
ESTIMATING CHANGE EFFORT USING A COMBINATION
OF CHANGE IMPACT ANALYSIS TECHNIQUE WITH

FUNCTION POINT ANALYSIS
Jalal Shah

Universiti Teknologi Malaysia
54100, Jalan Semarak, Kuala Lumpur

+6017-3278645

engrjalalshah@yahoo.com

Nazri Kama
Universiti Teknologi Malaysia
54100, Jalan Semarak, Kuala

Lumpur
+6013-3945451

mdnazri@utm.my

Nur Azaliah A Bakar
Universiti Teknologi Malaysia

54100, Jalan Semarak, Kuala Lumpur
+6019-6499394

azaliah@utm.my

ABSTRACT

Software effort estimation is one of the methods that can help
software project manager in making decision whether to accept or
reject requirement changes. Many methods have been developed
and Function Point Analysis is one of the methods that is used for
software maintenance phase. Looking from software development
phase, FPA method faces a challenge on performing estimation
when the non-developed software artifacts exists (some of the

classes are fully developed; partially developed; and not
developed yet). This research aims to develop a method that
improves the estimation accuracy through combination of
Function Point Analysis method with Change Impact Analysis
technique. An evaluation was conducted using two selected case
studies where a significant accuracy achievement is achieved.

CCS Concepts

• Software and its engineering ➝Software design techniques.

Keywords

Software Development Effort Estimation; Effort Estimation;
Function Point Analysis; Change Impact Analysis; Software
Development Phase.

1. INTRODUCTION
Change requests are occurring in all the stages of Software
Development Life Cycle (SDLC). These changes are the main
causes for a software project failure [1]. An effective change
acceptance decision can help software project managers in
accepting or rejecting changes [2] . Software Development Effort
Estimation (SDEE) is one of the methods that may help the
software project managers in accepting or rejecting change

requests with a concrete reason. SDEE method predicts the
amount of work that is required to implement a change request in
Person per Month (PM) unit. SDEE can be performed in many
ways such as: Expert Judgement [3], Estimation by Analogy [4],

Function Point Analysis (FPA) [5], Source Lines of Code (SLOC)
[2] and Regression Analysis [6]. However, this study only focused
on FPA method.

Function Point Analysis is one of the most common effort
estimation methods that is used for measuring the size and
complexity of an SRC by calculating the number of function
points. Commonly, FPA method is used for software maintenance
phase where all the software artifacts are in consistent state or
assumed that all the classes are fully developed. However, using
FPA in Software Development Phase (SDP) is a challenging task.
Since in SDP software artifacts are in inconsistent state as some of

the classes are fully developed, some are partially developed and
some of the classes are not developed yet.

Alternatively, software Change Impact Analysis (CIA) is one of
the techniques that can help software project managers in
understanding the actual status of software artifacts and moreover,
it helps software project managers in knowing the consequences
of an SRC on software artifacts.

Many researchers agreed that the combination of FPA with CIA
can help software project managers for an accurate effort

estimation during software development phase. Therefore, this
research combines FPA method with CIA technique to propose a
new software effort estimation method. The proposed method
predicts the amount of required effort for a SRC in SDP.

This paper is structured as follows: Section (2) presents related
work, section (3) describes proposed solution, section (4) presents
evaluation process and section (5) presents conclusion and future

work.

2. RELATED WORK
The four most related keywords involved in this research are

Software Effort Estimation, Software Development Effort
Estimation, Change Impact Analysis, Software Development
Phase, and Function Point Analysis.

2.1 Software Development Effort Estimation
Software Development Effort Estimation (SDEE) is a process that

predicts the amount of work and hours of work which are required
to implement a software requirement change. Effort estimation
can be done in many ways such as: Expert Judgement [7],
Estimation by Analogy [4], Regression Analysis [8], Ontology
Based Effort Estimation [9], COCOMO II, Use case Point [10],
Source Lines of Code [11] and Function Point Analysis[11, 12].

These methods are divided into two categories: (1) Algorithmic
and (2) Non-Algorithmic methods [6]. The Algorithmic methods

are based on fixed and predefined statistical and mathematical

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior

specific permission and/or a fee. Request permissions from

Permissions@acm.org.

