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Abstract: In spatial science, the relationship between spatial objects is considered to be a vital element.

Currently, 3D objects are often used for visual aids, improving human insight, spatial observations,

and spatial planning. This scenario involves 3D geometrical data handling without the need for

topological information. Nevertheless, in the near future, users will shift to more complex queries

corresponding to the existing 2D spatial approaches. Therefore, having 3D spatial objects without

having these relationships or topology is impractical for 3D spatial analysis queries. In this paper, we

present a new method for creating topological information that we call the Compact Abstract Cell

Complexes (CACC) data structure for 3D spatial objects. The idea is to express in the most compact

way the topology of a model in 3D (or more generally in nD) without requiring the topological space

to be discrete or geometric. This is achieved by storing all the atomic cycles through the models (null

combinatorial homotopy classes). The main idea here is to store the atomic paths through the models

as an ant experiences topology: each time the ant perceives a previous trace of pheromone, it knows

it has completed a cycle. The main advantage of this combinatorial topological data structure over

abstract simplicial complexes is that the storage size of the abstract cell cycles required to represent the

geometric topology of a model is far lower than that for any of the existing topological data structures

(including abstract simplicial cell cycles) required to represent the geometric decomposition of the

same model into abstract simplicial cells. We provide a thorough comparative analysis of the storage

sizes for the different topological data structures to sustain this.

Keywords: Compact Abstract Cell Complexes; 3D topology; 3D data structures; 3D GIS;

3D city modeling

1. Introduction

Recent developments in spatial science have heightened the need for three-dimensional (3D) city

modeling. Three-dimensional city models are fast becoming a key instrument in most applications [1–5].

The uses are for city planning, preserving historical sites and buildings [6], vehicle navigation, 3D

simulators [7], tourism and even complex disaster management procedures. With the ease of 3D

measurement tools and techniques (i.e., light detection and ranging, interferometric synthetic aperture

radar), 3D is now available at application levels.

In spatial science, the relationship between spatial objects is considered to be a vital element [8–11].

Indeed, Tobler’s first law of geography states that each spatial object is related to other spatial

objects, but near things are more related than distant things [12]. Currently, 3D objects are often

used for visual aids, improving human insight, spatial observations, and spatial planning [13,14]. This

scenario involves 3D geometrical data handling without needing topological information. However,
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nevertheless, in the near future, a primary concern for 3D spatial objects is that users will shift to

more complex queries corresponding to the existing 2D spatial query approach. Therefore, by having

3D spatial objects without having the relationships or topology is impractical for 3D spatial analysis

queries. Many efforts can be seen by many researchers for improving geometrical 3D data such as the

management of surface and subsurface data [15,16], 3D generalization for a different level of detail

(LoD) [17–19], and compression and decompression for large 3D data storage [20], but there have

been few studies on the aspects of topological information. Since 3D applications are increasing, a

proper structure for topological information in 3D objects is needed. To highlight, there are other

studies focusing on the topological information such as exploration on the tetrahedral meshes [21],

supercubes [22], and unified framework based on multi-resolution description of spatial data in

arbitrary dimension [23]. However, these works are based on volumetric datasets which is not the

same approach with our implementation that are based on boundary representation of 3D objects.

In this paper, we present a new method for creating topological information called the Compact

Abstract Cell Complexes (CACC) data structure for 3D spatial objects such as 3D city models. Here,

abstract means that it is not related to any embedding in a geometric space. The idea is to express in

the most compact way the topology of a model in 3D (or more generally in nD) without requiring the

topological space to be discrete, unlike in finite topology using digital spaces, as in [24–29]. This is

achieved by storing all the atomic cycles through the models (i.e., null combinatorial homotopy classes,

see [30,31] for a gentle general introduction on topological concepts and algebraic topology). The

main idea here is to store the atomic paths through the models as an ant experiences topology: each

time the ant perceives a previous trace of pheromone, it knows it has completed a cycle. Intuitively,

all the possible paths can be decomposed as sequences of portions of cycles, as an ant can navigate

through a sequence of segments of (the network of) traces of pheromone. The main advantage of this

combinatorial topological data structure over abstract simplicial complexes (see [26]) is that the storage

size of the abstract cell cycles required to represent the geometric topology of a model is far lower than

the storage size of the abstract simplicial cell cycles required to represent the geometric decomposition

of the same model into (abstract) simplicial cells. This is obvious if we consider that each polygonal

surface defined by four points or more in our data structure will have to be subdivided into triangles

in abstract simplicial complexes and that each volume formed by more than four points in our data

structure will have to be subdivided into tetrahedra in the abstract simplicial complexes. We give a

comparison of the storage necessary for our data structure and all other topological data structures in

the reminder of this paper. This data structure introduces new solutions for minimizing 3D topological

data storage, 3D object data ordering, and 3D traversal between separated connected components, and

it will improve the data retrieval time by providing 3D adjacency, 3D indexing, and nearest neighbor

information. This can be useful for various 3D (and more generally nD) applications.

