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Abstract: The performance of three satellite-based high-resolution gridded rainfall datasets, namely

the gauge corrected Global Satellite Mapping of Precipitation (GSMaP), Integrated Multi-Satellite

Retrievals for Global Precipitation Measurement (IMERG), and the Climate Hazards Group InfraRed

Precipitation with Stations (CHIRPS) in the hot desert climate of Egypt were assessed. Seven statistical

indices including four categorical indices were used to assess the capability of the products in

estimating the daily rainfall amounts and detecting the occurrences of rainfall under different

intensity classes from March 2014 to May 2018. Although the products were gauge-corrected, none of

them showed a consistent performance, and thus could not be titled as the best or worst performing

product over Egypt. The CHIRPS was found to be the best product in estimating rainfall amounts

when all rainfall events were considered and IMERG was found as the worst. However, IMERG

was better at detecting the occurrence of rainfall than CHIRPS. For heavy rainfall events, IMERG

was better at the majority of the stations in terms of the Kling–Gupta efficiency index (−0.34) and

skill-score (0.33). The IMERG was able to show the spatial variability of rainfall during the recent big

flash flood event that hit Northern Egypt. The study indicates that accurate estimation of rainfall in

the hot desert climate using satellite sensors remains a challenge.

Keywords: IMERG; GSMaP; CHIRPS; arid region; rainfall; flash flood

1. Introduction

Arid regions are facing numerous challenges in managing limited water resources [1,2]. Although

rainfall is considered one of the most crucial elements for a wide range of socio-economic activities in

this harsh environment [3], extreme precipitation often leads to devastating flash floods [2,4]. Costa [5]

reported that arid and semi-arid regions are susceptible to greater rainfall intensity leading to severe

floods more than humid regions. To mitigate flash floods, reduce casualties and economic losses,

while ensuring the efficient reuse of flood water, accurate measurement of the spatial and temporal

distribution of rainfall is needed [6,7]. Although conventional rain gauges are considered the most

reliable and accurate means of measuring rainfall [8,9], their spatial distribution is sparse in most parts

of the world, and therefore, they represent unevenly distributed point data, which cannot be used

to present the spatial variability of rainfall [10–13]. In the last three decades, a number of satellite
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sensors have been developed to provide precipitation estimations across the globe. These data are

widely used in various hydro-climatological studies [2,4,14,15], particularly in data-scarce regions

where observation stations are limited.

Currently, many satellite rainfall products are freely available at various temporal and spatial

resolutions. In 2002, Japan Science and Technology Agency and the Japanese Aerospace Exploration

Agency (JAXA) initiated the Global Satellite Mapping of Precipitation (GSMaP) project to provide

a high resolution (0.1◦ × 0.1◦) hourly estimate of global precipitation using passive microwave

radiometers using three products (i.e., the real time, the post real time, and the gauge adjusted) [16].

Later in 2014, NASA and JAXA launched the Global Precipitation Measurement (GPM) core

observatory satellite which provides high-resolution integrated multi-satellite retrievals for GPM

(IMERG) by integrating sensor data from the core observatory and a constellation of other radiometers

and infrared (IR) imagers [17]. Integrated multi-satellite retrievals have three half-hourly products that

provide rainfall from March 2014 to the present. Unlike its predecessor, the Tropical Rainfall Measuring

Mission (TRMM), GPM can better detect light rainfall and snow as a result of the new dual-frequency

precipitation radar, and a conical-scanning higher frequency multichannel GPM microwave imager [18].

In 2015, the Climate Hazard Group released the 0.05◦ × 0.05◦ resolution Climate Hazard Group’s

InfraRed Precipitation with Stations (CHIRPS) dataset, which provides quasi-global daily rainfall

data [19]. The daily variability of CHIRPS rainfall is estimated solely based on geostationary thermal

infrared satellite observation and reanalysis data, while the monthly variability was bias-corrected

based on stations’ observations [19,20].

Egypt, having a hot desert arid climate, has a long history of flash floods [5,21–24]. Recently,

Egypt faced several deadly flash floods such as the flood of May 2014 (150 million USD of damage) [4],

October 2015 (6 killed) [25], November 2015 (25 killed) [26], October 2016 (26 killed) [27,28], and the

New Cairo city flood in April 2018 [29] which caused numerous people to be evacuated, destruction of

assets, and huge economic losses. Reliable measurement of rainfall is very important for forecasting

rainfall-driven flash floods and planning necessary mitigation measures.

