182.52% 0.54%
FA-OSELM −1.05% −25.27%

OSELM −25.17% −49.27%

UJIndoorLoc dataset
ITM-OSELM 436.16% 3.76%
FA-OSELM 36.73% 35.95%

OSELM −42.98% 14.11%

KDD99 dataset

ITM-OSELM 94.13% 15.23%
FA-OSELM −9.431% 22.19%

OSELM −4.81% −78.43%

In order to validate our hypothesis of superiority of ITM-OSELM over OSELM and FA-OSELM,
we adopted a t-test using a confidence level of 0.05% for rejection of H0 of non-statistical difference
in performance. In Table 4, we see in all cells of cycle 2 and cycle 3 that the values of the t-test were
lower than 0.05, which means that ITM-OSELM outperforms the two baseline approaches OSELM
and FA-OSELM. This proves that the reason of the superiority in the model is the transfer learning

Appl. Sci. 2019, 9, 895 14 of 17

and external memory that enabled ITM-OSELM to restore old knowledge in both cycle 2 and cycle 3,
while both OSELM and FA-OSELM could not do it.

Table 4. Probabilities of the t-test for comparing ITM-OSELM with OSELM and FA-OSELM in each of
the three cycles.

Dataset Algorithms 1 vs. Algorithm 2 Cycle 1 Cycle 2 Cycle 3

TampereU dataset
ITM-OSELM vs. OSELM 0.73103 2.78 × 10−3 3.21 × 10−6

ITM-OSELM vs. FA-OSELM 0.934221 2.96 × 10−4 2.01 × 10−4

UJIndoorLoc
dataset

ITM-OSELM vs. OSELM 0.126012 2.13 × 10−7 5.5 × 10−10

ITM-OSELM vs. FA-OSELM 0.141881 5.13 × 10−7 5.5 × 10−10

KDD99 dataset
ITM-OSELM vs. OSELM 0.422419 1.086 × 10−3 2.24 × 10−6

ITM-OSELM vs. FA-OSELM 0.299556 3.532 × 10−2 3.28 × 10−2

In addition to accuracy, the models were evaluated according to standard machine learning
evaluation measures. This evaluation was performed by selecting a class and assuming it as positive,
and then the classifier was checked for any sample. The results of the classifier were either positive
or negative. Figures 10–12 display TP, TN, FP, or FN results. For ITM-OSELM, true measures have
an increasing trend from one cycle to another, whereas false measures have a decreasing trend from
one cycle to another. This discrepancy does not apply to FA-OSELM and OSELM, and the result was
normal considering the accuracy results. An interesting observation is that the first cycle provides
nearly similar values of TP, TN, FP and FN for all three of the models while the deviation between
ITM-OSELM and the other two models occur in both the second and third cycle, which support its
capability of building knowledge and achieving a higher rate of correct predictions.

Figure 10. Classification measures with respect to cycles for the three models with the
TampereU dataset.

Appl. Sci. 2019, 9, 895 15 of 17

Figure 11. Classification measures with respect to cycles for the three models with the
UJIndoorLoc dataset.

Figure 12. Classification measures with respect to cycles for the three models with the KDD99 dataset.

6. Conclusions and Future Work

Cyclic dynamics is a common type of dynamics that occurs in time series data. Typical machine
learning models are not meant to exploit learning within cyclic dynamic scenarios. In this article,
we developed two concepts: first, a simulator was developed for converting datasets to time series
data with changeable feature numbers or adaptive features, and for repeating the cycles of output
classes; second, we developed a novel variant of the OSELM called the ITM-OSELM to deal with
cyclic dynamic scenarios, and time series. The ITM-OSELM is a combination of two parts: transfer
learning part, which is responsible for carrying information from one neural network to another
when the number of features change; and an external memory part, which is responsible for restoring
previous knowledge from old neural networks when the knowledge is needed in the current one.
These models were evaluated on the basis of three datasets. The results showed that the ITM-OSELM
achieved improvement in accuracy over the benchmark, where the accuracy of ITM-OSELM was
91.69%, while the accuracy of FA-OSELM and OSELM was 24.39% and 19.56% respectively.