ICSIE 2019, April 9-12, 2019, Cairo, Egypt

© 2019 Association for Computing Machinery

ACM ISBN 978-1-4503-6105-7/19/04…$15.00

https://doi.org/10.1145/3328833.3328836

9

equations[5]. While, the Non-Algorithmic methods are based on
learning, understanding and analyzing previous software

development projects and may include past personal experiences.

However, this study has focused on Function Point Analysis (FPA)
method which is one of the most common algorithmic methods
that is used for software size estimation by calculating the number
of function points that the system provides to its end users. FPA
method is developed by Allan Albrecht in 1979 and its
fundamental objectives are: (1) independent of development
technology, (2) simple to apply, (3) can be estimated from

requirement specifications and (4) meaning full to end users [13].
A systematic literature review is conducted on software effort
estimation by[14] and they stated that FPA is one of the most
concrete and consistent estimation technique [12, 15].

In FPA method, user functional requirements are recorded into
five types: (1) Internal Logical Files (ILF), (2) External Interface
Files (EIF), (3) External Inputs (EI), (4) External Outputs (EO)
and (5) External Inquiries (EQ) [16]. A user manual is introduced

by International Function Point User Group (IFPUG) in 1994 [17]
for the first time to calculate the number of Function Points (FPs)
and later it is modified several times with the recent version as
4.3.1 in 2010 [18]. There are several steps introduced in IFPUG
manual to calculate the number of FPs [16, 17]. Step 1: to
calculate total number of Unadjusted Function Points (UFPs) by
adding ILF, EIF, EQ, EO and EI with their respective complexity
(low, average or high) as shown in Equation 1[17].

 (1)

Whereas,

UFPs: Unadjusted Function Points

ILF: Internal Logical Files

EIF: External Interface Files

EI: External Inputs

EO: External Outputs

EQ: External Inquiries

Step 2: to calculate Technical Complexity Factor (TCF) which is
calculated by estimating the Degree of Influence (DI) for 14
elements of General Application Characteristics (GSC). A scale is
used for DI; from zero (0) (no influence), to five (5) strongly
influence. TCF can be calculated from Equation (2).

 () (2)

Whereas,

TCF: Stands for Technical Complexity Factor

TDI: Total Degree of Influence

Step 3: to calculate FPs which is the multiplication result of UFPs
and TCF as shown in Equation (3) [16, 17].

 (3)

Whereas,

FPs: Function Points

UFPs: Unadjusted Function Points

TCF: Stands for Technical Complexity Factor

Step 4: to calculate effort which is equal to work productivity
multiplied by function points. Generally, the productivity is eight
(8) hours worked per day as shown in Equation (4) [5].

 (4)

Whereas,

SRCDE: Stands for Software Requirement Change

Development Effort
P: Stands for Productivity i.e. Eight (8) hours for One (1)

Function Point
FP: Stands for Function Points

2.2 Change Impact Analysis
Change impact analysis is the process of identifying potential
consequences of a change, or estimating what needs to be
modified to accomplish a change [19]. There are several CIA
techniques that have been introduced in the literature such as: Use
Case Maps (UCM), Class Interactions Prediction with Impact

Prediction Filters (CIP-IPF) technique [20] Path Impact technique
[21] and the Influence Mechanism technique [1].

These techniques are divided into two categories: (1) Static
Impact Analysis (SIA) and (2) Dynamic Impact Analysis (DIA)
[22]. The SIA technique analyzed the static information which is
generated from software artifacts such as: requirements, design,
class and test artifacts. On the other hand, DIA technique analyzed
the dynamic information or executing code.

Existing CIA techniques are assumed that all classes in the class
artifacts are fully developed; and secondly the class artifacts are
used as a source of analysis, since it represents the final forms of
user requirements [23]. Unfortunately, these assumptions are not
practical for implementing CIA in the software development
phase since some class artifacts are still not developed or partly
developed [24].

However, studies [5, 22, 23] shows that the integration of these

two techniques: (1) SIA and (2) DIA will be a good method for
CIA during software development phase. A framework that has
been developed for software development phase integrated SIA
and DIA and considers all partially developed classes, fully
developed classes and not developed classes. The framework is
named as: Software Development Phase Change Impact Analysis
Framework (SDP-CIAF) [23]. The SDP-CIAF as the following
features; (1) It provides SIA which covers the software artifacts
traceability from requirement until development phase as well as

source code, (2) It includes dynamic analysis of the source code,
(3) It considers the inconsistent states of the software artifacts (4)
It is used for software development phase.