The Nile is the major source of fresh water in Egypt [10,14]. It is anticipated that Egypt will suffer

from a serious shortage of fresh water due to the construction of the Ethiopian Grand Renaissance dam

which will affect the river flow and Egypt’s share of water [10,30,31]. Many agricultural communities

located at the Mediterranean Sea shores, Western Desert, and Sinai Peninsula are already depending on

rainfall as their major water source. Therefore, rainfall has gained increasing attention not only for the

better mitigation of flash floods but also as an important source of freshwater for the forthcoming years.

Many studies attempt to evaluate the accuracy of GSMaP, IMERG, and CHIRPS globally or

over a specific region [32]; however, none of the studies have evaluated their performance in Egypt.

Table 1 summarizes the main findings of the previous evaluation studies of the three products in

nearby countries. This paper evaluates the performance of the gauge corrected GSMaP_Gauge 7,

the gauge corrected IMERG Final Run (FR) 5, and CHIRPS 2 dataset in estimating observed rainfall in

Egypt. A set of robust statistical indices were used for the evaluation of the performance of satellite

precipitation datasets based on their ability to estimate the amount and detecting the occurrences

of rainfall. The rainfall intensities were classified into different categories to assess the ability of the

products for accurate estimation of rainfall amounts and detection of rainfall events with different

intensity classes. Furthermore, the spatial variability of rainfall during a recent flash flood in Egypt

was used to assess the capability of the products in monitoring rainfall-driven flash floods. As intense

localized rainfall is the cause of flash flood in arid regions [5], high-resolution satellite-based rainfall

data can be used to monitor such rainfall phenomena to anticipate possible flash floods. Assessment of

the performance of the products in estimating such flash flood triggering rainfall events will provide

advanced knowledge on the applicability of the products. The methodology presented in this paper

can be useful for better assessment of the performance of satellite-based rainfall products and the

selection of an appropriate product for flood prediction and monitoring for other regions. The results

obtained in this study can encourage more studies on the application of the products in different
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hydrologic applications such as water resources management, flood forecasting, and hydrological

modelling. Furthermore, the findings of this study can be useful for feedback to the developer for the

improvement of the remote-sensing precipitation measurement products.

Table 1. Summary of the main findings of the previous studies on the evaluation of satellite-based

rainfall products in neighboring countries of Egypt.

Study Study Area Climate Type Product Main Findings

Mahmoud, et al. [33] Saudi Arabia Hot desert
IMERG early,
late and FR

FR performed better than
earlier runs, with high bias in
some regions

Dinku, et al. [34] North Africa Arid and Semi-arid
GSMaP and
6 other products

The probability of detection
was ≤20% and false alarm
ratio ≥84%

Basheer and Elagib [35] South Sudan
Semi-arid and
sub-humid

CHIRPS v2.0 and
5 other products

On a monthly and annual
scale, CHIRPS was ranked as
the 2nd best with high RMSE.

Kazamias et al. [36] Greece Mediterranean
IMERG FR and
TRMM 3B42

IMERG showed a strong bias
in the west and a good overall
correlation (0.60)

Retalis et al. [37] Cyprus Mediterranean IMERG
IMERG underestimates
rainfall

Katsanos et al. [38] Cyprus Mediterranean CHIRPS
CHIRPS had good correlation
but overestimated rainfall

Caracciolo et al. [18]
Sardinia and
Sicily (Italy)

Mediterranean
IMERG early and
FR

IMERG showed a high
correlation (0.8) on a daily
level with a systematic bias as
rainfall amount increased

Tuo et al. [39]
Adige River
basin (Italy)

Humid subtropical,
and continental

CHIRPS and
TRMM

CHIRPS rainfall produced
satisfactory
streamflow estimation

IMERG: Integrated Multi-satellitE Retrievals for the Global precipitation measurement; FR: Final Run; GSMaP:
Global Satellite Mapping of Precipitation; CHIRPS: Climate Hazard Group’s InfraRed Precipitation with Stations;
TRMM: Tropical Rainfall Measuring Mission; RMSE: Root Mean Square Error.

