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Abstract

The function of enzymes is performed differently depending on their bio-chemical mechanisms and 
important to the prediction of protein structure and function. In order to overcome the weaknesses of 
imbalance data distribution in subclasses prediction we proposed Bio-Twin Support Vector Machine 
(Bio–TWSVM). The TWSVM approach as also allow for kernel optimization where in this study we have 
introduced the bio-inspired kernels such as the Fisher, spectrum and mismatch kernels which at the same 
time incorporate the biological information regarding the protein evolution in the classification process. 
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Introduction

The enzymes function differently depending on their bio-
chemical mechanisms. Eventually, this has led to the genesis of 
an interesting problem in Bioinformatics, which how can we 
classify a given protein sequence as an enzyme and accurately 
predict its function. In light of the key biological role of enzyme 
proteins, Nomenclature Committee of the International Union of 
Biochemistry and Molecular Biology (NC–IUBMB) has created a 
hierarchical classification scheme based on the functional 
mechanism of enzymes (Yehia, 2017; Hanedar et al., 2017). 
Through protein enzyme functional and sub-functional class 
prediction, biologists are able to determine the biological function 
of each protein which can be attained from the biologically 
inspired functional kernel. On the other hand, as a quick and 
simple measure, sequence identity is also widely used as an 
indication of functional similarity in dividing enzymes family into 
subfamilies . However, due to lack of a rigorously established 
sequence identity threshold, the division of an enzyme family into 
subfamilies may require human intervention (Ong et al., 2017; 
Daya et al., 2017). Besides, the enzyme sub-functional class 
prediction is an imbalance prophecy. Therefore, it is of great 
significance to establish the threshold of sequence identity above 
which functional similarity using Twin SVM as classifier and bio-
inspired kernel function can be affirmed to overcome the 
imbalance classification problem by introducing a novel 
technique.

Various machine learning algorithms have been 
proposed for enzymes functional and sub-functional class 
prediction such as Support Vector Machine (SVM) , Decision 
trees , Naïve Bayesian (NB) , K-Nearest Neighbor (KNN) , C4.5 , 
Random Forest and Artificial Neural Network (ANN) . All of these 
studies have used amino acid compositions derived from 
sequence and employs the technique that uses protein 
sequences to compute their input feature vectors and predictor 
models to predict enzyme main and sub-functional class. Most of 
these previous studies are limited to the scope of enzyme 
sequences lesser than the current available number of 
sequences for every class and utilizes ≤ 40% rate of sequence 
similarities. To date, SVM has been used extensively and 
provides more accurate results in most of the studies done 
previously. Unfortunately, when faced with imbalanced problem, 
the performance of SVM drops significantly and it should be 
pointed out that the prediction of enzyme sub-functional class is 
an imbalance multi-class classification problem due to the fact 
that the number of proteins in each subclass makes a great 
difference. In this study, we have introduced the modified version 
of SVM, Twin SVM (TWSVM) incorporated into Bio-TWSVM 
(TWSVM with Bio-inspired kernels) in enzyme sub-functional 
classification. TWSVM can construct two nonparallel 
hyperplanes; positive and negative hyperplane without restriction 
of parallel, has lots of advantages such as high efficiency, high 

detection rate and low false positive rate and achieves an overall 
accuracy above 90%. Although the results are promising, these 
studies use the basic kernel function for optimization (H'ng et al., 
2018; Hasan, 2018).

Kernel function as the core in SVM can be categorized 
into two categories: standard and bio-inspired. However, different 
kernel functions of SVM will give different result in protein 
enzymes sub-functional class prediction. Currently, there are four 
standard kernel functions in SVM, namely linear, polynomial, 
Radial Basis Function (RBF) and sigmoid. On the other hand, 
well-known bio-inspired kernel functions are Fisher , spectrum , 
mismatch oligomer distances multi-scale Gaussian and bi-cubic 
interpolation. Bio-inspired kernel functions are capable of 
classifying protein with more biological meaning and produce low 
error rate since it includes biological information in the 
classification process. These kernels are mainly applied in a 
multi-class classification strategy that applies a multi-class 
classification on each kernel score space and combines the 
decisions of multi-class classifiers. Experimentally, is has been 
shown that the kernel scores of one classes provide 
discriminative information for the other classes as well. However, 
the bio-inspired kernels have never been applied in any enzyme 
functional or sub-functional class study.

