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Abstract: Predicting the penetration rate is a complex and challenging task due to the interaction
between the tunnel boring machine (TBM) and the rock mass. Many studies highlight the use of
empirical and theoretical techniques in predicting TBM performance. However, reliable performance
prediction of TBM is of crucial importance to mining and civil projects as it can minimize the risks
associated with capital costs. This study presents new applications of supervised machine learning
techniques, i.e., k-nearest neighbor (KNN), chi-squared automatic interaction detection (CHAID),
support vector machine (SVM), classification and regression trees (CART) and neural network (NN)
in predicting the penetration rate (PR) of a TBM. To achieve this aim, an experimental database
was set up, based on field observations and laboratory tests for a tunneling project in Malaysia.
In the database, uniaxial compressive strength, Brazilian tensile strength, rock quality designation,
weathering zone, thrust force, and revolution per minute were utilized as inputs to predict PR of TBM.
Then, KNN, CHAID, SVM, CART, and NN predictive models were developed to select the best one.
A simple ranking technique, as well as some performance indices, were calculated for each developed
model. According to the obtained results, KNN received the highest-ranking value among all five
predictive models and was selected as the best predictive model of this study. It can be concluded
that KNN is able to provide high-performance capacity in predicting TBM PR. KNN model identified
uniaxial compressive strength (0.2) as the most important and revolution per minutes (0.14) as the
least important factor for predicting the TBM penetration rate.

Keywords: tunnel boring machine performance; penetration rate; machine learning technique;
predictive model

1. Introduction

The prediction of tunnel boring machine (TBM) performance in a specified rock mass condition
is a longstanding research area. Suitable prediction of TBM performance parameters, notably the
penetration rate (PR) and the advance rate (AR), can reduce the risks related to high capital costs,
which are very common for mechanized excavation operations. This is an essential task for planning
tunnel projects and selecting suitable construction methods. During the past decades, several empirical
techniques have been developed for forecasting the performance parameters of TBM: PR, and AR [1–7].
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In the aforementioned models/classifications, the most influential factors of rock mass and material,
such as compressive and tensile strengths and joint conditions, as well as of machine specifications,
such as average cutter force, and cutter-head torque, were utilized as predictors. A PR model was
introduced by Farmer and Glossop [8] based on the tensile strength of the rock and average cutter
force. In another study, conducted by Sanio [3], specific energy was predicted using values of uniaxial
compressive strength (UCS) of the rock. Ozdemir [9] developed the Colorado School of Mines (CSM)
model based on a database comprising of cutter and rock properties to estimate the cutter forces.
The CSM model has since been modified several times by Rostami [5], Yagiz and Ozdemir [10], and
Yagiz [11], by adding the effects of rock mass brittleness and rock mass fracture properties. Although
these models have several inputs, most of these studies rely on rock properties, such as strength, joint
spacing, and brittleness, as inputs into the established techniques [12–16].

Several studies used traditional statistical and linear techniques to predict TBM performance [17,18].
However, these techniques have been criticized, because of their disadvantages in solving highly
complex and nonlinear problems. Grima et al. [19] mentioned that statistical models are not always
robust enough to accurately describe nonlinear and complex systems. Moreover, their performance
capacity is diminished in the presence of outliers and extreme values in the data. Furthermore,
Farrokh et al. [20] stated that multiple parameters’ models use more project-specific data (compared
to simple models), and are more easily applied (compared to computer-aided models). It should be
mentioned that the performance capacities of the multiple parameters models are higher than those of
simple parameter models. This is due to the use of more related input parameters. Hence, it seems that
artificial intelligence (AI) and machine learning (ML) techniques can be the best choice to be applied
for prediction of TBM performance using multiple input parameters.

AI and ML techniques (Table 1), such as artificial neural network (ANN), support vector machine
(SVM), particle swarm optimization (PSO), and fuzzy inference system (FIS) have been widely used for
solving problems in civil engineering and, more specifically, for TBM performance parameters [21–35].
ANN models were developed by Benardos and Kaliampakos [36] and Yagiz et al. [17] to predict
TBM PR. Hybrid ANN models of PSO-ANN and imperialist competitive algorithm (ICA)-ANN were
developed to approximate PR and AR of TBMs in the study conducted by Armaghani et al. [12] and [37],
respectively. Recently, Koopialipoor et al. [13] developed a new model to predict the tunnel boring
machine performance based on the group method of data handling. A gene expression programming
(GEP) was introduced by Armaghani et al. [38] for estimating PR values obtained from a transfer
tunnel in Malaysia.

Table 1. Published research on tunnel boring machine (TBM) performance prediction using related
artificial intelligence (AI) and machine learning (ML) techniques.

Reference Technique
Parameters

Datasets/Description
Input Output

Alvarez Grima [19] ANN CFF, Dc, RPM, TF, UCS AR, PR 640 TBM projects

Bernardos and
Kaliampakos [36] ANN

N, overburden,
permeability, RMR, rock
mass weathering RQD,

UCS, WTS,

AR Athens metro tunnel

Yagiz [17] ANN BI, DPW, UCS, α PR 151 datasets

Eftekhari et al. [39] ANN BTS, CT, Qu, RMR, Rock
Type, RQD, Rs TF, UCS PR 10 km data excavated in a tunnel

Gholamnejad and
Tayarani [40] ANN DPW, RQD, UCS PR 185 datasets



Appl. Sci. 2019, 9, 3715 3 of 19

Table 1. Cont.