2. Case Study

Egypt, located in the Northeast of Africa between latitude, 22◦ to 31◦36′N; and longitude, 25◦

to 35◦E, has an area of about one million km2 (Figure 1). Most of the country lies below 300 m above

the mean sea level, except Mount Catherine in the Saini Peninsular, the Red Sea Mountains, and Al

Jelf Alkabir Plateau in the far southwest. The country is mostly covered by desert which is penetrated

by the Nile River from the south to the north. The Nile River is the major freshwater source of the

country [10], and therefore, most of the population lives on the Nile’s banks.

The climate of Egypt is classified as a hot desert climate, having four seasons. Most of the rainfall

occurs only in winter (November to February). As shown in Figure 1, the shores of the Mediterranean

and the north of the Red Sea are the wettest zones of Egypt (average precipitation of 200 mm/year

during 1961–1990), while the south and the western desert, which is one of the driest parts of the

Sahara [40], has an annual average rainfall near to zero.
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Figure 1. Egypt topography and the location of rainfall gauges. The average annual rainfall at

29 stations for the period 2014–2018 is used to show the rainfall distribution.

3. Data

In this study, four datasets were used namely, ground observations, GPM IMERG, GSMaP,

and CHIRPS. A brief description of each of the datasets is given below.

3.1. Ground Observations

Daily observations of rainfall at 29 meteorological stations were used as a reference ground data

for evaluating the performance of the three gridded rainfall data. The stations were well spread over

Egypt (Figure 1). Data was collected from the US National Climate Data Center Global Summary of

Days (GSOD) database for the period of March 2014–May 2018. Percentage of missing data within the

study period, count of wet days, and the maximum amount of recorded daily rainfall (mm) at each

gauge are presented in Table 2.
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Table 2. The percentage of missing data during March 2014–May 2018, count of wet days, and the

maximum amount of recorded daily rainfall at each gauge location.

WMO ID
% Missing

Data
Count of
Wet Days

Max Rainfall
(mm/Day)

WMO ID
% Missing

Data
Count of
Wet Days

Max Rainfall
(mm/Day)

623050 15% 53 70.1 624170 5% 7 8.89
623060 2% 103 50.04 624190 24% 1 0.25
623090 11% 100 39.12 624200 3% 8 102.11
623180 3% 141 252.22 624230 9% 1 0.51
623250 4% 113 71.88 624320 31% 1 72.14
623330 3% 81 90.93 624350 3% 2 1.02
623370 7% 77 23.11 624400 6% 16 101.09
623570 13% 15 70.1 624520 10% 27 102.11
623660 2% 61 99.06 624550 3% 38 7.11
623870 3% 9 76.2 624580 3% 24 6.1
623930 2% 4 8.89 624590 6% 17 99.06
623980 14% 1 7.87 624630 2% 16 102.11
624030 7% 4 3.05 624650 5% 2 1.02
624050 2% 15 50.04 624760 31% 3 7.87
624140 4% 7 14.99 - - - -

WMO: World Meteorological Organization.

3.2. Satellite-Based Gridded Daily Precipitation Datasets

The GSMaP integrates the global (within 60◦N–60◦S) precipitation rates retrieved from passive

microwave radiometers with the cloud moving vectors obtained from the infra-red images to develop

the GSMaP Near Real Time (GSMaP_NRT) dataset [41]. Kalman filter and two-way morphing technique

were used to reduce the retrieval errors and to produce the wet area from microwave radiometers

of the GSMaP_NRT to generate GSMaP Moving Vector with Kalman filter (GSMaP_MVK) [42].

The GSMaP_MVK was corrected using the National Oceanic and Atmospheric Administration Climate

Prediction Center (CPC) global rain gauge dataset to generate GSMaP_Gauge [43]. GSMaP_Gauge

hourly 0.1◦ × 0.1◦ precipitation data was obtained from their website and temporally aggregated

to daily scale. The GSMaP data was found suitable for the simulation of flash floods of 2010, 2013,

and 2014 in the south of Egypt [4].

The GPM IMERG, an assemblage of several satellite precipitation products, provides a half-hourly

0.1◦ resolution estimate of precipitation in three modes (early, late, and FR). The FR is the complete

final gauge calibrated product which showed better accuracy than the products of other modes [6,44].