This study proposed a holistic classification named Bio-
TWSVM to solve the imbalance classification problem in enzyme 
sub-functional prediction. The Bio-TWSVM is named based on 
TWSVM and consists of two components, which are two 
nonparallel hyperplanes classifier and Bio-kernel that is capable 
to classify protein sequences from main functional class up to 
sub-functional class level corresponding to the ENZYME 
database and incorporate biological information in the 
classification process using APH as feature representation. In this 
study, the results of prediction were analyzed based on three 
different bio-kernels namely Fisher, spectrum and mismatch. This 
is because different kernels function will lead to different 
discriminative functions and different performance.

Materials and Methods

The solution as per shown in Fig. 1 has three major 
elements to attain: (i) the optimal rate of sequence similarity; (ii) 
the most significant feature and (iii) the distinguishable enzyme 
subclasses. In the first element, we managed to counter the 
adversary of the low sequence similarity rate based on different 
datasets. The second element was proposed to devise a hybrid 
feature, labelled APH that integrates AAC, DPC, hydrophobicity 
and hydrophilicity scores. In the third element, TWSVM was 
utilized with bio–inspired kernel function to solve the existing 
imbalance class distribution.

Extraction of amino acid sequences: The datasets used in this 
study were retrieved from ENZYME database at ftp://ftp.expasy. 
org/databases/enzyme/ (Release of 19-Oct-2011) where the sub-
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experiment used five different pairwise sequence identities (ID) 
datasets, which were 10%, 20%, 25%, 30% and 40%; used to 
evaluate the performance of imbalance class distribution. For 
instance, 25% pairwise sequence ID produced 5,588 protein 
sequences, grouped into 6 functional classes and 58 sub-

565

functional classes were classified into each of the six main 
enzyme classes, based on the accession numbers extracted. The 
corresponding protein sequences represented by their EC 
number were taken from the databank of Uniprot/Swiss-Prot at 
http://www.ebi.ac.uk/swissprot/ (Release of 21-Sept-2011). T h e  

S.K. Guramand et al.: Bio-TWSVM for kernel optimization

Fig. 1 : Bio-TWSVM embodies steps of preparation of datasets and features (top), determination of the most significant feature (best feature and 
classifier) and the optimal sequence identities (bottom).
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Table 1: Datasets used in the study

Rate of sequence similarities 10%(DS ) 20%(DS ) 25%(DS ) 30%(DS ) 40%(DS )A B C D E

Dataset
Number of sequences 1,570 3,121 4,732 5,698 10,442
Number of functional class 6 6 6 6 6
Number of sub-functional class 22 48 58 44 50
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functional classes. The dataset was further reduced by keeping 
only the desired protein sequences where as those with less than 
50 amino acids were excluded to avoid fragment data and the 
enzymes consisting of multi-domain proteins with multiple 
enzymatic functions were removed which then produces 4,732 
sequences. Meanwhile, 40% sequence ID dataset was derived 
from (Wang et al., 2010) for comparison purpose. In Bio-TWSVM, 
for each dataset, we split into training and testing sets accordingly 
and run the experiments using 10 cross validation processes and 
repeat each of the cross validation for 10 times for consistency 
and to find the best prediction value. To allow fair prediction, we 
ensure that the dataset had different functional classes. Table 1 
summarizes the distribution of sequences across all the main 
classes and subclasses based on different sequence ID datasets.

Quantification of datasets with various sequence identities 
(Ids): In order to determine the most optimal dataset for given 
enzyme class, different percentage of sequence IDs were 

experimented: 10%, 20%, 25%, 30% and 40% (DS –DS ) A E

measured with BLAST (Ye et al., 2012) as shown in Fig. 2. For 
each (query) protein q in the dataset, BLAST search was run 
against the dataset after retaining the setting to be default. Protein 
hits were then considered according to BLAST sorting (from the 
lowest to the highest E-values) and for each protein q in the 
dataset only the best-hit protein was retained from the BLAST list 
which proved the activity. 

