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Abstract—Biomedical literature suggested that the tumor-immune system 
physical phenomenon usually climaxes into either tumor elimination or escape. 
In retort to the phenomenological mechanics of tumor-immune system interac-
tion, researchers had used Mathematical models mostly prey-predator and com-
petitive extensively, to model the dynamics of tumor immune system interac-
tion. However, these models had not accounted for total elimination and, or es-
cape of tumor as hypothesizes by immunoediting hypotheses. In this work, we 
propose a dual aggressive model based on the biological narration of tumor-
immune system interactions. The stability analyses of tumor-negative steady 
state are stable if the rate at which body cells dies is less than their proliferation 
rate a confirmation of biological listed causes of the tumor. The tumor-positive 
steady state is always unstable and saddle with the likelihood of either elimina-
tion or escape of tumor. Numerical analysis validates our analytical results and 
provides insight into the dynamics of the benignant and malignant tumor. The 
immunosuppression by tumor is not only visible but also validated by both ana-
lytical and numerical analysis. 

Keywords—Tumor, Immune System, Immunoediting, Immunosurveillance, 
Prey-Predator Model and Competitive Model 

1 Introduction 

Tumor-immune system interaction had revolutionized, From the era of immuno-
surveillance that hypothesizes immune system capacity to recognize and eliminate 
nascent malignant cells [1], to the era of immunoediting which hypothesizes that the 
interaction might be responsible for both elimination and sculpting of the immunogen-
ic phenotype of tumor that eventually formed in the immunogenic host [2{Vesely, 
2011 #7. The immunoediting hypothesized possible outcomes of the interaction 
include elimination phase a state of pathogens' elimination. The equilibrium phase is a 
state where anti-tumor immunity control tumor growth but does not eliminate it and 
tumor cell appears dormant {Mittal, 2014 #8, 3].  The last phase is the escape phase, a 
state where the immunosuppressive mechanism allows tumor cell to escape from 
control and grow in an unrestricted manner [4-6]. "The interactions between the im-
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mune system and tumor happen through complex events that usually eventually cli-
max either in successful tumor eradication or immune evasion" [7] 

The critical demands in immunology and oncology are knowing how the immune 
system affects cancer. These demands had prompted many mathematical models re-
search work on tumor-immune system interaction using either prey-predator or com-
petitive model as in [1, 8-12] and others who had built on these works. Most of these 
authors had used interchangeably different growth model for tumor growth. However, 
the choice of model for tumor growth had always been discretionary as the choice 
ranges from the simple to a complex with linear or exponential form. Most complex 
models selected by the modelers contain either exponential and linear phases or takes 
into account the process of growth or the sigmoidal models with the assumption that 
the carrying capacity is dynamic (time-dependent). Another selection is with the pro-
grammed cell death to factor the tumor loss volume as discussed in [13].. The need for 
a new mathematical model with precision was recommended in [14, 15].  Recently, a 
differential equation model was proposed for tumor growth in [16, 17]e} which 
demonstrate the universality of known tumor growth models properties. 

 Here, we briefly reviewed some of the mostly referenced models of tumor-effector 
cells dynamics both the prey-predator and competition model version..  [10]  used a 
competitive model to describe the binding and detaching of effector cell and tumor 
cells without damaging cells. The qualitative behaviors of their model, using bifurca-
tion theory accounted for tumor dormancy and sneak through..  Kuznestov et al. sub-
mitted that, their work do not account for total elimination even with highly immun-
genic tumors. Panettal et al. in [11] proposed a three population model describing the 
interaction effector cells, tumor cells and cytokrn IL-2. They used logistic model for 
tumor growth. The stability analysis of their model accounted for an always unstable 
and saddle trivial equilibrium ie when all the populations are zeros and three nontrivi-
al steady states. Using bifurcation diagram their findings revealed that with low anti-
gen there is possibility of large mass of tumor or dormancy of tumor[1]  provided 
extension to[11]  with inclusion of  process of activation and maturation of effector 
cells to describe the competition for resources between the tumor and effector cells. 
Their analysis without delay predicted tumor dormancy or victory. Sotolongo et al in 
[18] improved the model proposed by Bell in [19] with the inclusion of  "the death of 
lymphocytes due to the increase of malignant cells population, the flux of lympho-
cytes towards the place of local interaction and the effect produced by the application 
of cytokine doses". Their work displays brief tumor oscillations and elongated tumor 
relapse. Gallach [9] modified the work proposed in [10] by replacing the Michaelis-
Menten form in [10] with a Lotka-Volterra form, a prey-predator like model. Their 
analysis without delay accounted for tumor dormancy only.  