Hence, this study has selected SDP-CIAF framework as a CIA
technique and combined it with FPA method to propose a new
software effort estimation method which could be used to measure
the amount of effort that is required to implement a software
requirement change or changes during software development

phase

3. PROPOSED METHOD
The new proposed method is the combination of two techniques,
which are: (1) SDP-CIAF and (2) FPA method. The new proposed

10

method may help software project managers in an accurate effort
estimation during software development phase and it also helps

software project managers in an effective change acceptance
decision by accepting or rejecting software requirement changes.

This method has four main steps such as: Step 1: Software
Requirement Analysis, Step 2: Calculating Function Points, Step 3:
Performing Change Impact Analysis and Step 4: Estimating
Required Effort as shown in Figure 1.

Figure 1. Software Development Effort Estimation Method

Phase 1: Software Change Request Analysis
It starts with a software change request form, having the following
information: software change request name, software change
request ID, software change request receiving date and software
change request type (Addition, Deletion or Modification). At the
end of this phase a document is generated and named as: software

change request specifications which will be used as an input for
Phase 2. This process will be repeated for each software change
request.

Phase 2: Conducting Change Impact Analysis
In this phase the process of Change Impact Analysis (CIA) will be
done. The process starts by checking the consequences of a
software change request on software artifacts. Furthermore, it also
checks the status of the class artifacts which may be Partially
Developed (PD), Fully Developed (FD) or Not Developed yet and

finally an updated set of software artifacts are generated which
will used as input in phase 3. The process will be repeated for
each software change request.

Table 1 shows the Code Development Status Multiplier (CDSM)
for software requirement changes.

Table 1. Code Development Status Multiplier

S/NO Development

Status

Symbol CDSM

1 Not Developed ND 0.00

2 Partially Developed PD 0.50

3 Fully Developed FD 1.00

Phase 3: Estimating Function Points

In this Phase the number of Function Points will be calculated
from Unadjusted Function Points and Technical Complexity

Factor by using Equation (3). This phase will use the updated set
of software artifacts as an input and identified five (5) type of
functions such as: ILF, EIF, EI, EO and EQ by using the IFPUG
manual rules [16, 18] and calculated UFPs and TCF using
Equation (1) and Equation 2 respectively [25]. The process will be
repeated for each software change request.

Phase 4: Estimating Change Request Development Effort
In this Phase the amount of effort that is required to implement a

software change request will be estimated by using two inputs: (1)
number of FPs and (2) updated set of software artifacts. Whereas,
the effort is equal to productivity multiplied by number of
function point [11]. For example, if the productivity is 8 hours for
1 function point. Then number of efforts will be equal to
Productivity multiplied by FPs as shown in Equation (4). The
process will be repeated for each software change request.

4. EVALUATION PROCESS
This section defines the method for conducting the evaluation
process. During the evaluation process four main elements which
have been considered are: (1) Case selection, (2) Data Collection,
(3) Evaluation Metric, and (4) Evaluation Results.

4.1 Case Selection
To evaluate the results of new proposed method two case studies
are selected i.e. Vending Machine Control System (VMCS) and
Ticket Dispensing System (TDS). The selected software’s are
developed by the team of 5 (five) experienced members. The
members are Master of Software engineering students and having

industrial experiences.

Table 2. Data Collection

Project
ID

SRC ID SDP SRC Type

P-1 CR-1 Analysis Addition

CR-2 Analysis Addition

CR-3 Analysis Addition

CR-4 Design Deletion

CR-5 Design Modification

CR-6 Coding Addition

CR-7 Coding Modification

CR-8 Coding Deletion

CR-9 Design Modification

CR-10 Design Addition

P-2 CR-11 Analysis Addition

CR-12 Analysis Addition

CR-13 Analysis Addition

CR-14 Analysis Deletion

CR-15 Analysis Modification

CR-16 Coding Addition

CR-17 Coding Modification

CR-18 Testing Addition

CR-19 Testing Modification

CR-20 Testing Deletion

11

4.2 Data Collection
During two case studies 20 (Twenty) software requirement
changes have been introduced from both software projects. These
changes are mostly introduced from all phases of software
development life cycle. Later, these changes have been analyzed
and a change request specification document is derived.