This paper is organized as follows. We review the literature on 3D spatial modeling and data

structures in Section 2. Then, we present our new topological data structure in Section 3. In Section 4,

we demonstrate the connectivity in the proposed structure (Section 4.1.1, Section 4.1.2, and Section 4.1.3)

and make a comparative analysis of our topological data structure with all other major topological data

structures (Section 4.2). In the same section, we explore the use of spatial indexing in order to facilitate

the traversal of our topological data structure and the traversal from one connected component to

another. Finally, we conclude the paper in Section 5.

2. Three-Dimensional (3D) Spatial Modeling and Data Structure

Three-dimensional city models are used to visualize, analyze, and specify objects in the third

dimension [32–34]. Sometimes, there is a need to integrate the third-dimensional object with lower

dimensional objects such as a land parcel (second dimension), virtual objects such as juridical borders

(first dimension) and boreholes (zeroth dimension). Since there are many available tools for developing

3D city models, the development varies between applications in terms of implementation step. There

are approaches that go from a two-dimensional (2D) base to 3D objects by extruding the 2D objects
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to one higher dimension. Another example is via point clouds. Whereby 3D points are constructed

to 3D objects with some filtering implementation [35,36]. From millions of 3D points to 3D objects

or from 2D base spatial data to be extruded to other higher dimensions, the storage volume must be

multiplied [37]. Later, this raises data interoperability issues between different approaches.

Since many 3D city model formats are available, there is a need for a standardized 3D city model

for various applications that use 3D data. CityGML is an effort at making an exchange standard format

for 3D city models. It consists of different levels of detail (LoD), including LoD0, LoD1, LoD2, and

LoD3 [38]. Different LoDs reflect the 3D spatial application information details [1].

As mentioned, users want to visualize and analyze their 3D city models. However, in spatial

science, to have detailed and precise geometrical object data is meaningless without having its

topological information. The existing methodology (commercial and open source software) is focused

on the geometrical information with less topological information implementation. The CityGML data

sets provide simple topological information such as doors that belong to rooms connected to a floor

and later a building. However, this is not sufficient without having detailed topological information

such as common spatial topology operations like 3D adjacency and nearest neighbor queries. Perhaps

this is due to the aim of CityGML and the current needs of the users. Nevertheless, with limited

topological information, it is difficult to define the relationships among spatial objects for future spatial

analysis and queries.

In this research, we compare our proposed data structure with the most common 3D topological

data structures for 3D objects. Those topological data structures are the coupling entities [39],

radial edge [40], partial entity [41], cell tuple [42], incidence graph [43], augmented quad edge [44],

generalized maps [45], full dual half edge [46], simplified DHE—with no NF pointer and simplified

DHE—with no dual [46]. The aim was to access existing 3D topological data structures that have the

potential to be used in 3D city modeling. In particular, this is done by understanding the framework

for constructing 3D models for each topological data structure. These topological data structures later

are compared with the proposed data structure to provide an extensive review of the advantages of

our implementation.

The coupling entities data structure is applicable for non-manifold topology [39]. This data

structure does not require an explicit representation of a fan, blade, or wedge. It uses basic elements

called a ‘feather’ that consist of face, edge, and vertex groupings. The new coupling entity (feather)

stands simultaneously for a side of a fan, a side of a blade, and an end of a wedge (a pair of feathers

represents a fan, blade, or wedge). Contrariwise, this structure cannot identify the link or relationship

between two volumes that are connected by a vertex. Moreover, there is no procedure mentioned in its

reference for adding a new vertex. On the other hand, the radial edge data structure contains of regions,

shells, faces, loops, edges, and vertices. A region is a solid object, and a shell is the oriented boundary

surface of a region. Meanwhile, face-uses, loop-uses, edge-uses, and vertex-uses are characterized

by their orientation. Meanwhile, a simpler version of the radial edge data structure does not include

region and shell elements. It only holds faces, edges, vertices, face-uses, edge-uses, and vertex-uses.

The radial edge data structure is capable of representing non-manifold three-dimensional meshes but

comes at the price of comparatively high storage costs [47].

The partial entity structure can be classified into two groups of topological entities [41]. The

first group or the primary topological entities consist of 0–3 cells and their bounding elements.

Meanwhile, the secondary topological entities are partial entities called partial face (p-face), partial

edge (p-edge) and partial vertex (p-vertex). The partial entity data structure considers each face to have

one orientation geometrically defined based on its face normal, and the orientation of its boundary can

thus be uniquely defined [48]. Basic query procedures are used to extract the adjacency relationship

between the basic topological entities. The difference with the coupling entity data structure is that

the partial entity data structure kept the relationship of the objects that were connected by a vertex

and, as stated by [48], this data structure saves more storage cost than the Radial Edge data structure

for non-manifold cell 2-complexes. Cell-tuple data structure [42] has a combination of nodes, edges,
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faces, and solids. The cell-tuple is connected by four involutionary operations, with each consisting

of all possibilities for exchanging a node, edge, face, or solid of a tuple, thus forming an abstract

simplicial complex. The sequences of different involution operations on the structure made it possible

to navigate through the topology. In this structure, topological information is stored via the cell-tuples,

which are maximal paths in the incidence graph [49]. Closed loops through the corresponding sets

of cell-tuples can be used for access, navigation, and retrieval of the connected parts [50]. According

to [49], the limitation of the cell-tuple is that it can only represent a very regular class of structures.