Reference Technique
Parameters

Datasets/Description
Input Output

Gholami et al. [41] ANN Jc, Js, RQD, UCS PR 121 tunnel sections

Salimi and Esmaeili [42] ANN BTS, DPW, PSI, UCS, α PR 46 sections of a water supply
tunnel

Torabi et al. [43] ANN C, UCS, υ, ϕ PR, UI 39 sections of a highway project

Shao et al. [44] ELM BTS, DPW, PSI, UCS, α PR 153 datasets

Mahdevari et al. [45] SVR BI, BTS, CP, CT, DPW, SE,
TF, UCS, α PR 150 datasets

Armaghani et al. [12] PSO-ANN,
ICA-ANN

BTS, UCS, RMR, RQD,
TF, WZ, RPM PR 1286 datasets

Armaghani et al. [37] PSO-ANN,
ICA-ANN

Qu, BTS, UCS, RMR,
RQD, TF, WZ, RPM AR 1286 datasets

Koopialipoor et al. [46] FA-ANN BTS, UCS, RMR, RQD,
TF, WZ, RPM PR 1200 datasets

Koopialipoor et al. [47] DNN BTS, UCS, RMR, RQD,
TF, WZ, RPM PR 1286 datasets

While the use of AI techniques has attracted more attention than the use of other techniques,
such as ML, in the field of tunneling the main aim of AI is the development of reliable and robust
models. On the other hand, ML techniques seek to enhance accuracy, which is desirable for any
prediction model. Since the TBM PR is a continuous target variable, the supervised ML techniques,
such as SVM, nearest neighbor and decision trees (DTs) should be used for classification and regression
of TBM data. Supervised ML approaches are powerful due to their ability to solve problems in science
and engineering and obtaining a high accuracy level for prediction purposes, especially when dealing
with highly complex and nonlinear problems [48–50].

This study aims to evaluate the use of various ML techniques in predicting the TBM PR. In this
study, five ML techniques are developed to predict PR of TBM in hard rock conditions. The proposed
models are compared in terms of accuracy and performance, to select the best models among them.
This comparison helps decrease future work expended on choosing appropriate techniques/procedures
for analysis of TBM and tunneling data. Thus, the importance of input variables to calculate the TBM
PR is estimated and assessed using the selected models. This “importance” calculation can enable a
better understanding of the predictive capacity of different input parameters.

It is extremely helpful to obtain prior knowledge of the TBM performance in rock excavation
projects. This allows for planning construction time and for controlling cost, as well as choosing
the excavation method. Several studies noted that predicting the penetration rate is a complex and
difficult task because of the interaction between the TBM and rock mass. According to Jamshidi [51],
TBM penetration rate directly influences the advance rate, which represents the total distance excavated
by the machine divided by the total time. While there is a high cost associated with tunneling
projects and using the TBM, utilizing prediction methods, especially ML techniques for predicting the
penetration rate of TBM can significantly reduce the total time and cost of the tunneling projects. On the
other hand, more investigations are needed in the field of TBM performance when there are different
weathering zones in the rock-mass. As stated in several studies [6,52–57], the degree of rock-mass
weathering has an enormous impact on rock mass properties as well as TBM performance. Hence,
weathering index is used as an important input parameter in this study to predict TBM PR. In the
following sections, the background of the applied ML models is described, and then, after developments
of ML techniques, the best model among them will be selected for PR prediction.
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2. Background of Supervised ML Models

2.1. K-Nearest Neighbor (KNN)

The k-nearest neighbor (KNN) is a non-parametric approach that was widely applied to statistics
in the early 1970s [58,59]. According to Wu et al. [60], KNN is regarded as one of the top 10 algorithms
in data mining, due to its simplicity, effectiveness, and implementation. The KNN-based classification
technique can be effectively applied in several real-world and practical classification tasks in several
fields, such as expert and intelligence systems. The KNN finds a group of k samples (e.g., using the
distance functions) which are closest to unknown samples in the calibration dataset, constituting the
basic theory of KNN. The KNN also determines the label (class) of unknown samples among the k
samples through the calculation of the average of the response variables [61,62]. Consequently, k plays
a significant role in the performance of the KNN [63].

2.2. Support Vector Machine (SVM)

Support vector machines (SVMs) is one of the most widely used algorithms for classification and
regression problems [64]. This algorithm can effectively work with high dimensional and linearly
non-separable datasets [48,65]. The basic theory behind the SVM is the statistical learning theory [66].
Kernel functions, such as linear, radial basis function, sigmoid and polynomial, also affect the SVM
performance [67]. According to Hong et al. [65], the main aim of the SVM classifier is to identify an
ideal separation hyperplane that can distinguish the two classes. The other advantages of SVM include
a reduction in both the error (for training and testing datasets) and model complexity [68].

2.3. Neural Network (NN)

The basic structure of an ANN is the artificial neuron, that is, a mathematical model which
resembles the behavior of the biological neuron, but with a plethora of activation functions enabling
the biological neuron’s mainly sigmoid activation function [69]. To be precise, it should be noted
that the scientists have decoded only a small amount of the biological neural networks (BNNs)
structure, behavior, and functions. Therefore, to be exact, the similarity between biological and
artificial neural networks is based mainly on morphological characteristics. Concerning the practical
terms, NNs are non-linear statistical data modeling techniques or tools of decision making. The NN
can find patterns in data, or unveil relations between inputs (dependent parameters) and output
(independent parameter). NNs can be applied to different fields, such as function approximation,
classification, and data processing. In NNs, the weights denote the connections of the biological neuron.
An excitatory connection is reflected by a positive weight, while an inhibitory connection is reflected
by a negative value.