Generation of input features: Before the sequences could be 
fed into the TWSVM, it was converted into a feature vector which 
was applied for each dataset (DS –DS ). Feature vectors for A E

every dataset was represented with AAC (f ), dipeptide AAC

composition (f ) and hydrophobicity/hydrophilicity (f ) which was DPC P

the unification of amino acid and dipeptide composition, as well as 
hydrophobicity and hydrophilicity. Fig. 3 summarizes the process 
in obtaining the proposed feature vector using one protein 
sequence from EC.1.3 as example.

S.K. Guramand et al.: Bio-TWSVM for kernel optimization
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Fig. 2 : Quantification of datasets with different similarities using BLAST.
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Generation of AAC: AAC alone performs best with existing yet 
more complex features indicating the presence of sequence-level 
information that is predictive of interaction, but which is not 
necessarily restricted to domains. AAC is a fraction of each amino 
acid present in the protein sequence. Suppose a protein 
sequence with L amino acid residues:

R R R R R ...............R                             (1)1 2 3 4 5 L

Where, R represents the amino acid residue and the subscript 
number represents the position of amino acid residue of length, L 
in a protein sequence. If l is the length of protein sequence and bi 

is the frequency of occurrence of an amino acid i, then AAC  is:i

(2)

where, i is any of the 20 amino acids.

Composition of Dipeptide: In order to implement information 
about frequency as well as local order of residues in proteins, a 
dipeptide composition (DPC) based model was also constructed. 
DPC is considered as better feature as compared to AAC as it 
encapsulates global, as well as local information of the sequence. 
The DPC based model encompasses information about AAC 
along local order of amino acid. It gives a fixed pattern length of a 
vector with 400 (20x20) dimensions. The fraction of each 
dipeptide, DPC  was computed by the following equation:i

(3)

where, i and j are any of the 20 amino acid residues, σ  is the ij

fraction of a pair of amino acids (i, j = 1, 2,..., 20) and ω is the total 
number of all possible dipeptides.

Generation of APH features: The concept of Pse-AAC 
concerning the use of hydrophobicity and hydrophilicity factors 
was proposed in order to avoid a complete lost in the sequence 
order information. In contrast with the conventional AAC that 
contains 20 components with each reflecting the occurrence 
frequency for one of the 20 native amino acids in a protein, the 
essence of Pse-AAC is that it includes information beyond AAC 
where the first 20 represent the components of its conventional 
AAC, while the additional factors reflects the sequence order 
effect of a protein through a discrete model. Thus, according to 
the definition of Pse-AAC, a protein sequence can be expressed 
as a vector P which is formulated as follows:

P = {P , ......, P , P }                                (4)i 1 20 20+l

where the first 20 numbers in Eq. (4) represent the classic AAC, 
and the next l discrete numbers describe sequence correlation 
factor which is the hydrophobicity and hydrophilicity values 
calculated based on Zhou et al. (2007) by the following equation:

(5)

(6)

where, i is the indices of amino acid residue; and are the original 
thhydrophobic and hydrophilic values of the i  amino acid. 

Therefore, the equation of APH can be expressed as: 

                                         (7)

S.K. Guramand et al.: Bio-TWSVM for kernel optimization

e.g: Dataset with 10% sequence similarities
DSA

(1,570) E
C

.1
.3

>Q9SEV0
MDQTLTHTGSKKACVIGGTGNLASILIKHLLQSG
YKVNTTVRDPENEKKIAHLRKLQELGDLKIFKA
DLTDEDSFESSFSGCEYIFHVATPINFKSEDPEKD

Amino acid composition, 
fAAC

    Each amino acid sequence is tested   using different feature representation

Dipeptide composition,
fDPC

Hydrophobicity/ Hydrophilicity, 
fP

Proposed feature

f  = f  È f  È fAPC AAC  DPC  Pi i i i

1:9.174 2:0.917 3:5.810 4:7.645 5:4.893 6:5.505

7:2.446 8:6.116 9:5.199 10:8.257 11.2.752

12:5.199 13:4.893 14:2.141 15:7.339 16:4.893
17:5.199 18:7.339 19:0.306 20:3.976

1:0.920 2:0.307 3:1.534 4:0.920 5:0.613 6:0.180

7:1.116 .................................................................
.............. 396:0.000 397:0.000 398:307 399:0.000
400:0.000