It integrates all available microwave, infrared, and gauges rainfall retrievals from the GPM constellation

after inter-calibration and interpolation [9]. The FR half-hourly version 5 product was aggregated into

daily and used in this study.

CHIRPS was developed by the Climate Hazard Group (CHG) using a three-stage procedure [19,20].

First, by using satellite data of cold cloud durations, the pentad (5-days) infrared precipitation estimate

was generated and calibrated with TRMM multi-satellite precipitation analysis (TMPA) 3B42-based

pentads. Second, the climate hazards precipitation climatology (CHPclim) pentad was multiplied

by the infrared precipitation estimates after dividing them by its long-term mean to generate the

CHG IR Precipitation (CHIRP). Finally, reanalysis data was used to provide day-to-day variability

while the adjustment of monthly climatology was done using gauge observations to produce the final

product—CHIRPS [45]. The CHIRPS provides daily gridded rainfall data for the period 1981–present.

Figure 2 shows the spatial distribution of average annual rainfall over Egypt for the period

March 2014–May 2018 estimated using three gridded datasets. Overall, all three precipitation products

showed the same spatial annual rainfall pattern: high amounts along the Mediterranean shores which

gradually decreases toward inland. However, the CHIRPS also showed a high amount of rainfall

concentrated along the Red Sea and Sinai mountains. Besides, GSMaP was found to underestimate

rainfall compared to other products.
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Figure 2. Spatial distribution of average annual rainfall (in mm/year) over Egypt estimated by

(a) CHIRPS, (b) IMERG, and (c) GSMaP for the period March 2014–May 2018.

4. Methodology

In order to evaluate the performance of CHIRPS, IMERG FR, and GSMaP_Gauge, the observed

rainfall data at each station were compared against the nearest grid point data of the satellite-based

precipitation products. This method is commonly used when evaluating remote sensing products

to ensure the use of the original retrievals of each product [46]. After preparing the corresponding

rainfall data of different satellite products at each observed location, 7 statistical indices which also

include 4 categorical indices were used to evaluate the performance of each product in terms of

precipitation amount and occurrence. Three statistical indices (Table 3) were used to measure the

performance of satellite products in estimating rainfall amount namely, root mean square error (RMSE),

Kling–Gupta efficiency (KGE) index, and probability distribution function (PDF) skill score (SS).

The RMSE represents the standard deviation of the residuals, while KGE integrates the correlation, bias,

and variability of the ground and remote sensing observations into one index [47]. Compared to the

Nash–Sutcliffe Efficiency (NSE) index, KGE is less sensitive to extreme rainfall, and therefore, can better

describe and measure the overall fitness of rainfall having different intensities [48]. The SS quantifies

the overlap between the gauge and satellite-based retrievals’ PDFs [49]. The categorical indices, listed

in Table 4. were calculated based on a 2 × 2 contingency matrix shown in Table 5. The categorical

indices include the probability of detection (POD), the false alarm ratio (FAR), the critical success index

(CSI), and hit BIAS. The POD estimates the ratio of the rainfall events estimated by the satellite-based

products to the total number of gauge-observed rainfall events [46]. While the FAR estimates the

reliability of satellite-based products as the ratio of falsely detected rainfall events by the satellite-based

products, i.e., rainfall events detected by satellites but which did not actually occur, to the total number

of observed rainfall events [46]. The success ratio is the opposite of FAR (1-FAR). The CSI is the number

of correctly detected wet days divided by the total number of wet occasions. The hit BIAS is the ratio of

the number of wet days estimated by the satellite-based products to the observed number of wet days.

The evaluation methodology was carried out following several rainfall classes (Table 6) presented by

Tan et al. [50]. This includes the “all-events” class which was not constrained by a threshold value,

and thus represent the whole time series. The other classes were used to compare rainfall events

within a daily rainfall intensity threshold range as given in Table 6. The aim of classifying rainfall

events is to demonstrate the performance of each product in estimating rainfall occurrences within the

specified rainfall ranges for the period from March 2014 to May 2018. The KGE and SS could not be

calculated for the stations where rainfall events under a certain class never occurred or occurred only

one time. Therefore, these stations were not shown in the maps of the corresponding rainfall class in

the results section.
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Table 3. Statistical indices used for the measurement of the performance of satellite precipitation

products in estimating rainfall amount.