Moreover, research shows that it is not an appropriate structure for the design and implementation of

fast and efficient traversal algorithms over very large meshes, such as finding a cell in the cell-tuple

data structure, as it requires the processing of all cell-tuples and is a time consuming operation in

particular for large meshes [51].

The incidence graph (IG) data structure as implemented by [52] allows the representation of

non-manifold objects. It stores one half of each paired half-entity in combination with the use of

indices instead of pointers to reference entities, and it additionally reduces the amount of consumed

memory. The incidence graph data structure is a well-known dimension independent data structure

for simplicial complexes. It stores the boundary and co-boundaries of each d-simplex. For each p-cell γ,

where 0 < p ≤ d, the boundary relations are Rp, p−1(γ). Meanwhile, for each p-cell γ, where 0 ≤ p < d,

the co-boundary relations are Rp, p+1(γ). Another 3D topological data structure is the augmented

quad edge (AQE), which is a derived one-dimensional higher data structure from the quad-edge data

structure [53]. AQE is valid for any 2-manifolds to represent each 3-cell of a 3D complex, which allows

AQE to navigate within a single cell with the quad-edge operators and navigate between a space and

its dual or vice versa. On the other hand, AQE stores many pointers for a single shell. In AQE, each

tetrahedron (containing six edges) is represented by four quads containing three pointers (org, next,

and rot), making a total of 72 pointers. The same applies to its dual (72 pointers), making a total of

144 pointers for each tetrahedron [44]. As mentioned by its author, AQE is approximately three times

more space consuming than the facet-edge data structure. Guibas and Stolfi proposed compression of

the quad-edge by removing the rot pointers between quads (not explicitly stored).

Other work associated with our proposed data structure is the generalized maps or G-maps [45].

G-maps is a topological data structure that is multidimensional (n-G-maps). Related to works on

G-maps, in [54], the research shows that G-maps is efficient at finding inconsistencies for 3D building

reconstruction. G-maps define a single type of basic element (darts) and involution. Involutions range

from α0 to αn and represent object cells and neighboring relationships. While α0 involutions represent

links between two vertices, α1 involutions represent links between two edges, α2 involutions represent

links between two faces, and α3 involutions represent links between two volumes. Meanwhile, the

dual half edge [46] or DHE shows the duality of 3D objects by storing the dual information as pointers.

The main objective of this structure is to model building interiors that can be used in emergency

management systems by managing the geometry for visualization and topology for finding the

connections between connected rooms [46]. By taking the primal and the dual in the graph, finding

the shortest routes using the shortest path analysis (i.e., Dijkstra’s algorithm) among rooms is valid

and practicable. Moreover, DHE implements external shells for each connected component. However,

then, the external shells are located at a small epsilon distance outside each connected component.

Nevertheless, this structure limits the navigation function to a single connected component, which it is

not applicable for traversing in ‘invisible’ media such as airline routes or a traversing wavelength from

one transmitter to another. In contrast, DHE is consistent in storing the duality information for a single

connected component.

3. Compact Abstract Cell Complexes (CACC)

In this work, we depart from the work of [26] in investigating topological properties of

three-dimensional manifolds. The main idea behind the Compact Abstract Cell Complexes is to

only store all the ‘atomic’ (not sub-dividable, i.e., that cannot be broken into shorter ones) cycles that
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exist in a model of a real or virtual environment at different dimensions: from 0 (α0-cycles of points, i.e.,

edges) to 1 (α1-cycles of edges, i.e., faces), 2 (α2-cycles of faces, i.e., volumes) until n-1 (αn-1 cycles of

facets, where n is the dimension of the topological space in which the model is placed) and n (n cycles

of hyper-volumes, i.e., hyper-volume adjacencies through facets). The reason for storing all the atomic

cycles is that ‘atomic’ cycles express the connectivity in the model in that they are building pieces for

all possible paths through the model, i.e., there is a one-to-one mapping between the topology of the

model and the set of all possible such paths (as the connectivity of all ant pheromone segments in a

union of networks of ant pheromone traces). Moreover, as algebraic geometry shows [31], the topology

of a model is determined by all the cycles that are not boundaries and their connectivity.

The definitions used in the Compact Abstract Cell Complexes can be described as follows:

• Vertices, edges, and cycles: Vertices that are connected to edges are not represented per se. Only

the vertices that do not belong to any edge are represented as degenerate cycles that are artificially

connected to the face or volume to which they belong: (vertexid; ownerid; ownertype).

• α0-cycles: α0-cycles are all the cycles that define paths through 0-dimensional cells (vertices), i.e.,

edges or paths that connect vertices not contained in any edge to the cell of smallest dimension

(face or volume in 3D or any cell of dimension at least 2 in nD) that contains it (see Figure 1).

The later paths do not exist in the case of connected 3D city models (i.e., consisting of only one

connected component). Furthermore, the α0-cycles that do not appear in the list of elements of

any α1-cycle are cycles that are not boundaries.

 

 

 α α

α α

α

 α α

α
α

Figure 1. α0-cycles and their connectivity.