2.4. Classification and Regression Trees (CART)

Classification and regression trees (CART) is a binary DT which was developed by
Breiman et al. [70]. This modeling approach aims to find the best possible split. For various types of
variables, the CART categorize values of the input variables from smallest to largest values. To identify
the best split point, the technique makes a trial split. For instance, if the call split point is called “S”,
then all the cases with value below “S” go to the left, forming the child node (X < S). Otherwise,
instances are sent to the right child node (X > S). The CART seeks to reduce the impurity of the leaf
nodes to choose the best data partition. Three potential indices are considered in CART technique for
selecting the best data partition: Gini criterion entropy, and Twoing criterion. The CART performance
is affected by the selection of these indices. The best prediction performance can be obtained when the
perfect selection of indices has been accomplished.
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2.5. Chi-Squared Automatic Interaction Detection (CHAID)

Chi-squared automatic interaction detection (CHAID) is a data mining algorithm and DT which
was developed by Kass [71]. This algorithm grew a DT by several sequential combinations and splits,
based on Chi-square test. The CHAID is a tree-based structure technique, which is a combination of a
group rule classifiers. This technique creates a tree structure of the dependent parameters to predict
the independent parameter. The ratio of records having the specific value for the target variable to
the given values for the independent variables denotes the confidence (accuracy) of the created rules.
The CHAID attempts to produce wider and non-binary trees. Besides, it automatically prunes the DT
to avoid overfitting.

3. Materials and Methods

The present study uses a ranking system to identify the most accurate model to predict PR.
The models that are used in this study are KNN, SVM, NN, CART, and CHAID. These supervised
techniques were selected because of their effectiveness to predict the continuous target variables,
as well as on account of their wide applicability. The parameters that were used to develop the
abovementioned models are presented in Table 2. To develop the models, the authors used IBM SPSS
modeler 18. The details of the methods implemented to assess the selected techniques and dataset
preparation are presented in the following sub-sections.

Table 2. Parameters of the algorithms used in this study.

KNN SVM

Number of nearest neighbors (k): Minimum 3 and
maximum 5
Distance computation: Euclidean metric
Prediction for range target: Mean of nearest neighbor
values
Stopping criteria: Stop when the 10 features have
been selected

Stopping criteria: 1.E-3
Regularization parameter (C): 10
Regression precision (epsilon): 0.1
Kernel type: RBF
RBF gamma: 0.1

NN CHAID

NN model: Multilayer perceptron (MLP)
Stopping rules: Use maximum training time (per
component model): 15 minutes
Combining rule for continuous targets: Mean
Number of component models for boosting and/or
bagging: 10
Overfit prevention set (%): 30
Missing values in predictors: Delete listwise

Tree growing algorithm: CHAID
Maximum tree depth: 5
Minimum records in parent branch (%): 2
Minimum records in child branch (%): 1
Combining rule for continuous targets: Mean
Number of component models for boosting and/or
bagging: 10
Significance level for splitting: 0.05
Significance level for merging: 0.05
Adjust significance values using Boferroni method
Minimum change in expected cell frequencies: 0.001
Maximum iterations for convergence: 100

CART

Maximum tree depth: 5
Prune tree to avoid overfitting: maximum surrogates: 5
Minimum records in parent branch (%): 2
Minimum records in child branch (%): 1
Combining rule for continuous targets: mean
Number of component models for boosting and/or bagging: 10
Minimum change in impurity: 0.0001
Over-fit prevention set (%): 30

3.1. Model’s Assessment

In this study, four performance indices, namely coefficient of determination (R2), mean absolute
error (MAE), root mean square error (RMSE), and variance account for (VAF), were used to measure the
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prediction performance and accuracy of the developed models. These indices are widely used to assess
the accuracy of the developed models in the related studies as well [72–79]. Furthermore, the recently
proposed a20-index have been used for the evaluation of models. These indices are computed as follows:

VAF =

[
1−

var (y− y′)
var (y)

]
× 100 (1)

RMSE =

√√√
1
N

N∑
i=1

(y− y′)2 (2)

R2 = 1−
∑

i(yi − fi)
2∑

i(yi − y)2 (3)

MAE =
1
N

N∑
j=1

∣∣∣yi − y j
∣∣∣ (4)

where y denotes the measured values, ȳ and y′ indicate mean and predicted the values of y, respectively,
N denotes the total number of data. Note that, a predictive model with R2 of 1, VAF of 100%, and
RMSE and MAE of zero is defined as a perfect model. The dataset should be divided into two phases
(i.e., training and testing) to develop the model and then evaluate the developed model. Thus, in this
study, according to suggestions of several studies [21,80–82], 80% of the collected data (or 167 datasets)
are randomly selected to train the models and the remaining 20% of the data (or 42 datasets) are used
to test and validate the models. The simple ranking technique proposed by Zorlu et al. [83] was used
in this research. According to this technique, the total rate of each model is calculated for training and
testing dataset, separately. The highest rate value for each performance index is five because we have
five models, and the best performance index is assigned the highest rating (5). The total performance
rating of each model is then calculated by summing up its total rank of training and total rank of the
testing dataset. More information regarding the simple ranking technique can be found in the original
study, Zorlu et al. [83].