1:9.174 2:0.917 3:5.810 4:7.645 5:4.893 6:5.505

7:2.446 8:6.116 9:5.199 10:8.257 11.2.752
12:5.199 13:4.893 14:2.141 15:7.339 16:4.893

17:5.199 18:7.339 19:0.306 20:3.976 21:1.000

Fig. 3 : Three different feature vector representation used in this study.
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TWSVMs are comprised of a pair of quadratic 
programming problems (QPPs) such that, in each QPP, the 
objective function corresponds to a particular enzyme class and 
the constraints are determined by patterns of the other enzyme 
class. Thus, TWSVMs give rise to two smaller sized QPPs. In 
TWSVM1, patterns of true class are clustered around the plane 

T (1) (1)x w  + b  = 0. Similarly, in TWSVM2, patterns of non-true class 
T (2) (2)cluster around the plane x w  + b  = 0. The algorithm finds two 

hyperplanes as shown in Fig. 4, one for each enzyme class, and 
classifies points according to which hyperplane a given point is 
closest to by solving the following pair of QPPs:

(TWSVM1)

(8)  

(TWSVM2)

(9)

where, c , c  > 0 are the penalty parameters; e  and e  are column 1 2 1 2

vectors of ones of appropriate dimensions and q is the slack 
variable which is used to measure the training loss. Penalty 
parameter c, with default value 0.01, is the parameter that 
controls the balance between training loss and margin. The sum 
of the linear slack variables, åq , which was adopted from the i

formulation in (Tsochantaridis et al., 2005) and (Scholkopf and 
Smola, 2002), were used and divided by n input length to better 
capture c, which scales with the training set size partitioned using 
10 fold cross validation (CV) processes 1 partition set as the 
training set and train it to the other 9 partitions to learn and 
generate the predictions score on each of it.

Kernel selection: For nonlinear case, kernel TWSVM, as shown 
in Fig. 5, considers the following two kernel-generated 
nonparallel hyperplanes:

                                          and                                               (10)

S.K. Guramand et al.: Bio-TWSVM for kernel optimization

Fig. 4 : Comparison in separation of hyperplanes using (i) TWSVM and (ii) SVM.
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Fig. 5: Two nonlinear kernels generated based on Bio–TWSVM.
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where, K©, x) is known as a kernel function. In this study, Fisher 
kernel function was used and was derived from a hidden Markov 
model (HMM),

(11)

where, T is the Fisher information matrix. The Fisher kernel 
engenders a measure of similarity between two data items x  and i

x  by defining a distance between them and can be used with any j

kernel-based classifier such as a TWSVM. The scaling parameter 
σ appearing in this kernel was set equal to the median Euclidean 
distance between the gradient vectors corresponding to the 
training sequences in the enzyme subclass of interest and the 
closest gradient vector from a sequence belonging to another 
functional class.

To summarize, we began with a HMM trained from 
positive examples to model a given enzyme subclass. HMM was 
used to map each new protein sequence X that was to be classify 
into a fixed length vector, its Fisher score, and compute the kernel 
function on the basis of the Euclidean distance between the score 
vector for X, and the score vectors for known positive and 
negative examples X  of the enzyme subclasses. The resulting i

discriminant function is given by

(12)

where, K is the kernel function defined above and the l  are i

estimated from the positive (X ) and negative (X ) training + -

examples X . i

Evaluation measures: To assess the performance of the tested 
methods we counted the validation of the number of true positives 
(TP) number of correctly predicted sequences of enzyme class i, 
true negatives (TN) number of correctly predicted sequences not 
of enzyme class i, false positive (FP) number of incorrectly 
predicted sequences of enzyme class i, and false negatives (FN) 
number of incorrectly predicted sequences not of enzyme class i, 
where, i represents either one of the six enzyme classes. Then, 
we computed the following indices:

Accuracy:      (13)

 

Sensitivity: (14)
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Fig. 6 : Results for enzyme subclasses prediction in terms of (i) acc, (ii) sen and (iii) spe using different rate of sequence similarities.
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 TP
spe