Table 2 is showing the data collection with Software Requirement
Change ID, Software Development Phase (SDP) and Software
Requirement Change (SRC) Type i.e. Addition, Deletion and
Modification and Modification Type CRC is sub divided into two
categories i.e. (Modification-Addition and Modification-Deletion).

4.3 Evaluation Metric
An evaluation metric named as Magnitude of Relative Error
(MRE) is used for the evaluation of new proposed effort
estimation method. It has calculated a rate of the relative errors in
both cases of over-estimation or under-estimation as shown
Equation (6) [26, 27].

 (6)

4.4 Evaluation Results
Table 3. MRE Values Produced from the new Proposed

Method

Project
ID

Requirement
Change ID

Estimated

Effort

Man per

Hour

(SDEEM)

Actual

Effort

Man

per

Hour

MRE %

P-1 CR-1 56 55 0.018182

CR-2 80 78 0.025641

CR-3 33 31 0.064516

CR-4 00 00 00

CR-5 24 27 0.111111

CR-6 88 85 0.035294

CR-7 16 14 0.142857

CR-8 16 15 0.066667

CR-9 24 23 0.043478

CR-10 56 58 0.034483

P-2 CR-11 80 82 0.02439

CR-12 112 109 0.027523

CR-13 56 57 0.017544

CR-14 48 46 0.043478

CR-15 32 30 0.066667

CR-16 24 28 0.142857

CR-17 48 51 0.058824

CR-18 56 54 0.037037

CR-19 32 34 0.058824

CR-20 80 83 0.036145

Table 3 shows the results of the case studies using the new
proposed method i.e. SDEEM. The evaluation process focused on

the results between the estimated efforts with the actual effort.
According to [28] whenever MRE value increases the estimation

accuracy decreases.

Table 4 shows the MRE values produced from the new proposed
model and Table 4 shows the MRE values Produced from the
existing Function Point Analysis method. Whereas, Table 5 shows
the comparison between the MRE values produced from existing

Function Point Analysis method and the new proposed method.

Table 4. MRE Values Produced from existing Function Point

Analysis Method

Project
ID

Requirement
Change ID

Estimated

Effort

with FPA

method

Actual

Value

of

Effort

MRE %

P-1 CR-1 56 55 0.018182

CR-2 80 78 0.025641

CR-3 33 31 0.064516

CR-4 15 00 #DIV/0!

CR-5 24 27 0.111111

CR-6 88 85 0.035294

CR-7 16 14 0.142857

CR-8 25 15 0.666667

CR-9 24 23 0.043478

CR-10 56 58 0.034483

P-2 CR-11 80 82 0.02439

CR-12 112 109 0.027523

CR-13 56 57 0.017544

CR-14 60 46 0.304348

CR-15 32 30 0.066667

CR-16 24 28 0.142857

CR-17 48 51 0.058824

CR-18 56 54 0.037037

CR-19 32 34 0.058824

CR-20 97 83 0.168675

Table 5: Comparison between the MRE Values Produced

from Existing Function Point Analysis Method and the new

Proposed Method

Project

ID

Requirement

Change ID

MRE Values

with
SDEEM

MRE

Values with

FPA
method

P-1 CR-1 0.018182 0.018182

CR-2 0.025641 0.025641

CR-3 0.064516 0.064516

CR-4 00 #DIV/0!

CR-5 0.111111 0.111111

CR-6 0.035294 0.035294

CR-7 0.142857 0.142857

12

CR-8 0.066667 0.666667

CR-9 0.043478 0.043478

CR-10 0.034483 0.034483

P-2 CR-11 0.02439 0.02439

CR-12 0.027523 0.027523

CR-13 0.017544 0.017544

CR-14 0.043478 0.304348

CR-15 0.066667 0.066667

CR-16 0.142857 0.142857

CR-17 0.058824 0.058824

CR-18 0.037037 0.037037

CR-29 0.058824 0.058824

CR-20 0.036145 0.168675

5. DISCUSSION
The effort estimation accuracy of the new Software Development
Effort Estimation Method has been evaluated by selecting two
case studies and from each case study ten software change
requests have been introduced during software development phase.