Appl. Sci. 2019, 9, 895 16 of 17

The future work is to investigate the applicability of ITM-OSELM in various machine learning
fields like video based classification or network intrusion detection. Furthermore, we will investigate
the effect of the percentage of feature change in consecutive cycles on the performance of ITM-OSELM.

Author Contributions: Conceptualization, A.S.A.-K.; data curation, A.S.A.-K.; formal analysis, A.S.A.-K.; funding
acquisition, M.R.A., A.A.M.I., and M.R.M.E.; investigation, A.S.A.-K. and A.A.-S.; methodology, A.S.A.-K.;
project administration, A.S.A.-K. and M.H.H.; resources, A.S.A.-K. and M.H.H.; software, A.S.A.-K. and A.A.-S.;
supervision, M.R.A. and A.A.M.I.; validation, M.R.A.; visualization, A.S.A.-K.; writing—original draft, A.S.A.-K.;
writing—review and editing, A.S.A.-K., M.R.A., A.A.M.I., M.R.M.E., A.A.-S., and M.H.H.

Funding: This research was funded by the Malaysia Ministry of Education, Universiti Teknikal Malaysia Melaka,
under Grant PJP/2018/FKEKK(3B)/S01615, and in part by the Universiti Teknologi Malaysia under Grants 14J64
and 4F966.

Conflicts of Interest: The authors declare no conflicts of interest regarding this paper.

References

1. Zhang, J.; Liao, Y.; Wang, S.; Han, J. Study on Driving Decision-Making Mechanism of Autonomous Vehicle

Based on an Optimized Support Vector Machine Regression. Appl. Sci. 2018, 8, 13. [CrossRef]

2. Li, C.; Min, X.; Sun, S.; Lin, W.; Tang, Z. DeepGait: A Learning Deep Convolutional Representation for

View-Invariant Gait Recognition Using Joint Bayesian. Appl. Sci. 2017, 7, 210. [CrossRef]

3. Lu, J.; Huang, J.; Lu, F. Time Series Prediction Based on Adaptive Weight Online Sequential Extreme Learning

Machine. Appl. Sci. 2017, 7, 217. [CrossRef]

4. Sun, Y.; Xiong, W.; Yao, Z.; Moniz, K.; Zahir, A. Network Defense Strategy Selection with Reinforcement

Learning and Pareto Optimization. Appl. Sci. 2017, 7, 1138. [CrossRef]

5. Wang, S.; Lu, S.; Dong, Z.; Yang, J.; Yang, M.; Zhang, Y. Dual-Tree Complex Wavelet Transform and Twin

Support Vector Machine for Pathological Brain Detection. Appl. Sci. 2016, 6, 169. [CrossRef]

6. Hecht-Nielsen, R. Theory of the Backpropagation Neural Network. In Neural Networks for Perception; Harcourt

Brace & Co.: Orlando, FL, USA, 1992; pp. 65–93. [CrossRef]

7. Huang, G.-B.; Zhu, Q.-Y.; Siew, C.K. Extreme learning machine: A new learning scheme of feedforward

neural networks. In Proceedings of the 2004 IEEE International Joint Conference on Neural Networks (IEEE

Cat. No.04CH37541), Budapest, Hungary, 25–29 July 2004; IEEE: Piscataway, NJ, USA, 2004; Volume 2,

pp. 985–990. [CrossRef]

8. Huang, G.-B.; Liang, N.-Y.; Rong, H.-J.; Saratchandran, P.; Sundararajan, N. On-Line Sequential Extreme

Learning Machine. In Proceedings of the IASTED International Conference on Computational Intelligence,

Calgary, AB, Canada, 4–6 July 2005; p. 6.

9. Jiang, X.; Liu, J.; Chen, Y.; Liu, D.; Gu, Y.; Chen, Z. Feature Adaptive Online Sequential Extreme Learning

Machine for lifelong indoor localization. Neural Comput. Appl. 2016, 27, 215–225. [CrossRef]

10. Cristianini, N.; Schölkopf, B. Support Vector Machines and Kernel Methods: The New Generation of Learning

Machines. AI Mag. 2002, 23, 12. [CrossRef]