TP FP
=

+
Specificity:  (15)

Besides, t–test was applied at 95% confidence level to revalidate 
the performance of the prediction outcome in term of statistical 
significance in order to assure that the prediction performance 
over acc, sen and spe is not just better but also substantial. A 
t–test is any statistical hypothesis test in which the test statistic 
follows a student’s t distribution, if the null hypothesis is 
supported. In this research, t–test was applied on two samples of 
result which represents different features in every enzyme sub-
functional class. Thus, if the table of confidence interval analysis 
reveals that the range between low and up bounds excludes 0, 
then the compared features are significantly different. Otherwise, 
the improvement gained is rendered as insufficient or 
meaningless.

570 S.K. Guramand et al.: Bio-TWSVM for kernel optimization
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Fig. 8 : Difference in classification process using (i) ANN, (ii) KNN, (iii) SVM and (iv) TWSVM classifier based on sequence from EC.3.2.
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Results and Discussion

The performance and stability of Bio-TWSVM was tested 
using five different sequence similarities versions of datasets 
extracted from ENZYME and Uniprot/Swiss-Prot database, 
which were 10%, 20% 25% 30% and 40%. As a comparison, the 
results produced, based on accuracy, sensitivity and specificity 
was compared with other existing classifiers such as the 
conventional SVM (Hu and Wang, 2011; Wang and Hu, 2011), 
KNN (Huang et al., 2007) and ANN (Naik et al., 2007).

Assessment on the most significant feature using different 
rate of sequence similarities: The most significant feature is 
assessed using three measurements: acc is used to assess the 

degree of correctly predicted subclasses with respect to the 
ground truth; sen is used to assess the degree of correctly 
predicted subclasses with respect to the actual positive label; spe 
is used to assess the degree of correctly predicted subclasses 
with respect to the actual negative label; where positive is the 
class under consideration while negative is the complementary 
counterpart. Moreover, highest acc, sen as well as spe are also 
highlighted. Fig. 6 presents the prediction performance that has 
been achieved using the discussed measurements. Meanwhile, 
Table 2 shows its related active sites.

Based on Fig. 6, it shows APH as the top performer in all 
functional classes with 25% sequence ID in the range of acc from 

Table 2 : Samples of sequence structure from EC. 3.2 in different sequence similarities represented by three input features 

Input features             AAC                           DPC      APH

Sequence similarity

10%

20%

25%

30%

40%

571S.K. Guramand et al.:   Bio-TWSVM for kernel optimization
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86.39% to 98.10%. On the other hand, using 10% sequence ID, 
AAC achieved highest acc in all classes with 69.33% as 
compared to 53.04% and 55.11% using AAC and APH, 
respectively. Assessment based on acc alone may be biased 
towards the majority class. Thus, sen and spe is needed in order 
to describe the degree of true prediction tendency. APH depicts a 
more stable behaviour where the sen and spe were 96.12% and 
88.70%, respectively, in 25% sequence ID dataset. The 
dominance of APH is attributable to the scores amalgamation 

between AAC, DPC and hydrophobicity and/or hydrophilicity, 
where one complements the other, owing to the strong 
inheritance between the composition of amino acid and 
amphiphilic pseudo amino acid properties of protein. Both were 
used to assign the enzyme functional and sub-functional class 
were designed based on the native information on sequence-
order information using the correlation factors (Zhou et al., 2007), 
while DPC was used to define the sequence length information. In 
Table 2, we have illustrated the existence of active sites where 
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these sites in an enzyme structure contribute to the alignment 
scores. Therefore, sequence with highest scores is functionally 
related. For instance, there were active sites in EC.3.1 using 25% 
similarity, thus increasing the functionality prediction as well. 
(i) Rate of sequence similarities using different features by acc; 
(ii) Rate of sequence similarities using different features by sen; 
(iii) Rate of sequence similarities using different features by spe. 