Furthermore, the following, recently proposed engineering index, the a20-index, is proposed for
the reliability assessment of the developed AI models:

a20
− index =

m20

M
(5)

where M is the number of dataset samples and m20 is the number of samples with a value of rate
experimental value/predicted value between 0.80 and 1.20. Note that for a perfect predictive model,
the values of a20-index values are expected to be unity. The proposed a20-index has the advantage that
their value has a physical engineering meaning. It declares the amount of the samples that satisfies
predicted values with a deviation of ± 20% compared to experimental values.

3.2. Case Study and Data Preparation

A tunnel project (PSRWT, Pahang–Selangor raw water transfer) with a total length of 44.6 km and
a diameter of 5.23 m was planned and constructed in Malaysia. This tunnel aims to transfer water
from Pahang state to Selangor state. PSRWT tunnel was excavated in a mountain area of Peninsular
Malaysia, where six major faults were observed with an elevation range from 100 to 1200 m. In the
field, rock strength is poor in areas of fault intersections and highly to moderately weathered zones
were observed along the tunnel. Different rock types including shale, coarse-grained granite, and
medium-grained granite were observed in various tunnel distances (TDs) of PSRWT tunnel. Regarding
construction techniques for the tunnel excavation, there were seven parts, comprising four parts of
NATM and three parts of TBM. In PSRWT tunnel project, 11,761 m in the mixed ground, 11,761 m in
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very hard ground and 11,218 m in the blocky ground were excavated by three TBMs. Construction’s of
PSRWT tunnel with their maximum overburden are shown in Figure 1.
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There is a need to have a suitable database with the most effective parameters of TBM performance
for prediction of TBM PR. The most effective parameters on TBM performance can be identified by
reviewing the previous related studies. Based on the literature, three groups of parameters are found as
the most effective factors of TBM performance, including machine characteristics, rock mass, and rock
material properties [84]. According to Benardos and Kaliampakos [36], the most important parameters
affecting the TBM performance are rock quality designation (RQD), UCS, rock-mass weathering, and
rock mass rating (RMR). As some researchers (e.g., [52,53]) have concluded and pointed out, the rock
mass weathering can significantly affect the TBM PR. Sapigni et al. [85] found that UCS and RMR can
significantly affect the TBM performance. They also noticed that the Brazilian tensile strength (BTS)
could be set as an input parameter. Grima et al. [19] found an inverse relationship between PR and
UCS. Farrokh et al. [20] showed in their research that factors such as RQD, the diameter of tunnel, UCS,
type of rock, disc-cutter normal force, and revolution per minute (RPM) were of the highest influence
on PR. Whereas, Mahdevari et al. [45] introduced a different list in this term, including UCS, BTS, intact
rock brittleness (BI), cutter head power (CP), cutter-head torque (CT), the distance between the plane
of weakness (DPW), and thrust force (TF).

An investigation of about 13 km was conducted in the PSRWT tunnel and a database with
209 datasets was prepared. Rock type in the investigated areas was granite covering three weathering
zones, i.e., fresh, slightly weathered, and moderately weathered. According to International Society of
Rock Mechanics (ISRM) [86], a typical rock weathering profile is composed of six weathering grades
namely fresh, slightly weathered, moderately weathered, highly weathered, completely weathered,
and residual soil. This classification is mainly based on discoloration and decomposition of the rock
material. Based on tunnel mapping 34,740 m of PSRWT tunnel which was excavated by TBMs, a total
of 12,649 m comprising 5443 m in fresh, 5530 m in slightly weathered, and 1676 m in moderately
weathered zones, was observed. In this study, in terms of rock mass properties, many points in three
TBMs were investigated and several rock mass properties, such as type of rock, strength, degree of
weathering, joint condition (e.g., spacing of discontinuities, alteration, degree of roughness, infilling
material), and groundwater condition, were quantified and database established. Furthermore,
machine characteristics, such as TF, RPM, PR, AR, boring energy, stroke speed, and cutterhead torque,
were recorded by TBMs. For rock material evaluation, more than 100 block samples were collected from
the face of PSRWT tunnel project and after transferring to the laboratory, several tests, e.g., density, BTS,
point load strength, Schmidt hammer, p-wave velocity, and UCS were carried out based on ISRM [86].
According to several authors [54,55,87–92], the most known geomechanical tests used to establish the
quality state of the rock masses are RQD, Schmidt hammer, UCS, p-wave velocity, etc. A failed sample
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under Brazilian test conducted in the laboratory is shown in Figure 2. Besides, a conducted UCS test
on a sample before and after failure is shown in Figure 3.
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9300 m, (a) before failure, (b) after failure.