 Eftimie et al in [16] reviewed extensively ordinary differential equations model of 
tumor-immune system interaction which included the interaction of tumor and fami-
lies of immune cells, cell mediated tumor growth and immunotherapies in form of 
two, three, four and five equations interaction Models. They affirmed that these entire 
models do exhibit tumor dormancy and oscillation. It is evident in all the works cited 
above that both prey-predator and competitive models had not accounted for tumor-
elimination or escape. In this work, we proposed a dual aggressive model based on 
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biomedical narration to model tumor-immune system physical phenomenon and the 
stability analyses of the steady states were obtained. Numerical simulation was used 
to validate our analytical results using relevant and recent biological parameter values. 

2 Model Formulation 

Biomedical studies have it that, the outcome of tumor-immune interactions is sup-
ported by a number of highly unrelated parameters such as tumor “foreignness” (im-
munosurveillance) and T-cells inhibitory mechanisms (immunosuppression) [20]. We 
begin the formulation of our model by considering the immune system interaction 
with tumor cells with tendencies of recognition and elimination of tumor cells and 
sculpt of the cell phenotype leading to a less immunogenic variant that facilitates 
tumor growth and immune evasion. The tumor-immune system interaction is de-
scribed by equation (1), the inclusion tumor immunosurpressive mechanism is an 
unusual feature in our model, making the model dual aggressive. 

 !"
!#
= 𝛼𝐸(𝑡) + 𝛽𝐸(𝑡)𝑇(𝑡) − 𝜃𝐸(𝑡)						 

 !0
!#
= 𝛿𝑇(𝑡) + 𝛾𝐸(𝑡)𝑇(𝑡) − 𝜗𝑇(𝑡)			 (1) 

Where the first equation of  (1) represent the rate of changes in population density 
of effector cells over time which is the sum of the proliferation rate of effector cells 𝛼 
and the immunosurvellance rate 𝛽 to eliminate tumor cells  minus the deactivate or 
death rate 𝜃 of effector cells. The second equation of (1) is the rate of changes in pop-
ulation density of tumor cells over time which is the sum of proliferation rate 𝛿 of the 
tumor and the inhibitory rate  𝛾 of effector cells by the tumor minus the death rate 𝜗 
of the tumor cells.  

The population of tumor in equation1 is modeled by a growth model defined as 
singled out in equation 2 to effectively remove the problem of choice arising from 
collection of growth models like logistic, gompertz, power models and others. This 
growth model harmonized other tumor growth models as acknowledged in 
{d’Onofrio, 2005 #30}{Eftimie, 2011 #26}{Wilkie, 2013 #31}.  

 !0
!#
= 𝛿𝑇(𝑡) − 𝜗𝑇(𝑡)			 (2) 

Equation 2 gives a good  basis to determine the tendencies of tumor growth as  
𝛿𝑇(𝑡) > 𝜗𝑇(𝑡) indicates growth of tumor over time,  𝛿𝑇(𝑡) < 𝜗𝑇(𝑡) indicates decay 
of tumor over time and 𝛿𝑇(𝑡) = 𝜗𝑇(𝑡)  indicates tumor dormancy.  

To describe the points at which the interaction brought about an unchanged popula-
tion for the tumor and effector cells, when seek to determine the steady states where 
the populations remain unchanged. The behaviors of the model near these steady 
states are interest in determining the stability status of the model. We considered the 
steady states and their stability in the next section. 
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3 Steady States and Stability Analysis  

The equation 1 has two biological relevant steady states namely, tumor-negative 
(E*, T*) = (0, 0) where both population are zeros and tumor-positive (E*,T*) 
=		6(789)

:
, (<8=)

>
? where both population are present. By linearizing equation 1, the 

characteristic equation has the form 

𝜆A + ([𝜗 − 𝛿 − 𝛾𝐸∗] + [𝜃 − 𝛼 − 𝛽𝑇∗])𝜆 + (𝛿 + 𝛾𝐸∗ − 𝜗)(𝛼 + 𝛽𝑇∗ − 𝜃) −
𝛽𝐸∗𝛾𝑇∗ = 0 (3) 

Lemma: The tumor negative steady state (E*, T*) = (0, 0) is stable, if 𝛼 < 𝜃 and  
𝛿 < 𝜗. 
Proof:  Substituting (E*, T*) = (0, 0) into (3) we have 

 𝜆A + ([𝜗 − 𝛿] + [𝜃 − 𝛼])𝜆 + (𝛿 − 𝜗)(𝛼 − 𝜃) = 0 

Thus, 

 𝜆F = −(𝜗 − 𝛿),																	𝜆A = −(𝜃 − 𝛼)		 (4) 

The tumor-negative steady state (E^*, T^*) = (0, 0) is stable if the proliferation rate 
of body cells is less than or equal to their death rate, otherwise it is unstable. 

Lemma: The tumor positive steady state (E*, T^*) =		6(789)
:

, (<8=)
>
?	is always un-

stable and saddle. 
Proof: Substituting (E*, T*) =		6(789)

:
, (<8=)

>
? into (3) we have, 

 𝜆A − (𝜃 − 𝛼)(𝜗 − 𝛿) = 0					 

 𝜆A = ±H	(𝜃 − 𝛼)(𝜗 − 𝛿)									 (5) 

The tumor-positive steady states (E*, T^*) =		6(789)
:

, (<8=)
>
?	  is unstable saddled. 