• α1-cycles: α1-cycles (see Figure 2) are all the cycles that define paths through one-dimensional

cells (edges), i.e., faces or paths that connect edges not contained in any face to the cell of smallest

dimension (the volume in 3D or any cell of dimension at least 3 in nD) that contains it. The later

paths do not exist in the case of connected 3D city models (i.e., consisting of only one connected

component). Each cycle of edges is assumed to be ordered in the clockwise orientation from a

viewpoint in the interior of the volume to which it belongs. Furthermore, the α1-cycles that do

not appear in the list of elements of any α2-cycle are cycles that are not boundaries.

• α2-cycles: as illustrated in Figure 3, α2-cycles are all the cycles that define paths through

two-dimensional cells (faces), i.e., volumes or paths that connect faces not contained in any

volume to the cell of smallest dimension (any cell of dimension at least 4 in nD) that contains

it. The later paths do not exist in the case of 3D city models. Each cycle of faces is assumed to

be ordered in the clockwise orientation from a viewpoint in the interior of the volume to which

it belongs.
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Figure 2. α1-cycles and their connectivity
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Figure 3. α2-cycles and their connectivity.

• α3-cycles: α3-cycles are all the cycles that define paths through three-dimensional cells (i.e.,

volumes), that is, volume adjacencies in 3D or paths that connect three-dimensional volumes not

contained in any four-dimensional cell to the cell of smallest dimension (any cell of dimension

at least 5 in nD) that contains it (see Figure 4). The later paths do not exist in the case of 3D

city models.

 

 

α

 

Figure 4. α3-cycles and their connectivity.
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• External cycles: External cycles are cycles of facets that separate the unbounded hyper-volume

containing the points at infinity from the interior of the bounded volumes of the model. There

is one such cycle of facets for each connected component of adjacent bounded hyper volumes.

External cycles are stored as a list of cycles of facets with opposite orientation (i.e., in the clockwise

orientation from a viewpoint that belongs to the unbounded volume containing the points at

infinity). In other words, external cycles are the universe itself with empty space(s) or hole(s). The

holes are the spatial objects that exist in the model. Figure 5 shows two examples of a single 3D

object (above) and a single 3D connected component object (below).

 

α

 

 

Figure 5. External cycles for a single 3D object (above) and a single 3D connected component

object (below).

• Hilbert curves: Hilbert curves are n-dimensional space-filling curves (i.e., the union of all the cells

attached to each vertex of a Hilbert curve is the full topological space in which the cells are placed)

induced by a tessellation of the space into interval boxes. The 3D Hilbert curve (of length m3)

induced by the preceding tessellation in a 3D space connects all cell centroids in a defined order.

4. Experiments and Results

Basic topological relationships can be identified as adjacency, connectivity and containment [55].

However, in 3D space (R3), the framework for topology needs to be examined not only for 3D objects

but also for other dimensional objects such as 2D, 1D, and 0D [55]. Any topological data structure

should preserve its basic characteristics, whereby this paper, to the best of our knowledge, highlighted

the main advantages compared with other existing topological data models. The advantages can

be seen in the connectivity (that includes sharing boundaries for surfaces, edges and vertices, and

containment connectivity), the storage cost, the adjacency of neighboring entities, and the traversal

between connected components. Furthermore, the Hilbert curves space-filling curves are presented

within the data structure implementation.
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4.1. The Connectivity—Boundaries

In the description of α3-cycles, the connectivity can be identified between adjacent R3 objects.

However, the connectivity of R3 objects (shared geometry) may involve other lower dimensions (see

Figure 6). In the example, two R
3 objects can share the relationships between them based on a common

vertex, common edge, and common surface(s). However, the CACC data structure is able to retrieve

this information via stored αi cycles. In the next sub-section, a description of the common surfaces,

edges, and vertices is shown using the CACC data structure.

 

 

ℝ

α ℝ
ℝ

ℝ

α

ℝ ℝ
ℝ ℝ

Figure 6. Diverse relationships between shared geometry.

4.1.1. Common Surfaces

Connected buildings in a building block should have at least one shared wall (common surface)

with another building. As an example, Figure 7 shows The National Space Institute of Denmark

(DTU-Space) building block that consist of two buildings: building 327 (right building) and the new

building 328 (black building on the left). In an overview, these buildings share a common surface that

connects both buildings. However, CACC is able to identify the common surface because it stores

the topological information for the connecting objects. Figure 8 demonstrates the visualization of

3 × 3 × 3 cubes implemented in CACC. This scenario was used as the best common example occurring

in R
3 space. It identifies the common surfaces between the target R3 objects (yellow cube) and other

R
3 objects and highlights the corresponding neighboring R

3 objects (grey cubes).

 

 

ℝ

ℝ
α α

∩ ∪

Figure 7. Connectivity between buildings.
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Figure 8. Neighboring objects that share common surfaces.

4.1.2. Common Edges and Vertices

In R
3 space, there are possibilities for objects to have a topological relationship with lower

dimensional objects (as illustrated in Figure 6). These relationships are stored in CACC. Figure 9

shows the common edges and vertices stored in CACC for R3 objects. This is achieved by finding the

αi-cycles that share corresponding αi-1-cycles.