In this study, based on the literature review, available field observations, and laboratory tests,
six parameters, UCS, BTS, RQD, WZ, TF, and RPM, were selected as model inputs to estimate TBM PR.
It is important to mention that RQD was calculated based on the method suggested by Bieniawski [93].
Note that value was assigned to each WZ in the used datasets, i.e., 1, 2, and 3 were assigned to
fresh, slightly weathered, and moderately weathered, respectively. Table 3 presents a basic statistical
description of the experimental database applied in the current research. For more information
regarding the data used in this study, the correlation matrix of input and output variables for all
209 cases is shown in Figure 4. High negative or positive values of the correlation coefficient between
the input variables may result in poor efficiency of the methods and a difficulty in construing the
effects of the expository variables on the response. As can be seen in Figure 4, there are no significant
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correlations between the independent input variables. Additionally, a detailed flowchart of this study
for the prediction of TBM PR is presented in Figure 5. According to this flowchart, after literature
review and site selection, data collection is divided into two sections of laboratory tests and field
observation. Therefore, all influential parameters on TBM performance are recorded and considered as
model inputs. To predict TBM PR, SVM, KNN, CHAID, NN, and CART are applied and developed.
Then, an evaluation will be performed for each model and the best one among them will be selected
and introduced as the best predictive model. In the following sections, the modeling process of ML
techniques for the PR estimation and their evaluations based on performance indices will be explained.

Table 3. Descriptive statistics of the experimental database used in this research.

Parameter Type Symbol Unit Min Max Average St Dev

Rock quality designation

Input

RQD % 10 95 53.5 27.7
Uniaxial compressive strength UCS MPa 49 185 122.7 40.7

Weathering zone WZ - 1 3 1.8 0.8
Brazilian tensile strength BTS MPa 4.69 15.1 9.6 3.2

Thrust force per cutter TF kN 83 513.5 276.8 133.1
Revolution per minute RPM rev/min 4.5 11.9 8.6 2.4

Penetration rate Output PR m/h 1.11 3.75 2.4 0.6
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4. Results and Discussion

4.1. Assessment of Models

In this study, KNN, SVM, NN, CART, and CHAID models were applied for PR prediction. Each of
them has been conducted several times based on their most effective parameters. To evaluate the
prediction performance of the mentioned techniques, the established TBM dataset was split into two
sections of training and testing. Therefore, 209 cases of the data were separated into 167 and 42 as train
and test sections and then the model constructions were conducted to forecast the TBM PR.

The values of the performance indices for the proposed KNN, SVM, NN, CART, and CHAID
models were calculated and are presented in Table 4. These results are based on testing and training
datasets and using the simple ranking technique (as described earlier). Table 4 shows that the KNN
model has the highest total rate (25) among the models of the training dataset. For the testing dataset,
the NN model has the highest total rate, amounting to a value of 24. The total performance ratings
of the models for both training and testing datasets are also indicated in Table 5. According to this
table, the KNN model obtained the highest total performance rating, which is 41 (25 for training and
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16 for testing). The following sub-section provides a more detailed analysis of the KNN model for
PR prediction.

Table 4. The obtained results of performance indices for all predictive models in estimating TBM PR.

Method Stage R2 RMSE VAF MAE a20-Index R2 Rank
RMSE
Rank

VAF
Rank

MAE
Rank

a20-Index
Rank

Total
Rate

NN
TS 0.924 0.180 91.735 0.137 0.944 5 5 5 5 4 24
TR 0.916 0.173 91.602 0.136 0.967 1 2 1 1 2 7

SVM
TS 0.914 0.183 91.393 0.139 0.981 4 4 4 4 5 21
TR 0.942 0.144 94.207 0.114 0.987 3 4 3 2 4 16

KNN
TS 0.907 0.204 89.574 0.157 0.944 3 3 3 3 4 16
TR 0.962 0.116 96.226 0.081 0.993 5 5 5 5 5 25

CART
TS 0.897 0.216 88.020 0.164 0.944 2 2 2 2 4 12
TR 0.944 0.144 94.265 0.104 0.993 4 4 4 4 5 21

CHAID
TS 0.850 0.252 83.838 0.179 0.944 1 1 1 1 4 8
TR 0.934 0.153 93.389 0.110 0.980 2 3 2 3 3 13

TR: Training, TS: Testing.

Table 5. Total performance ratings.