The interaction yields a dynamical situation which might climax into either tumor 
elimination or escape.\\ 

To see long time behavior of the model we employed the Dulac Bendixson criteria 
as in {Gasull, 2013 #32}{Ibáñez, 2013 #33} to determine the periodic status of the 
solution of (1) we use the auxiliary function F

"(#)0(#)
  and the  equation (1) takes the 

form 

 
IJKL(M)NOL(M)P(M)QRL(M)		L(M)P(M) S

T"
+

T6UP(M)NVL(M)P(M)QWP(M)										L(M)P(P) ?

T0
= 0			 (6) 

Going by (6), it translates that the model (1) does not have periodic.  

iJOE ‒ Vol. 15, No. 10, 2019 157



Short Paper—A Dual-Aggressive Model of Tumor-Immune System Interactions 

4 Numerical Simulation 

In this section, we aim to validate our analytical results numerically. we selected 
from the recent work, biological meaningful parameter values as indicated in Table 1. 

Table 1.  Model Biological Parameters Values 

Parameters  Values Units References  
𝛼 0.1811 or 16 𝑑𝑎𝑦8F {Kuznetsov, 1994 #16}{Mempel, 2004 #} 
𝛽 2.9 𝑛𝑔𝑚𝑙8F {Robertson-Tessi, 2012 #35}{Thomas, 2005 #36} 
𝜃 1 𝑑𝑎𝑦8F {Yates, 2001 #37} 
𝛿 0.1-1 𝑑𝑎𝑦8F {Mempel, 2004 #34} 
𝛾 3,5 𝑛𝑔𝑚𝑙8F {Robertson-Tessi, 2012 #35} 
𝜗 0.9 𝑑𝑎𝑦8F {Dudley, 2002 #38} 

 
Results obtained in previous sections are governed by the relation of death and pro-

liferation rates of tumor and effector cells. This is mathematically expressed as (𝜃 >
𝛼)and(𝜗 > 𝛿) for growth of effector cells and tumor cells respectively and  (𝜃 <
𝛼)and(𝜗 < 𝛿)) for their decays. We simulated our models in these two scenarios to 
obtain a qualitative behavior of the model using parameters in Table 1. 

 
Fig. 1. Quantative solution of Equation 

 
Fig. 2. Phase portrait for equation 
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Fig.1 is the quantitative solution of equation (1) when the death rates of tumor and 
effector cells are less than their respective growth rate with the following model pa-
rameter values 𝛼 = 0.1811, 𝛽 = 2.9, 𝜃 = 1, 𝛿 = 0.8, 𝛾 = 3.5	𝑎𝑛𝑑	0.9.  A stiff com-
bative interaction that keeps tumor dormant was observed for almost nine months 
since the emergent of tumor until the effector cells showed weakness and tumor es-
cape uncontrollably. In Fig. 2, we obtained phase portrait for equation (1) under the 
same situation as in Fig, and the simulation revealed the existence of a whole stable 
region. A confirmation of the analytical result obtained in equation (5). 

 
Fig. 3. quantitative solution of equation 

 
Fig. 4. phase portrait for equation 

Fig. 3, is a quantitative solution equation (1) when the proliferation rate of both the 
tumor and the effector cells are greater than their death rate with the following model 
parameter values 𝛼 = 16, 𝛽 = 2.9, 𝜃 = 1, 𝛿 = 1, 𝛾 = 3.5	𝑎𝑛𝑑	0.9.  It exhibits a 
longer combative interaction comparing to Fig, 1 resulting to tumor escape. Though 
an intermittent reappearance of effector cells is later recorded it doesn't stop the es-
cape of tumor cells. Fig, 4 is a phase portrait for equation (1) under the same parame-
ter values and the simulation revealed the existence of small stable region and a larger 
unstable region. These confirmed the unstable status of equation (5). 
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5 Discussion 

In this paper, we had proposed a dual aggressive model of tumor-immune system 
interaction bearing in mind the immunoediting hypotheses.  The tumor-negative 
steady state is stable when the body cells do not proliferate excessively and the tumor-
positive steady is always unstable and might either climaxes into either tumor elimi-
nation or escape. We used phase portrait to reflect a possible outcome of the interac-
tion in two scenarios: 

1. When the proliferation rate of tumor and effector cells are less than their death 
rates which yields the decay of tumor (stable situation) 

2. When the proliferation rate of tumor and effector cells are greater than their death 
rates which suggested a partial decay and growth of tumor (unstable situation) see 
Fig. 1 & 2.  

The numerical simulation also exhibited the immunosuppression with the intermit-
tent reappearances of effector cells.  In our next work, we will consider the introduc-
tion of time delay to model the natural processes of the interaction. 
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