 

ℝ

ℝ
α α

 

∩ ∪

Figure 9. Common edge and vertex.

4.1.3. Containment

Another advantage obtained by implementing CACC is the containment condition. Containment

for an object (j) and another object (i) can be seen as j ∩ i or j ∪ i. This is useful for spatial analysis of

merging two objects into a single object (join function). In the case illustrated in Figure 10, joining

these two buildings can be done by removing the common surfaces, and the new α0-cycles for both

buildings are identified. However, to ‘glue’ an object that lies inside of another object, the same method

of removing the common face is not valid. This will create an empty or hollow space in the object. The

example in Figure 11, shares three common faces. Removing these three common faces will result

in a hollow space for both objects—which is incorrect (Figure 10—right). Therefore, in CACC, the

topological containment can be identified by knowing the orientation of the α1-cycles. The procedure is

similar to the shared surface method. The difference is the common surface shared by these two objects

(j ∩ i) shares the same orientation as the α1-cycles (see Figure 11). Removing the ‘redundant’ α1-cycles

(common surfaces of objects A and B) produces new objects without any topology inaccuracies.
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Figure 10. Containment that shares common faces.

 

α

α

∩ α
α

Figure 11. Containment in CACC.

4.2. Storage Costs and Comparison

One of the major factors for storing a large coverage of a 3D city model is the size of the data

storage. Since it involves many 3D objects (i.e., buildings, street furniture, and road networks), one

of our aims in this research is to produce a topological data structure that is compact and minimizes

the storage without losing the topological information. Therefore, we compared storage costs with

other data structures such as the radial edge [40], partial entity [41], coupling entities [39], generalized

maps [45], cell-tuple [42], augmented quad edge [44], incidence graph [43], full dual half edge [46],

simplified DHE—with no NF pointer and simplified DHE—with no dual [46].

In the comparison, a cell complex consisting of 1000 parallelepipeds (10 × 10 ×10) with one

external cell is formed. Each parallelepiped consists of 12 edges, and each edge consists of 2 vertices.

The total size taken by each data structure is shown in Figure 12 (the size of storing pointers is four

bytes, and storage is calculated based on topology information). As an example, for DHE, the storage

space for the internal complex equals 1000 volumes × 12 edges × 2 DHE × 10 pointers × 4 bytes =

960,000 bytes, and for the external cell, 1200 edges × 2 DHE × 10 pointers 4 bytes = 96,000, a total

of 1,056,000 bytes. For AQE, 24,000 edges 4 quads × 3 pointers 2 dual × 4 bytes = 2,304,000 bytes.

However, AQE did not store external cell information.
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Two simplified DHE versions (SDHE and TDHE) were included, and from the graph, they reduce

storage 20% from the full DHE. This is done by considering the removal of the face loop pointer

(removes 2 pointers from 10 pointers available in the full DHE). Meanwhile, the TDHE reduces storage

60% by removing the dual and stored in primal, with only four pointers [46].

For CACC, a parallelepiped will require two pointers for the α0-cycles, four pointers for the

α1-cycles, six pointers for the α2-cycles, and one pointer for the α3-cycles. Therefore, the storage space

required for the complex is as follows: α0-cycles: 24,000 edges × 2 pointers × 4 bytes = 384,000 bytes;

α1-cycles: 6000 surfaces × 4 pointers × 4 bytes = 96,000 bytes; α2-cycles: 1000 parallelepiped ×

6 pointers × 4 bytes = 24,000 bytes; α3-cycles 2700 surfaces × 4 bytes = 10,800 bytes; and external cell:

600 surfaces × 1 pointer × 4 bytes = 2400 bytes; thus, a total of 325,200 bytes.

Based on Figure 12, AQE consumes more disk storage than the others, and SDHE is the average.

For comparison, Table 1 shows the ratio of the data structure’s storage size with AQE and SDHE. The

result shows that DHE minimizes the storage size by almost 50% compared to AQE and also stores

extra information for the external cell, whereas the simplified version of DHE (TDHE) that can be used

for preliminary model construction saves more than half the size compared to DHE. In contrast, our

proposed CACC data structure shows that it requires minimal storage compared to the others. TDHE

is minimized through simplification of the structures by removing several pointers (dual). Meanwhile,

CACC is equivalent to the full version of DHE with all the pointers available for advance model

implementation. Hence, the CACC data structure is compact, and all the topological information is

preserved. Therefore, CACC is practical in an implementation that requires a large data set or detailed

3D objects such as a 3D city model (LoD1 to LoD4) or a building information model (BIM).

 

α
α α α

α
α α

α

Figure 12. Storage (in bytes) comparison of different data structures with CACC.

Table 1. Data storage ratio comparison (in bytes) with AQE and SDHE.

Data Structure Total Size Ratio (x/AQE) Ratio (x/SDHE)

AQE 2,304,000 100% 273%

Cell-Tuple 1,536,000 67% 182%

Radial Edge 1,457,303 63% 173%

Coupling Entity 931,920 40% 110%

G-Maps 1,113,600 48% 132%

Partial Entity 644,192 28% 76%

IG 632,000 27% 75%

DHE 1,056,000 46% 125%

SDHE 844,800 37% 100%

TDHE 422,400 18% 50%

CACC 325,200 14% 38%
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4.3. Adjacency

Three-dimensional city models in different applications require different analyses and purposes.