Index Range Optimal Value

RMSE =

√

√

√

√

1

n

n

∑
i=1

(Ps − Po)
2 (1) 0 to +∞ 0

KGE = 1 −

√

(r − 1)2 +

(

1 −
µs

µo

)2

+

(

σs/µs

σo/µo

)2
(2) −∞ to 1 1

SS =
n

∑
i=1

min( fs, fo) (3) 0 to 1 1

Ps and Po are the satellite-based (s) and observed (o) rainfall, respectively; r is Pearson’s correlation; µ and σ represent
the mean and standard deviation of data, respectively; and fo and fs are the frequency of a specific rainfall amount
of the observed and satellite-based data.

Table 4. The categorical indices used for the measurement of the performance of satellite precipitation

products in detecting the occurrence of different intensities of rainfall events.

Index Optimal Value

POD =
Hits

Hits + Misses
(4) 1

FAR =
False Alarms

Hits + False Alarms
(5) 0

CSI =
Hits

Hits + Misses + False Alarms
(6) 1

BIAS =
Hits + Flase Alarms

Hits + Misses
(7) 1

Table 5. The contingency table presents the agreement between observed records (Po) and

satellite-based retrievals (Ps) of rainfall for different rainfall intensity ranges.

Po ≥ Threshold Po < Threshold

Ps ≥ Threshold Hits False Alarms
Ps < Threshold Misses Correct Negatives

Table 6. The thresholds used for the classification of rainfall events based on the intensity.

Rainfall Intensity Class Daily Rainfall Threshold

All-events No threshold
No/tiny rainfall P < 1 mm
Light rainfall 1 mm ≤ P < 2 mm
Low moderate rainfall 2 mm ≤ P < 5 mm
High moderate rainfall 5 mm ≤ P < 10 mm
Heavy rainfall P ≥ 10 mm

5. Results

Figure 3 shows bar graphs of the count of rainfall events of the light, low–moderate, high–moderate,

and heavy rainfall classes at each station. As shown in Table 2, wet days were rare in most of the stations.

The count of “no/tiny rainfall class” event was omitted from the bar graphs as the number of this event

was very high compared to other events. This was done in order to show the count of the remaining

rainfall intensity classes clearly. At stations 624190 and 624230, only one rainfall event occurred at each

station during the study period. Those rainfall events were less than 1 mm (categorized as no/tiny

rainfall class), and therefore did not appear in the graphs presented in Figure 3. Table 7 shows the total

number of events captured by ground rainfall station for each rainfall intensity class.
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Figure 3. Bar graphs representing the count of rainfall events of the light, low–moderate, high–moderate,

and heavy rainfall intensity classes at each rainfall station.

Table 7. The total count of events detected at observed rainfall stations for each rainfall intensity class.

Rainfall Intensity Class Count of Events

All-events 45,473
No/tiny rainfall 44,803
Light rainfall 140
Low–moderate rainfall 286
High–moderate rainfall 151
Heavy rainfall 93
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5.1. Validation Based on Rainfall Amount

Figure 4 presents box plots of RMSE of the three products for all-events class and different rainfall

intensity ranges listed in Table 6. The maps in Figure 5 show the best performing dataset at each

station along with its RMSE value. The results showed CHIRPS was the best performing dataset at

the majority of stations for all-event classes, with the lowest median of RMSE (2 mm/day). Although

the medians of RMSE of GSMaP and IMERG were found very near to that of CHIRPS (as shown in

Figure 4a), they showed a wider variability of RMSE and were found best only at eight and two stations,

respectively, out of 29 stations (shown in Figure 5a). For the no/tiny rainfall class, CHIRPS was also

found to be the best performing product in most of the stations with a median RMSE of 0.19 mm/day.

It is worth noting that IMERG was not selected as the best product at any of the stations for this class.

As shown in Figure 4c, GSMaP and CHIRPS shared the same median of RMSE (1.03 mm/day) for

the light rain class, but the maximum and minimum RMSE of GSMaP were found less than CHIRPS.