To review the results of the new proposed method this study has
come up with some solutions of the problems which were

encountered in our previous studies [5] the solutions are: (1)
Proposed method can identify the impact of software requirement
changes on software artifacts and (2) Proposed method can predict
an accurate amount of effort for software requirement changes as
compared to existing FPA method during software development
phase.

The results of the proposed method are compared with the results
from existing FPA method as shown in Table 5 and observed that
the new proposed method is providing more accurate effort

estimation results compared to FPA method. The main reason of
providing more accurate estimation result with the new proposed
method is because of Change Impact Analysis (CIA) technique.
The CIA technique helps software project managers in knowing
the actual status of class artifacts which are beneficial for an
accurate estimation. While the existing FPA is limited in knowing
the actual status of class artifacts which might produce inaccurate
effort estimation results.

For example, a class is fully developed or partially developed is
replaced with a new change request which is not developed yet.
So, the class which is developed partially or fully shows that some
effort has been already taken for its implementation. For an
accurate effort estimation, it is important to know that effort that
has been taken already. The new proposed method can help
software project managers in an accurate effort estimation while
the existing FPA method is limited to know the amount effort that

has been taken already. The new proposed method which is the
combination FPA with CIA can help project managers in
estimating the accurate amount of effort for software requirement
changes during software development phase.

6. CONCLUSION AND FUTURE WORK
This study proposed a new software effort estimation method that
combines between Function Point Analysis (FPA) and Change
Impact Analysis (CIA). As discussed earlier, the FPA method
predicts the amount of effort for software requirement changes in

initial phase of Software Development Life Cycle (SLDC).
Whereas, CIA technique identifies the consequences of a software

requirement change on software artifacts, and the development
status of the code for software requirement change. The
evaluation results shows that proposed method is able to give
higher accuracy on the amount effort for a software requirement
change during software development phase compared to the
independent FPA method (without CIA technique).

The results of this study are the part of our ongoing research to
overcome the challenges of accurate effort estimation for software

requirement changes during software development phase. For
future work, this study is aiming to conduct intensive tests of this
method by considering more software requirement changes from
different case studies.

7. ACKNOWLEDGEMENTS
This research project is sponsored under the 4C150, Contract
research that is awarded by Majlis Agama Islam Selangor to

Universiti Teknologi Malaysia.

8. REFRENCES
[1] S. Basri, N. Kama, and R. Ibrahim, "COCHCOMO: An

extension of COCOMO II for Estimating Effort for
Requirement Changes during Software Development Phase,"
2016.

[2] P. Agrawal and S. Kumar, "Early phase software effort
estimation model," in 2016 Symposium on Colossal Data
Analysis and Networking (CDAN), 2016, pp. 1-8.

[3] S. Grimstad and M. Jørgensen, "Inconsistency of expert
judgment-based estimates of software development effort,"
Journal of Systems and Software, vol. 80, pp. 1770-1777,
11// 2007.

[4] A. Idri, F. a. Amazal, and A. Abran, "Analogy-based
software development effort estimation: A systematic
mapping and review," Information and Software Technology,
vol. 58, pp. 206-230, 2// 2015.

[5] J. Shah and N. Kama, "Issues of Using Function Point
Analysis Method for Requirement Changes During Software

Development Phase.," presented at the Asia Pacific
Requirements Engeneering Conference, Melaka Malaysia,
2018.

[6] B. Sufyan, K. Nazri, H. Faizura, and A. I. Saiful, "Predicting
effort for requirement changes during software
development," presented at the Proceedings of the Seventh
Symposium on Information and Communication Technology,
Ho Chi Minh City, Viet Nam, 2016.

[7] M. Jorgensen, "Practical guidelines for expert-judgment-
based software effort estimation," IEEE software, vol. 22, pp.
57-63, 2005.

[8] A. Hira, S. Sharma, and B. Boehm, "Calibrating
COCOMO® II for projects with high personnel
turnover," presented at the Proceedings of the International
Conference on Software and Systems Process, Austin, Texas,
2016.