An immense exertion is not required if the application is just 3D object visualization. In critical

applications, the information retrieval time is important. Without a proper arrangement of 3D spatial

data, queries need to be performed for each object, reducing the time efficiency for processing and

information retrieval. On the other hand, 3D data consume more disk storage than 2D data. Requesting

3D data from servers requires step-by-step memory disk searching and would be a hassle if the

information is stored in different servers under different agencies throughout a country.

As mentioned, users want to visualize and analyze their 3D city models. However, seeking

specific information in a huge volume of data requires a proper data constellation mechanism, without

it, this process is similar to ‘finding a needle in a haystack’. Although the data are retrievable with

today’s computer technology, the routine is not optimum, and there is no reason to sacrifice the

computational performance instead of using it for more intricate procedures.

In our CACC data structure, we adopt space-filling curves for ordering. In mathematical analysis,

a space-filling curve is a curve whose range contains the entire 2D unit square (or more generally, an

n-dimensional hypercube). This space-filling curve visits every point in a square grid with a size of n2.

Since CACC was put into practice for 3D city models, space-filling curves were used to compress the

3D models to 1D ordering.

The coherence between neighboring pixels is an important advantage in space-filling curve

operations. In this case, the adjacencies between spatial objects were conserved and retrievable. The

example shown in Figure 13 identifies objects (buildings) that are located ‘close to’ the building of

interest. Since CACC is organized into a one-dimensional structure, finding the nearest building can

be achieved by finding the arc length (space filling curve length). The arc length is determined based

on the space filling curve traverse method. The arc length is arranged according to which object was

found first (starting with value 1) in the traversal process. The last object found will have the largest

arc length value. The nearest building to a specific building (n) is a way of first finding the nearest arc

length to n and then navigating to its neighbors until the distance becomes smaller and smaller. The

difference in the arc length will identify the object’s projection on the Hilbert curve distance from n.

In practical applications, loading the entire 3D city model into a viewer will consume

computational processing time and, in some applications, might not be necessary at all. As an

example in an indoor environment, a room is blocked by doors, windows, walls, corridors, and floors.

To input the whole 3D city model at one single processing time is not necessary. Practically, by using

the space-filling curve implementation, knowing which objects are within view will improve the

visualization and memory optimization.

 

α

Figure 13. The nearest arc lengths from building A are B, C, and D, in that order.
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4.4. Traversal between Multiple Connected Components

Another advantage of CACC is the connectivity between multiple connected components using

the external cell information. Previously, most cases shown are based on a single connected component.

For example, as illustrated in Figure 14, Figure 14b shows a building with floors that share a common

boundary with other floors that have a different orientation of α1-cycles than at least one floor of the

building. Figure 14c shows a situation where these objects are connected through a common surface,

which is the surface of the terrain. This connected component is linked, and the traversing process

can be done by tracking all the possible links. However, the situation illustrated in Figure 14d is

different from that in the other figures. The traversal process from one object to another is not possible

without having the common surface between the two objects. Since CACC stores the external cell

information, connectivity between multiple connected components is possible by identifying the cycles

with external cycles. The external cycles act as the empty space or the ‘universe’ space of the models.

Therefore, it is possible to traverse between multiple connected components using the external cells.

 

α

 
Figure 14. Illustration of connected components and multiple connected components.

Figure 15 illustrates the concepts of external shells in CACC, where traversing from Room

A to Room B is possible despite the fact there are two connected components involved. Room

A is topologically connected to the corridor of the first connected component. Traversing to the

corridor of the second connected component, where there is no common boundary, is possible by

traversing via CACC external shells. Later, the second corridor is topologically connected with

Room B, and the traversal ends. Traversals between connected components are important since in

the real world, there are situations where ‘floating’ objects exist (i.e., an airline route and wireless

transmission communications).

 

α α α α

Figure 15. Traversing through multiple connected components.

5. Conclusions

It is shown that CACC is a topological data structure that is applicable for storing the topological

relationships such as adjacency, connectivity, and containment. The connectivity links (α0-cycles,
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α1-cycles, α2-cycles, and α3-cycles) store all the information about the topological relationships

relating to the simplest cells of each dimension. Topological relationship information and traversal

processes between different dimensions were also conceivable because CACC is based on cycles

of smaller dimension. Thus, the shared boundary between elements inside of a model is traceable.

Three-dimensional objects that share a common boundary—such as surfaces, edges, and vertices—can

be retrieved and displayed.

The containment problem for an object located inside of another object is possible to resolve

using CACC. This situation is significant in 3D city modeling since the union of a 3D object will be

inaccurate if there is no proper procedure to identify objects that are located inside of and share the

same boundary (the same cycle direction) as another 3D object. On the other hand, the 3D Hilbert

curves procedure demonstrated that CACC ensures its own data ordering for proper data constellation

mechanisms and benefits end-users by providing the nearest neighbor information from the 3D city

models. In addition, with the capability of traversing between multiple connected components, CACC

proves its practicality for real world applications.