NN SVM KNN CART CHAID

Grand total
rank 31 37 41 33 21

4.2. Result of Selected Models

As mentioned in the previous section, KNN has been selected as the best predictive model of
TBM PR. Figures 6 and 7 show the suggested structure of the KNN predictive model in predicting
PR of TBM. In the development of the k-NN model, the objective of performing the model was to
establish the balance between speed and accuracy. Therefore, the model automatically selected the
best number of neighbors, within a small range. In the present study, we used k number between the
values 3–5 by implementing a trial-and-error method of the system. Figure 6 presents the predictor
space chart of the KNN model. In this figure, the predictor space gave excellent results, using the three
input variables of UCS, RQD, and BTS as predictors for predicting the PR. The predictor space chart
is an interactive graph of the predictor space and is directly printed out from the software. Any dot
can temporarily become a focal record if selected. “Focal records” are simply points selected in the
predictor space chart. If a focal record variable is specified, the points representing the focal records
will initially be selected and becomes red. Figure 7 shows the relationship between the predictors and
K selection. In the horizontal axis of the chart, the numbers of the nearest neighbor are presented.
Sums of square errors are shown in the vertical axis. As shown by the figure, the errors for k = 3, 4,
and 5 were determined as 7.41, 7.39, and 7.85, respectively. The results reveal that k = 4 is the best
value of the nearest neighbor numbers for the developed k-NN model.
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Predicted PR values by KNN, along with their actual values for training and testing datasets,
are displayed in Figure 8. The R2 between predicted and actual PR in training and testing dataset were
0.962 and 0.907, respectively. Besides, an RMSE of (0.204 and 0.116), a VAF of (89.574% and 96.226%)
and an MAE of (0.157 and 0.081) were obtained for testing and training datasets of the best predictive
model of this study, respectively. These results show that KNN, as a newly developed model in the
field of TBM performance, can provide higher prediction performance compared to other predictive
models. It is worth mentioning that CHAID (as a tree-based model) was also implemented for the
first time in this field with the obtained R2 values of 0.850 and 0.934, for testing and training datasets,
respectively, which showed an enhanced performance of this model in solving TBM performance.
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Compared to other published studies related to the same tunnel [12,13,38], this study has a different
database with a slightly higher prediction performance. For example, in terms of R2, values of (0.897
and 0.905) and (0.919 and 0.912) were obtained by PSO-ANN and ICA-ANN techniques, respectively in
the study conducted by Armaghani et al. [12]. In another study, Koopialipoor et al. [13] developed the
group method of data handling technique to solve TBM PR. They obtained R2 results of 0.946 and 0.924
for training and testing datasets, respectively. A GEP model was developed by Armaghani et al. [38]
to predict TBM PR, with R2 values of 0.855 and 0.829 for training and testing datasets, respectively.
Based on the above discussion, the developed KNN model in this study can provide higher prediction
capacity compared to previously published studies.
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In order to understand the influence of each input parameter on PR results, sensitivity analysis
has been performed through the developed KNN model. To do this, the importance or weight of each
input parameter on system output can be obtained. The importance of the input parameters analyzed
by the KNN technique is shown in Table 6. As shown in this table, KNN identified USC as the most
important input variable for predicting the PR, while RPM was considered as the least important input
variable for predicting the PR. These results are in good agreement with previous investigations in the
field of tunneling and underground space technologies [19,94,95]. The results of sensitivity analysis
can be used by other researchers in further investigations to select the most influential parameters on
TBM performance.

Table 6. Importance of input variables in the developed KNN model.

Input Variable Importance

RPM 0.14
WZ 0.15
BTS 0.16
RQD 0.17

TF 0.18
UCS 0.20
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5. Conclusions

The present study evaluated the relative importance (weight) of different input variables
influencing PR. Initially, different supervised ML approaches were compared aiming to identify
the most accurate modeling approach. Five supervised ML techniques were selected and evaluated,
i.e., KNN, SVM, NN, CART, and CHAID. These modeling approaches were selected because of their
ability to handle continuous target variables. A variety of ML techniques were conducted to predict
TBM PR using a database comprising of 209 datasets including the most important parameters on
TBM PR. Performance of the five mentioned ML techniques was evaluated using a simple ranking
technique and some performance indices, i.e., R2, RMSE, VAF, and MAE. According to the obtained
results, the KNN predictive model was identified as the optimum model. A total ranking value of 32
was obtained by the KNN model, while other techniques obtained ranking values of 25 (NN), 28 (SVM),
24 (CART), and 14 (CHAID). R2, RMSE, VAF, and MAE values of (0.907, 0.204, 89.574, and 0.157) and
(0.962, 0.116, 96.226, and 0.081) were recorded for the developed KNN, as the selected predictive model
of this study. Besides, the results of KNN are enhanced concerning the previously published results in
the field of TBM performance prediction. It can be concluded that the KNN predictive model should
be applied in similar conditions to examine the capability of this technique in the field of geotechnical
engineering. Furthermore, “importance” (weight) results of the various input variables show that
USC and RPM are the most and the least important input variables, respectively, when applying the
KNN model.
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Abbreviations

ANNs Artificial neural networks
AR Advance rate
DPW The distance between planes of weakness
α The angle between plane of weakness and TBM-driven direction
RMR Rock mass rating
GEP Gene expression programing
CFF Core fracture frequency
RPM Revolution per minutes
UI Utilization index
PSI Peak slope index
Qu Quartz percentage
Rs Rotational speed of TBM
Js Joint spacing
Jc Joint condition
C Cohesion
ϕ Friction angle
υ Poisson’s ratio
SE Specific energy
TF Thrust force
CT Cutterhead power
ELM Extreme learning machine
N Overload factor
WTS Water table surface
DE Differential evolution
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BNNs Biological neural networks
HS-BFGS Hybrid harmony search
ICA Imperialism competitive algorithm
GWO Grey wolf optimizer
BPNNs Back-propagation neural networks
ANFIS Adoptive neuro-fuzzy inference system
CART classification and regression trees
CHAID chi-squared automatic interaction detection
CSM Colorado school of mines
DNNs Deep neural networks
FIS Fuzzy inference system
FA Firefly algorithm
KNN k-nearest neighbor
logsig Log-sigmoid transfer function
ML machine learning
PR penetration rate
PSO particle swarm optimization
purelin Linear transfer function
SVM support vector machine
tansig Hyperbolic tangent Sigmoid transfer function
TBM Tunnel boring machine
UCS uniaxial compressive strength

References

1. Roxborough, F.F.; Phillips, H.R. Rock excavation by disc cutter. Int. J. Rock Mech. Min. Sci. Geomech. Abstr.
1975, 12, 361–366. [CrossRef]

2. Snowdon, R.; Ryley, M.; Temporal, J. A study of disc cutting in selected British rocks. Int. J. Rock Mech. Min.
Sci. Geomech. Abstr. 1982, 19, 107–121. [CrossRef]

3. Sanio, H. Prediction of the performance of disc cutters in anisotropic rock. Int. J. Rock Mech. Min. Sci.
Geomech. Abstr. 1985, 22, 153–161. [CrossRef]

4. Sato, K.; Gong, F.; Itakura, K. Prediction of disc cutter performance using a circular rock cutting ring.
In Proceedings of the 1st International Mine Mechanization and Automation Symposium, Golden, CO, USA,
10–13 June 1991.