11. Camastra, F.; Spinetti, M.; Vinciarelli, A. Offline Cursive Character Challenge: A New Benchmark for

Machine Learning and Pattern Recognition Algorithms. In Proceedings of the 18th International Conference

on Pattern Recognition (ICPR’06), Hong Kong, China, 20–24 August 2006; IEEE: Piscataway, NJ, USA, 2006;

pp. 913–916. [CrossRef]

12. Weiss, K.; Khoshgoftaar, T.M.; Wang, D. A survey of transfer learning. J. Big Data 2016, 3, 9. [CrossRef]

13. Jain, V.; Learned-Miller, E. Online domain adaptation of a pre-trained cascade of classifiers. In Proceedings of

the CVPR 2011, Colorado Springs, CO, USA, 20–25 June 2011; IEEE: Piscataway, NJ, USA, 2011; pp. 577–584.

[CrossRef]

14. Al-Khaleefa, A.S.; Ahmad, M.R.; Md Isa, A.A.; Mohd Esa, M.R.; Al-Saffar, A.; Aljeroudi, Y. Infinite-Term

Memory Classifier for Wi-Fi Localization Based on Dynamic Wi-Fi Simulator. IEEE Access 2018, 6,

54769–54785. [CrossRef]

15. Özgür, A.; Erdem, H. A review of KDD99 dataset usage in intrusion detection and machine learning between

2010 and 2015. PeerJ Prepr. 2016, 4, e1954v1. [CrossRef]

16. Lee, W.; Stolfo, S.J. A framework for constructing features and models for intrusion detection systems. ACM

Trans. Inf. Syst. Secur. 2000, 3, 227–261. [CrossRef]

http://dx.doi.org/10.3390/app8010013
http://dx.doi.org/10.3390/app7030210
http://dx.doi.org/10.3390/app7030217
http://dx.doi.org/10.3390/app7111138
http://dx.doi.org/10.3390/app6060169
http://dx.doi.org/10.1016/B978-0-12-741252-8.50010-8
http://dx.doi.org/10.1109/IJCNN.2004.1380068
http://dx.doi.org/10.1007/s00521-014-1714-x
http://dx.doi.org/10.1609/aimag.v23i3.1655
http://dx.doi.org/10.1109/ICPR.2006.895
http://dx.doi.org/10.1186/s40537-016-0043-6
http://dx.doi.org/10.1109/CVPR.2011.5995317
http://dx.doi.org/10.1109/ACCESS.2018.2870754
http://dx.doi.org/10.7287/peerj.preprints.1954v1
http://dx.doi.org/10.1145/382912.382914

Appl. Sci. 2019, 9, 895 17 of 17

17. Pfahringer, B. Winning the KDD99 classification cup: Bagged boosting. ACM Sigkdd Explor. Newsl. 2000, 1,

65–66. [CrossRef]

18. Sabhnani, M.; Serpen, G. Why Machine Learning Algorithms Fail in Misuse Detection on KDD Intrusion

Detection Data Set. Intell. Data Anal. 2004, 8, 403–415. [CrossRef]

19. Torres-Sospedra, J.; Montoliu, R.; Martinez-Uso, A.; Avariento, J.P.; Arnau, T.J.; Benedito-Bordonau, M.;

Huerta, J. UJIIndoorLoc: A new multi-building and multi-floor database for WLAN fingerprint-based indoor

localization problems. In Proceedings of the 2014 International Conference on Indoor Positioning and

Indoor Navigation (IPIN), Busan, Korea, 27–30 October 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 261–270.

[CrossRef]

20. Lohan, E.S.; Torres-Sospedra, J.; Richter, P.; Leppäkoski, H.; Huerta, J.; Cramariuc, A. Crowdsourced

WiFi-fingerprinting database and benchmark software for indoor positioning. Zenodo Repos. 2017. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access

article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1145/846183.846200
http://dx.doi.org/10.3233/IDA-2004-8406
http://dx.doi.org/10.1109/IPIN.2014.7275492
http://dx.doi.org/10.5281/zenodo.889798
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Literature Review
	Problem Formulation
	Methodology
	Generating Cyclic Dynamic Time Series Data
	Learning Model Transfer
	External Memory Model for ITM-OSELM
	ITM-OSELM Algorithm
	Evaluation Analysis of ITM-OSELM

	Experimental Work and Results
	Datasets Description
	Characterization
	Accuracy Results

	Conclusions and Future Work
	References