Thorough comparisons were made among different 3D topological data structures to show the

compactness of the proposed CACC data structure. It also exemplifies minimal disk storage and

preserves all topological information in the cycles. Moreover, the ability of CACC to traverse between

objects demonstrates that it is also applicable for a wide range of implementations. The fact that CACC

stores all the topological information and the data storage is minimal makes CACC practicable for

incorporating 3D city models that require much geometrical and topological data storage. Moreover,

implementations of CACC will improve the consistency for the developed 3D objects. Therefore, as

mentioned, CACC is proven to be practical in implementations that require a large data set or detailed

3D objects. Future works can involve integrating CACC with standard 3D models such as CityGML or

a Building Information Model (BIM) for enhancing data interoperability.

Author Contributions: Conceptualization, Uznir Ujang and Francesc Anton Castro; 3D Computer Programming,
Uznir Ujang; Methodology, Uznir Ujang; Validation, Uznir Ujang and Francesc Anton Castro; Formal Analysis,
Uznir Ujang; Investigation, Uznir Ujang and Francesc Anton Castro; Writing-Original Draft Preparation,
Uznir Ujang and Suhaibah Azri; Writing-Review & Editing,Suhaibah Azri, Uznir Ujang and Francesc Anton
Castro; 3D Visualization, Uznir Ujang; Supervision, Francesc Anton Castro; Model Optimization, Uznir Ujang
and Suhaibah Azri.

Funding: This research was partially funded by UTM Research University Grant, Vot Q.J130000.3552.05G34 and
Vot Q.J130000.3552.06G41.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Biljecki, F.; Stoter, J.; Ledoux, H.; Zlatanova, S.; Çöltekin, A. Applications of 3D City Models: State of the Art

Review. ISPRS Int. J. Geo-Inf. 2015, 4, 2842–2889. [CrossRef]

2. Harvey, A.S.; Fotopoulos, G.; Hall, B.; Amolins, K. Augmenting comprehension of geological relationships

by integrating 3D laser scanned hand samples within a GIS environment. Comput. Geosci. 2017, 103, 152–163.

[CrossRef]

3. Huang, W.; Sun, M.; Li, S. A 3D GIS-based interactive registration mechanism for outdoor augmented reality

system. Expert Syst. Appl. 2016, 55, 48–58. [CrossRef]

4. Lin, F.; Chang, W.-Y.; Tsai, W.-F.; Shih, C.-C. Development of 3D Earth Visualization for Taiwan Ocean

Environment Demonstration. In Proceedings of the Data Mining and Big Data: Second International

Conference, DMBD 2017, Fukuoka, Japan, 27 July–1 August 2017; Tan, Y., Takagi, H., Shi, Y., Eds.; Springer

International Publishing: Cham, Switzerland, 2017; pp. 307–313.

5. Yin, L. Street level urban design qualities for walkability: Combining 2D and 3D GIS measures. Comput.

Environ. Urban Syst. 2017, 64, 288–296. [CrossRef]

6. Mohd, Z.H.; Ujang, U.; Choon, T.L. Heritage House Maintenance using 3D City Model Application Domain

Extension Approach. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, 73–76. [CrossRef]

http://dx.doi.org/10.3390/ijgi4042842
http://dx.doi.org/10.1016/j.cageo.2017.02.008
http://dx.doi.org/10.1016/j.eswa.2016.01.037
http://dx.doi.org/10.1016/j.compenvurbsys.2017.04.001
http://dx.doi.org/10.5194/isprs-archives-XLII-4-W6-73-2017


ISPRS Int. J. Geo-Inf. 2019, 8, 102 15 of 17

7. Ujang, U.; Azri, S.; Zahir, M.; Abdul Rahman, A.; Choon, T. Urban Heat Island Micro-Mapping via 3D City

Model. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, XLII-4/W10, 201–207. [CrossRef]

8. Feinberg, R.; Pyrek, C.C.; Mawyer, A. Navigating Spatial Relationships in Oceania. Struct. Dyn. 2016, 9, 1–7.

9. Nagaraja, T.N.; Keenan, K.; Irtenkauf, S.; Hasselbach, L.; Panda, S.; Cabral, G.; Ewing, J.R.; Mikkelsen, T.; de

Carvalho, A. A method to examine spatial relationships between tumor cells and vasculature using a mouse

orthotopic PDX glioblastoma model. In Proceedings of the AACR 107th Annual Meeting 2016, New Orleans,

LA, USA, 16–20 April 2016.

10. Pérez-Gallardo, Y.; García Crespo, Á.; López Cuadrado, J.L.; González Carrasco, I. MESSRS: A model-based

3D system for of recognition, semantic annotation and calculating the spatial relationships of a factory’s

digital facilities. Comput. Ind. 2016, 82, 40–56. [CrossRef]

11. Tasic, I.; Porter, R.J. Modeling spatial relationships between multimodal transportation infrastructure and

traffic safety outcomes in urban environments. Saf. Sci. 2016, 82, 325–337. [CrossRef]

12. Waters, N. Tobler’s First Law of Geography, International Encyclopedia of Geography: People, the Earth, Environment

and Technology; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2016.