[9] M. Adnan and M. Afzal, "Ontology Based Multiagent Effort
Estimation System for Scrum Agile Method," IEEE Access,
vol. 5, pp. 25993-26005, 2017.

[10] A. B. Nassif, L. F. Capretz, and D. Ho, "Calibrating use case
points," presented at the Companion Proceedings of the 36th

13

International Conference on Software Engineering,
Hyderabad, India, 2014.

[11] A. Hira and B. Boehm, "Function Point Analysis for
Software Maintenance," presented at the Proceedings of the

10th ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement, Ciudad Real, Spain,
2016.

[12] M. d. F. Junior, M. Fantinato, and V. Sun, "Improvements to
the Function Point Analysis Method: A Systematic Literature
Review," IEEE Transactions on Engineering Management,
vol. 62, pp. 495-506, 2015.

[13] A. J. Albrecht, "AD/M productivity measurement and
estimate validation," IBM Corporate Information Systems,
IBM Corp., Purchase, NY, 1984.

[14] A. Idri, M. Hosni, and A. Abran, "Systematic literature
review of ensemble effort estimation," Journal of Systems
and Software, vol. 118, pp. 151-175, 8// 2016.

[15] K. Usharani, V. V. Ananth, and D. Velmurugan, "A survey
on software effort estimation," in 2016 International
Conference on Electrical, Electronics, and Optimization
Techniques (ICEEOT), 2016, pp. 505-509.

[16] D. Garmus and D. Herron, "Function Point Analysis:
Measurement Practices for Successful Software Projects
pdf," 2001.

[17] D. St-Pierre, M. Maya, A. Abran, J.-M. Desharnais, and P.
Bourque, "Full function points: Counting practices manual,"
Software Engineering Management Research Laboratory
and Software Engineering Laboratory in Applied Metrics,
1997.

[18] J. J. Cuadrado-Gallego, P. Rodriguez-Soria, A. Gonzalez, D.
Castelo, and S. Hakimuddin, "Early Functional Size
Estimation with IFPUG Unit Modified," in Computer and

Information Science (ICIS), 2010 IEEE/ACIS 9th
International Conference on, 2010, pp. 729-733.

[19] D. Kchaou, N. Bouassida, and H. Ben-Abdallah, "UML
models change impact analysis using a text similarity
technique," IET Software, vol. 11, pp. 27-37, 2017.

[20] Asl and Kama, "A Change Impact Size Estimation Approach
during the Software Development," in 2013 22nd Australian
Software Engineering Conference, 2013, pp. 68-77.

[21] S. Basri, N. Kama, and R. Ibrahim, "A Novel Effort

Estimation Approach for Requirement Changes during
Software Development Phase," International Journal of
Software Engineering and Its Applications, vol. 9, pp. 237-
252, 2015.

[22] B. Sufyan, K. Nazri, A. Saiful, and H. Faizura, "Using static
and dynamic impact analysis for effort estimation," IET
Software, vol. 10, pp. 89-95, 2016.

[23] N. Kama and F. Azli, "A Change Impact Analysis Approach
for the Software Development Phase," presented at the
Proceedings of the 2012 19th Asia-Pacific Software
Engineering Conference - Volume 01, 2012.

[24] N. Kama, "Integrated Change Impact Analysis Approach for
the Software Development Phase," International Journal of
Software Engineering & Its Applications, vol. 7, p. 9, March
2013 2013.

[25] D. Longstreet, "Function points analysis training course,"
SoftwareMetrics. com, October, 2004.

[26] N. Nurmuliani, D. Zowghi, and S. Powell, "Analysis of
requirements volatility during software development life
cycle," in 2004 Australian Software Engineering Conference.
Proceedings., 2004, pp. 28-37.

[27] S. Sabrjoo, M. Khalili, and M. Nazari, "Comparison of the
accuracy of effort estimation methods," in 2015 2nd
International Conference on Knowledge-Based Engineering
and Innovation (KBEI), 2015, pp. 724-728.

[28] M. Jorgensen and K. Molokken-Ostvold, "Reasons for
software effort estimation error: impact of respondent role,
information collection approach, and data analysis method,"

IEEE Transactions on Software engineering, vol. 30, pp.
993-1007, 2004.

14