The GSMaP was selected as the best performing product at nine stations in estimating the amount of

light rainfall, while CHIRPS and IMERG were found best at seven stations. For the low–moderate rain

class, the median RMSE of CHIRPS (2.75 mm/day) was found a bit less than GSMaP (2.82 mm/day);

however, GSMaP was found to be the best performing dataset in the majority of stations, particularly

in the stations located along the Mediterranean shores. The IMERG had a relatively larger range of

RMSE reaching up to 17.5 mm/day at the 623090 station. The GSMaP showed better performance than

the others at ten stations (out of 19 stations having rainfall events in the range 5 mm ≤ P < 10 mm).

The IMERG showed a large range of RMSE in estimating rainfall amounts of high–moderate rainfall

class like the other rainfall classes. All three products showed a relatively bad performance in terms

of RMSE (Figure 4f) for the heavy rainfall class with a median of around 51 mm/day. Nevertheless,

IMERG outperformed CHIRPS and GSMaP at 7 out of 17 stations with a lower RMSE. All in all, CHIRPS

was found as the best satellite-based rainfall product in estimating rainfall amounts when the whole series

was compared together (i.e., all-events class). The IMERG was found as the best in estimating rainfall

amount for the heavy rain class and GSMaP as the best for the remaining rainfall intensity classes.

 

≤

 

Figure 4. Box plots of Root Mean Square Error (RMSE) of the three satellite-based datasets in the

estimation of rainfall amounts for (a) all events, and (b–f) different intensity ranges as shown in the

corresponding plot.
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Figure 5. Maps showing the best performing datasets according to RMSE at each station along with the

estimated RMSE for the best performing satellite rainfall product for (a) all rainfall events, (b) no/tiny

rain, (c) light rain, (d) low–moderate rain, (e) heavy–moderate rain, and (f) heavy rain.

The KGE is a robust index that integrates variability, correlation, and bias into a single index.

Figure 6 shows the box plots of KGE of the three satellite rainfall products in estimating rainfall

amounts for the all-events class and different rainfall intensity classes. The estimated KGEs for the

best performing rainfall products at each station are shown in the maps (Figure 7). For the all-events

class, the CHIRPS was found as the best performing satellite-based rainfall product at 16 stations

distributed over Egypt with a median KGE equal to 0.59. Although the KGE for GSMaP showed

the highest upper range compared to other products, with a median of 0.4, it was found as the best

product at 5 stations out of 29. For the no/tiny rain class, CHIRPS and GSMaP shared the same

KGE median (0.2), but GSMaP showed a higher spread of KGE in the upper range. Consequently,

CHIRPS was found best at 20 out of 29 stations and GSMaP at nine stations. The IMERG was found

as the worst for this class. The CHIRPS and IMERG performed badly for the light rain class with

a high median of KGE (−336 and −283, respectively). On the other hand, GSMaP showed less KGE,

and therefore, was found as the best product at 8 stations out of 16. Similar results were found for

the low– and high–moderate rainfall classes, where GSMaP performed better compared to others in

most of the stations, with a median KGE of around −0.65. Although the three datasets shared nearly

the same median KGE for the heavy rainfall class, IMERG outperformed others at two-thirds of the

stations. Overall, according to KGE, GSMaP was found best for rainfall intensity between 1 mm/day

to 10 mm/day while IMERG for rainfall intensity more than or equal to 10 mm/day and CHIRPS in

all-events class.
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Figure 6. Box plots of Kling–Gupta efficiency (KGE) of the three satellite-based datasets in the

estimation of rainfall amount for (a) all events, and (b–f) different intensity ranges as shown in

the corresponding plot.

 

 
Figure 7. Maps showing the best performing datasets according to KGE at each station along with the

estimated KGE for best performing satellite rainfall product for (a) all rainfall events, (b) no/tiny rain,

(c) light rain, (d) low–moderate rain, (e) heavy–moderate rain, and (f) heavy rain.

Figure 8 shows box plots of the PDF SS of the three products for different rainfall intensity

classes and Figure 9 presents the spatial distribution of the best performing product in terms of SS.

For all-events class, CHIRPS was found as the best product at 14 stations with a median SS of 0.6.

For no/tiny rainfall class, CHIRPS and GSMaP were found best at 13 and 12 stations, respectively.