Assessment on the effects of classifiers by using different 
rate of sequence similarities: The standard SVM (one versus 
one binary SVM) is introduced for comparison. We plot the 
distributions of acc with respect to the rate of sequence ID for 
each classifier on the six main functional classes, respectively, in 
Fig. 7. TWSVM obtains the best accuracies, followed by standard 
SVM, KNN and ANN becomes the last in identifying all sub-
functional classes of all six main families, mainly due to both 
TWSVM and standard SVM take the imbalance property into 
account, perform better than KNN and ANN. These results 
suggest that the more properties of dataset itself are incorporated 
into the predictive model, the better results can be expected. Fig. 
7 shows that TWSVM outperforms the standard SVM in 
identifying all sub-functional classes of all six main families, i.e., 
although both TWSVM and standard SVM are especially 
designed for the imbalance problem, TWSVM seems more 
reliable. 

Khemchandani, Jayadeva and Chandra, (2009), 
demonstrated that by designing parameter adjusting strategies; 
TWSVM algorithm with bio-inspired kernel component 

demonstrates better generalization performance than standard 
SVM on imbalanced classification problems, i.e., K was adjusted 
in each TWSVM algorithm iteration. However, to reduce the 
computational complexity, parameter K was fixed in each 
iteration, so the acc from TWSVM did not increase dramatically as 
expected. Fig. 8 shows the output of classifiers used for 
comparison. The proposed classifier, TWSVM has a better 
separation plane than the others thus able to handle the 
imbalance class problem in enzyme sub–functional class 
prediction. Besides, the neural network-based methods is 
complex as compared to SVM based methods where the former 
requires huge amount of data for classification whereas the latter 
are simple, more efficient and achieves better results. 

Assessment on the effect of bio-inspired kernels on TWSVM: 
The overall results produced by the proposed method, 
Bio–TWSVM, in various versions of sequence similarities 
datasets were better in terms of acc than the previous proposed 
method. Fig. 9 summarizes the results obtained from the method 
using three different bio–inspired kernels combined with TWSVM 
classifier. When class distributions are imbalanced traditional 
classification algorithms can be biased towards the majority class 
due to its over–prevalence. Thus, to overcome this, the proposed 
approaches were categorized to deal with imbalanced class 
distributions in enzyme sub–functional class prediction, which 
modify existing algorithms to take the class imbalance into 
consideration. The basic thought of TWSVM was to construct a 
hyperplane for each class of samples and making each 
hyperplane as close as possible to one class of samples, and as 

Fig. 9 : Performance comparison in terms of sensitivity and specificity for selected subclasses using (i) Fisher, (ii) Mismatch and (iii) Spectrum kernels.
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far as possible from the other class of samples. The new samples 
would be assigned to one of the classes depending upon its 
proximity to the two nonparallel hyperplanes, and with the aid of 
bio–inspired kernels the biological information carried on the 
sequence level could be transmitted for prediction.

Validation on the unclassified enzyme subclasses using 
Gene Ontology: The result of the predicted enzyme sub-
functional class based on its main functional class was analyzed 
with the Gene Ontology (GO) molecular function annotation 
Revision: 1.487 of 19–June–2012 (http://www.geneontology.org/ 
external2go/ec2go) of the interacting protein sequences involved 
in the experimental dataset. The sub-functional class contains 
miscellaneous enzymes and includes several reactions for which 
the classification may have to be reviewed further by 
incorporating knowledge-based context of functional groups. 
Table 3 shows some of the functions that were predicted by the 
proposed method, thus act as additional functional terms to the 
existing GO annotated enzyme functional class.

The data in table was partitioned into three sections: (i) 
Unclassified subclasses, where the existing subclasses in enzyme 
database was not classified in previous studies, but in this work it 
was successfully annotated using its GO function; (ii) Correctly 
classified subclasses, the comparison between previous and 
current work on accurate subclass prediction was proven using 
GO function; and (iii) Misclassified subclasses, some of the 
previously predicted subclasses was found to be incorrect. For 
instance, from Table 3 the subclass EC.5.4 was predicted as 
EC.5.1 by Wang et al. (2010) where our work has predicted the 
subclass as EC.5.4 which corresponds to its GO function.