13. Claudia, S.; Volker, C. Development of Citygml ADE for Dynamic Flood Information. In Proceedings of the

3rd International ISCRAM China Workshop, Harbin, China, 4–6 August 2008.

14. Xu, Z.; Zhu, G.; Wu, X.; Yan, H. 3D Modeling of Groundwater Based on Volume, Advances in Spatio-Temporal

Analysis; Taylor Francis Group: Abingdon-on-Thames, UK, 2007; pp. 163–168.

15. Duncan, E.E.; Abdul Rahman, A. 3D GIS for mine development—Integrated concepts. Int. J. Min. Reclam.

Environ. 2015, 29, 3–18. [CrossRef]

16. Katerina, K.; Maria, K.; Aggeliki, K.; Konstantinos, G.N.; Nikolaos, S.; Nikolaos, D. 3D subsurface geological

modeling using GIS, remote sensing, and boreholes data. In Proceedings of the Fourth International

Conference on Remote Sensing and Geoinformation of the Environment, Paphos, Cyprus, 4–8 April 2016;

SPIE: Paphos, Cyprus, 2016.

17. Biljecki, F.; Ledoux, H.; Stoter, J. An improved LOD specification for 3D building models. Comput. Environ.

Urban Syst. 2016, 59, 25–37. [CrossRef]

18. Geiger, A.; Benner, J.; Haefele, K.H. Generalization of 3D IFC Building Models. In 3D Geoinformation Science:

The Selected Papers of the 3D GeoInfo 2014; Breunig, M., Al-Doori, M., Butwilowski, E., Kuper, P.V., Benner, J.,

Haefele, K.H., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 19–35.

19. Ohori, A.K.; Ledoux, H.; Biljecki, F.; Stoter, J. Modeling a 3D City Model and Its Levels of Detail as a True 4D

Model. ISPRS Int. J. Geo-Inf. 2015, 4, 1055–1075. [CrossRef]
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48. Čomić, L.; Floriani, L. Modeling and Manipulating Cell Complexes in Two, Three and Higher Dimensions.

In Digital Geometry Algorithms; Brimkov, V.E., Barneva, R.P., Eds.; Springer: Dordrecht, The Netherlands,

2012; pp. 109–144.

49. Cardoze, D.; Miller, G.; Phillips, T. Representing Topological Structures Using Cell-Chains. In Proceedings

of the Geometric Modeling and Processing—GMP 2006, Pittsburgh, PA, USA, 26–28 July 2006; Kim, M.-S.,

Shimada, K., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 248–266.

50. Fradin, D.; Meneveaux, D.; Lienhardt, P. Sample Space and Hierarchy of Generalized Maps: Application to

Architectural Complexes; AFIG—French Association of Computer Graphics: Lyon, France, 2002; pp. 199–210.

51. Silva, F.G.M.; Gomes, A.J.P. Adjacency and incidence framework: A data structure for efficient and

fast management of multiresolution meshes. In Proceedings of the 1st International Conference on

Computer Graphics and Interactive Techniques in Australasia and South East Asia, Melbourne, Australia,

11–14 February 2003; ACM: New York, NY, USA, 2003; pp. 159–166.

http://dx.doi.org/10.1016/j.compenvurbsys.2017.01.001
http://dx.doi.org/10.1016/j.compenvurbsys.2016.12.005
http://dx.doi.org/10.1080/17538947.2016.1205673
http://dx.doi.org/10.1016/j.cag.2015.07.008
http://dx.doi.org/10.5194/isprs-annals-IV-2-W1-107-2016
http://dx.doi.org/10.1109/38.364963
http://dx.doi.org/10.1016/j.compenvurbsys.2006.03.003
http://dx.doi.org/10.1016/0010-4485(91)90100-B


ISPRS Int. J. Geo-Inf. 2019, 8, 102 17 of 17

52. Kunihiko, K.; Akifumi, M. Binary spatial operations on cell complex using incidence graph implemented at

a spatial database system Hawk Eye. Prog. Inform. 2006, 3, 19–30.

53. Guibas, L.; Stolfi, J. Primitives for the manipulation of general subdivisions and the computation of Voronoi.

ACM Trans. Graph. 1985, 4, 74–123. [CrossRef]

54. Horna, S.; Meneveaux, D.; Damiand, G.; Bertrand, Y. Consistency constraints and 3D building reconstruction.

Comput.-Aided Des. 2009, 41, 13–27. [CrossRef]

55. Ellul, C.; Haklay, M. Requirements for Topology in 3D GIS. Trans. GIS 2006, 10, 157–175. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access

article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1145/282918.282923
http://dx.doi.org/10.1016/j.cad.2008.11.006
http://dx.doi.org/10.1111/j.1467-9671.2006.00251.x
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Three-Dimensional (3D) Spatial Modeling and Data Structure 
	Compact Abstract Cell Complexes (CACC) 
	Experiments and Results 
	The Connectivity—Boundaries 
	Common Surfaces 
	Common Edges and Vertices 
	Containment 

	Storage Costs and Comparison 
	Adjacency 
	Traversal between Multiple Connected Components 

	Conclusions 
	References