5. Rostami, J. Development of a force Estimation Model for Rock Fragmentation with Disc Cutters through
Theoretical Modeling and Physical Measurement of Crushed Zone Pressure. Ph.D. Thesis, Colorado School
of Mines, Golden, CO, USA, 1997.

6. Yagiz, S. Utilizing rock mass properties for predicting TBM performance in hard rock condition. Tunn. Undergr.
Space Technol. 2008, 23, 326–339. [CrossRef]

7. Gong, Q.-M.; Zhao, J. Development of a rock mass characteristics model for TBM penetration rate prediction.
Int. J. Rock Mech. Min. Sci. 2009, 46, 8–18. [CrossRef]

8. Farmer, I.W.; Glossop, N.H. Mechanics of disc cutter penetration. Tunn. Tunn. 1980, 12, 22–25.
9. Ozdemir, L. Development of Theoretical Equations for Predicting Tunnel Boreability. Ph.D. Thesis, Colorado

School of Mines, Golden, CO, USA, 1977.
10. Yagiz, S.; Ozdemir, L. Geotechnical parameters influencing the TBM performance in various rocks.

In Proceedings of the Program with Abstract, 44th Annual Meeting of Association of Engineering Geologists,
Saint Louis, MO, USA, 12–14 June 2001; p. 79.

11. Yagiz, S. Development of Rock Fracture and Brittleness Indices to Quantify the Effects of Rock Mass Features
and Toughness in the CSM Model Basic Penetration for Hard Rock Tunneling Machines. Ph.D. Thesis,
Colorado School of Mines, Golden, CO, USA, 2002.

12. Armaghani, D.J.; Mohamad, E.T.; Narayanasamy, M.S.; Narita, N.; Yagiz, S. Development of hybrid intelligent
models for predicting TBM penetration rate in hard rock condition. Tunn. Undergr. Space Technol. 2017, 63,
29–43. [CrossRef]

http://dx.doi.org/10.1016/0148-9062(75)90547-1
http://dx.doi.org/10.1016/0148-9062(82)91151-2
http://dx.doi.org/10.1016/0148-9062(85)93229-2
http://dx.doi.org/10.1016/j.tust.2007.04.011
http://dx.doi.org/10.1016/j.ijrmms.2008.03.003
http://dx.doi.org/10.1016/j.tust.2016.12.009


Appl. Sci. 2019, 9, 3715 16 of 19

13. Koopialipoor, M.; Nikouei, S.S.; Marto, A.; Fahimifar, A.; Armaghani, D.J.; Mohamad, E.T. Predicting tunnel
boring machine performance through a new model based on the group method of data handling. Bull. Eng.
Geol. Environ. 2018, 78, 3799–3813. [CrossRef]

14. Yang, H.; Liu, J.; Liu, B. Investigation on the cracking character of jointed rock mass beneath TBM disc cutter.
Rock Mech. Rock Eng. 2018, 51, 1263–1277. [CrossRef]

15. Yang, H.; Wang, H.; Zhou, X. Analysis on the damage behavior of mixed ground during TBM cutting process.
Tunn. Undergr. Space Technol. 2016, 57, 55–65. [CrossRef]

16. Yang, H.Q.; Zeng, Y.Y.; Lan, Y.F.; Zhou, X.P. Analysis of the excavation damaged zone around a tunnel
accounting for geostress and unloading. Int. J. Rock Mech. Min. Sci. 2014, 69, 59–66. [CrossRef]

17. Yagiz, S.; Gokceoglu, C.; Sezer, E.; Iplikci, S. Application of two non-linear prediction tools to the estimation
of tunnel boring machine performance. Eng. Appl. Artif. Intell. 2009, 22, 808–814. [CrossRef]

18. Hamidi, J.K.; Shahriar, K.; Rezai, B.; Bejari, H. Application of fuzzy set theory to rock engineering classification
systems: An illustration of the rock mass excavability index. Rock Mech. Rock Eng. 2010, 43, 335–350.
[CrossRef]

19. Grima, M.A.; Bruines, P.A.; Verhoef, P.N.W. Modeling tunnel boring machine performance by neuro-fuzzy
methods. Tunn. Undergr. Space Technol. 2000, 15, 259–269. [CrossRef]

20. Farrokh, E.; Rostami, J.; Laughton, C. Study of various models for estimation of penetration rate of hard rock
TBMs. Tunn. Undergr. Space Technol. 2012, 30, 110–123. [CrossRef]

21. Chen, H.; Asteris, P.G.; Jahed Armaghani, D.; Gordan, B.; Pham, B.T. Assessing Dynamic Conditions of the
Retaining Wall: Developing Two Hybrid Intelligent Models. Appl. Sci. 2019, 9, 1042. [CrossRef]

22. Asteris, P.G.; Nikoo, M. Artificial bee colony-based neural network for the prediction of the fundamental
period of infilled frame structures. Neural Comput. Appl. 2019. [CrossRef]