Comparison to other related works: According to Table 4, 
comparing the prediction performance with existing work is 
difficult due to different specification of computational framework 
and sequences. However, it is obvious that previous researchers 
have used large number of sequences compared to current 
method followed in this study. To the best of our knowledge, the 
best acc  was reported by Shi and Hu (2010) with 91.72%, using all

Table 3 : Examples of classification between previous and this study based on Gene Ontology

Enzyme subclasses This study Previous study GO molecular function
(Wang et al., 2010)

Unclassified subclasses
EC.1.20 [Swiss-Prot:P44589] EC.1 Unknown GO:0016491 Oxidoreductase activity
EC.1.21 [Swiss-Prot:Q47878] EC.1 Unknown GO:0016491 Oxidoreductase activity

GO:0030699 Glycine reductase activity
EC.2.9 [Swiss-Prot:A9KW78] EC.2 Unknown GO:0016740 Transferase activity

GO:0016785 Transferase activity, transferring
selenium-containing groups 

EC.3.3 [Swiss-Prot:B3KUA0] EC.3 Unknown GO:0016787 Hydrolase activity 
EC.3.7 [Swiss-Prot:E5ALX2] EC.3 Unknown GO:0016787 Hydrolase activity

GO:0047621 Acylpyruvate hydrolase activity
EC.3.8 [Swiss-Prot:Q9UYC9] EC.3 Unknown GO:0016787 Hydrolase activity
EC.3.11 [Swiss-Prot:O31156] EC.3 Unknown GO:0016787 Hydrolase activity

GO:0050194 Phosphonoacetaldehyde hydrolase activity
EC.3.13 [Swiss-Prot:P54997] EC.3 Unknown GO:0016787 Hydrolase activity

Correctly classified subclasses
EC.4.4 [Swiss-Prot:B4E1R2] EC.4 EC.4 GO:0016829 Lyase activity
EC.4.99 [Swiss-Prot:E5AN32] EC.4 EC.4 GO:0016829 Lyase activity

GO:0016852 Sirohydrochlorin cobaltochelatase activity
EC.5.5 [Swiss-Prot:P04982] EC.5 EC.5 GO:0016853 Isomerase activity

GO:0048029 Monosaccharide binding 
EC.5.99 [Swiss-Prot:B4DLV2] EC.5 EC.5 GO:0003918 DNA topoisomerase (ATP-hydrolyzing) activity 

GO:0016853 Isomerase activity
EC.6.2 [Swiss-Prot:B3KUV2] EC.6 EC.6 GO:0016874Ligase activity 
EC.6.4 [Swiss-Prot: P11498] EC.6 EC.6 GO:0016874Ligase activity

GO:0046872 Metal ion binding 

Misclassified subclasses
EC.1.2 [Swiss-Prot:B4DVF1] EC.1(EC.1.2) EC.1(EC.1.3) GO:0016491 Oxidoreductase activity
EC.5.4 [Swiss-Prot:B3KRB2] EC.5(EC.5.4) EC.5(EC.5.1) GO:0009982 Pseudouridine synthase activity 

GO:0016853 Isomerase activity 
EC.6.1 [Swiss-Prot:B7Z840] EC.6(EC.6.1) EC.6(EC.6.3) GO:0016874 Ligase activity
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low-frequency power spectral density and increment of diversity 
as features. Not-withstanding of utilizing only 4,732 sequences, 
the proposed method surpasses others at 92.01%. We believe 
this was due to the efficiency of Bio–TWSVM to precisely solve 
the imbalance classification problem and in turn use it to predict 
the enzyme sub-functional classes. This was directly accredited 
to the hybridization of different features to form APH, which 
cancelled out each other weaknesses. Furthermore, most of 
other works used fixed parameter for classification. Thus, their 
prediction performances could be aggravated by the non-optimal 
feature or classifier. The notion was supported by our 
experimentation in finding the optimal feature and classifier.

In this study, we can conclude that enzyme sub-functional 
classes are essential protein fold prior to the prediction of protein 
structure and function as we proposed Bio–TWSVM in order to 
overcome the weaknesses of imbalance data distribution in 
subclasses prediction. We devised APH, which is hybridized from 
different features in predicting low homologous sequence 
similarities. In a nutshell, our prediction performance is 
significantly better than other related works. The larger amount of 
sequences and further exploring the sub-functional classes for 
more latent information also will be explored.
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