The GSMaP was found to dominate in the wetter north and the CHIRPS in the drier south. For the
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light rainfall class, IMERG outperformed others even though all the three products performed

unsatisfactorily with a median SS of around 0.015. For the moderate and heavy rainfall classes,

IMERG performed better than the others at the majority of the stations with a median SS of 0.22, 0.22,

and 0.33 for the low–moderate, high–moderate, and heavy rainfall class, respectively.

 

 

Figure 8. Box plots of Skill Score (SS) of the three satellite-based datasets in the estimation of rainfall

amount for (a) all events, and (b–f) different intensity ranges as shown in the corresponding plot.

 

 
Figure 9. Maps showing the best performing datasets according to PDF SS at each station along with

the estimated SS for best performing satellite rainfall product for (a) all rainfall events, (b) no/tiny rain,

(c) light rain, (d) low–moderate rain, (e) heavy–moderate rain, and (f) heavy rain.
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5.2. Validation Based on Occurrences of Rainfall

Figure 10 shows a performance chart which integrates the results of the four categorical indices in

a compact and efficient representation. The x-axis of the performance chart represents the success ratio

(1-FAR), the y-axis represents the POD, the diagonal dashed lines represent the BIAS, and the curved

lines represent the CSI. The optimal values are located in the top-right corner of the chart, while the

worst values are in the bottom-left. As shown in Figure 10a, IMERG showed the highest POD (0.6),

CSI (0.1), and BIAS (5) for all-events class, while GSMaP showed the lowest values of the statistics.

The CHIRPS and IMERG showed the same FAR of 0.88 while GSMaP showed the highest FAR and the

lowest SS (0.08) compared to others. The performance of CHIRPS, IMERG, and GSMaP for different

rainfall intensity ranges is shown in Figure 10b–d. All the products showed near-optimal results in

detecting no/tiny rainfall. However, the IMERG rainfall retrievals were found better than the others in

term of all the four categorical indices for all the rainfall intensity ranges. The GSMaP was found to be

the worst in detecting rainfall events for different intensity ranges.

 

≥

Figure 10. The performance chart of CHIRPS, IMERG, and GSMaP in detecting (a) all-events class, and

(b) CHIRPS, (c) IMERG, and (d) GSMaP in detecting rainfall events having different intensity ranges.
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6. Discussion

Accurate estimation of rainfall is crucial for various hydrological and climate change studies in

a poorly gauged country like Egypt. The performance of three remote sensing-based rainfall products

having high spatial and temporal resolutions namely CHIRPS, IMERG FR, and GSMaP_Gauge were

assessed in this study. Although all of them are gauge-corrected, no single product showed a consistent

performance, and thus cannot be entitled as the best/worst performing product in Egypt. The CHIRPS

showed the lowest RMSE and the highest KGE and SS, but a high FAR and a low POD and CSI when

the whole rainfall series was compared (all-events class). The GSMaP showed a better RMSE and

KGE than the others for rainfall having an intensity range between 1 and 10 mm/day, but it showed

a poor performance in term of SS and all the four categorical indices. The IMERG was found as the

best product in most of the stations in term of SS and KGE for P ≥ 10 mm/day, but it showed a very

high RMSE and overestimation of the occurrence of rainfall (low success ratio). It could not detect 72%

of heavy rainfall events.

One of the major drawbacks of satellite-based rainfall products over the hot desert climate, as in

Egypt, is the overestimation of rainfall occurrence which was also observed in the present study.

Many possible factors such as sub-cloud evaporation could be the reason for this poor performance.

As the lower layers of the atmosphere are hotter and drier compared to the upper layer atmosphere

over Egypt [34], the raindrops may evaporate while passing a thick, hot, dry layer before it could be

captured by a rain gauge, although it was detected as a rainfall by satellites [51]. This results in a false

alarm of rainfall due to sub-cloud evaporation. Furthermore, satellites may fail to differentiate the

desert surface and rainfall footprint leading to a surface misclassification as reported by Wang et al. [52]

and Seto et al. [53] in the Sahara Desert, which covers most of Egypt’s west and south. This surface

misclassification also leads to high FAR. On the other hand, as the satellite pixels are an average of

what is captured by the sensor, the averaging may lead to misdetection of rainfall (low POD) when

some parts of the pixel are hot surfaces and the others are rainfall surface [34]. This is also a problem

in the cold regions where surfaces are covered by snow [6]. The usage of the multi-rainfall intensity

thresholds with the contingency table diagnosed that the three satellite rainfall products were not

able to detect rainfall in their exact intensity class, but they detected the rainfall amount either with

overestimation or underestimation.

As there is no high-resolution (e.g., 0.1◦) gridded gauge-based rainfall dataset available covering

Egypt or a dense gauge network that can be used as a reference, it was not possible to assess the

spatial variability of rainfall retrievals by each satellite-based product. We tried to compare the spatial

variability of rainfall showed by the satellite rainfall products during the highest flash flood (in terms of

casualties and damage) that hit the north of Egypt on 5 November 2015. Heavy rainfall on that day was

the cause of that flash food. Therefore, our intention was to examine whether the products were able

to show this intense rainfall event that caused that flash flood. Figure 11 shows the spatial distribution

of rainfall by the products on the same day along with the available gauge observations. Surprisingly,

CHIRPS completely missed this flash flood. The IMERG and GSMaP captured the spatial distribution

in a similar way, while GSMaP showed rainfall estimates more accurately than IMERG when compared

to observations. This indicates that satellite-based rainfall estimates should be compared and checked

before addressing rainfall-driven flash flood events.

As this study is the first attempt to assess the performance of IMERG_FR 5, GSMaP_Gauge

7, and CHIRPS 2 rainfall over Egypt, it is not possible to compare the finding of this study with

previous ones. However, the results of this study are found to be consistent with that obtained in the

surrounding countries of Egypt. To the north and northwest of Egypt, IMERG could not estimate

accurate rainfall amounts and occurrence which was reported in the coast of Mediterranean in Sardinia

and Sicily (Italy) [18], Greece [36], and Cyprus [37]. To the south of Egypt, CHIRPS showed a high

RMSE (up to 50 mm/day) which was also reported in South Sudan [35]. The IMERG had a high bias in

the dry northeast like that which was found in the middle of Saudi Arabia [33]. To the west of Egypt,

GSMaP showed a low POD which was supported by the results obtained in the Sahara Desert [34].
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Furthermore, the findings of this study matched with corresponding studies in other arid regions

globally. Along the arid coastal Peruvian coastline, IMERG was found to overestimate rainfall amounts

with high FAR [32]. The IMERG had a poor performance in the Weihe River Basin in China [54] and

Pakistan [4]. The GSMaP was found to be better than IMERG in estimating daily rainfall in Xinjiang,

China [55]. The GSMaP_Gauge showed a high bias in arid/semi-arid Central Asia [56].

 

 

 

. 

Figure 11. Spatial distribution of rainfall during the 5 November 2015 flash flood in the north of Egypt

as captured by (a) CHIRPS, (b) IMERG, and (c) GSMaP along with observations at 7 nearby stations.

7. Conclusions

This study is the first attempt to assess the performance of satellite-based IMERG_FR 5,

GSMaP_Gauge 7, and CHIRPS 2 rainfall products over the hot desert climate of Egypt. Seven statistical

indices including four categorical indices were used to evaluate the performance of the three satellite-based

rainfall products in detecting the occurrences of daily rainfall and estimating rainfall amounts for multiple

rainfall intensity ranges at 29 gauges. Although all of them are gauge-corrected, none of the three

products showed a consistent performance and can be entitled as the best/worst performing product

for Egypt. As the performance of the satellite-based rainfall retrievals was unsatisfactory, the challenges

in accurate estimation and detection of rainfall in the hot desert climate are still an open case task that

needs to be resolved. The availability of such high spatial and temporal resolution data is vital for

data-scare countries.
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This study was limited by the lack of freely available dense ground observations. More gauge

observations in sub-daily level would be beneficial for evaluation of diurnal cycles of rainfall of the

IMERG and GSMaP sub-daily products. Furthermore, a similar study could be performed for other

satellite rainfall products such as the CPC morphing technique (CMORPH) satellite-based rainfall

dataset. Further studies are needed to assess the performance of satellite-based rainfall products over

Egypt in simulating hydro-meteorological phenomena such as floods and droughts.
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