23. Moayedi, H.; Armaghani, D.J. Optimizing an ANN model with ICA for estimating bearing capacity of driven
pile in cohesionless soil. Eng. Comput. 2018, 34, 347–356. [CrossRef]

24. Yang, H.; Hasanipanah, M.; Tahir, M.M.; Bui, D.T. Intelligent Prediction of Blasting-Induced Ground Vibration
Using ANFIS Optimized by GA and PSO. Nat. Resour. Res. 2019. [CrossRef]

25. Armaghani, D.J.; Hajihassani, M.; Mohamad, E.T.; Marto, A.; Noorani, S.A. Blasting-induced flyrock and
ground vibration prediction through an expert artificial neural network based on particle swarm optimization.
Arab. J. Geosci. 2014, 7, 5383–5396. [CrossRef]

26. Asteris, P.G.; Nozhati, S.; Nikoo, M.; Cavaleri, L.; Nikoo, M. Krill herd algorithm-based neural network in
structural seismic reliability evaluation. Mech. Adv. Mater. Struct. 2018, 26, 1146–1153. [CrossRef]

27. Asteris, P.G.; Plevris, V. Anisotropic masonry failure criterion using artificial neural networks. Neural Comput.
Appl. 2017, 28, 2207–2229. [CrossRef]

28. Faradonbeh, R.S.; Armaghani, D.J.; Amnieh, H.B.; Mohamad, E.T. Prediction and minimization of
blast-induced flyrock using gene expression programming and firefly algorithm. Neural Comput. Appl. 2016,
29, 269–281. [CrossRef]

29. Sarir, P.; Chen, J.; Asteris, P.G.; Armaghani, D.J.; Tahir, M.M. Developing GEP tree-based, neuro-swarm,
and whale optimization models for evaluation of bearing capacity of concrete-filled steel tube columns.
Eng. Comput. 2019. [CrossRef]

30. Cavaleri, L.; Chatzarakis, G.E.; Trapani, F.D.; Douvika, M.G.; Roinos, K.; Vaxevanidis, N.M.; Asteris, P.G.
Modeling of surface roughness in electro-discharge machining using artificial neural networks. Adv. Mater.
Res. 2017, 6, 169–184.

31. Zhou, J.; Li, E.; Yang, S.; Wang, M.; Shi, X.; Yao, S.; Mitri, H.S. Slope stability prediction for circular mode
failure using gradient boosting machine approach based on an updated database of case histories. Saf. Sci.
2019, 118, 505–518. [CrossRef]

32. Guo, H.; Zhou, J.; Koopialipoor, M.; Armaghani, D.J.; Tahir, M.M. Deep neural network and whale
optimization algorithm to assess flyrock induced by blasting. Eng. Comput. 2019. [CrossRef]

33. Mahdiyar, A.; Armaghani, D.J.; Marto, A.; Nilashi, M.; Ismail, S. Rock tensile strength prediction using
empirical and soft computing approaches. Bull. Eng. Geol. Environ. 2019, 78, 4519–4531. [CrossRef]

34. Zhou, J.; Li, X.; Mitri, H.S. Classification of rockburst in underground projects: comparison of ten supervised
learning methods. J. Comput. Civ. Eng. 2016, 30, 04016003. [CrossRef]

35. Zhou, J.; Li, X.; Mitri, H.S. Comparative performance of six supervised learning methods for the development
of models of hard rock pillar stability prediction. Nat. Hazards 2015, 79, 291–316. [CrossRef]

http://dx.doi.org/10.1007/s10064-018-1349-8
http://dx.doi.org/10.1007/s00603-017-1395-8
http://dx.doi.org/10.1016/j.tust.2016.02.014
http://dx.doi.org/10.1016/j.ijrmms.2014.03.003
http://dx.doi.org/10.1016/j.engappai.2009.03.007
http://dx.doi.org/10.1007/s00603-009-0029-1
http://dx.doi.org/10.1016/S0886-7798(00)00055-9
http://dx.doi.org/10.1016/j.tust.2012.02.012
http://dx.doi.org/10.3390/app9061042
http://dx.doi.org/10.1007/s00521-018-03965-1
http://dx.doi.org/10.1007/s00366-017-0545-7
http://dx.doi.org/10.1007/s11053-019-09515-3
http://dx.doi.org/10.1007/s12517-013-1174-0
http://dx.doi.org/10.1080/15376494.2018.1430874
http://dx.doi.org/10.1007/s00521-016-2181-3
http://dx.doi.org/10.1007/s00521-016-2537-8
http://dx.doi.org/10.1007/s00366-019-00808-y
http://dx.doi.org/10.1016/j.ssci.2019.05.046
http://dx.doi.org/10.1007/s00366-019-00816-y
http://dx.doi.org/10.1007/s10064-018-1405-4
http://dx.doi.org/10.1061/(ASCE)CP.1943-5487.0000553
http://dx.doi.org/10.1007/s11069-015-1842-3


Appl. Sci. 2019, 9, 3715 17 of 19

36. Benardos, A.G.; Kaliampakos, D.C. Modelling TBM performance with artificial neural networks.
Tunn. Undergr. Space Technol. 2004, 19, 597–605. [CrossRef]

37. Armaghani, D.J.; Koopialipoor, M.; Marto, A.; Yagiz, S. Application of several optimization techniques for
estimating TBM advance rate in granitic rocks. J. Rock Mech. Geotech. Eng. 2019, 11, 779–789. [CrossRef]

38. Armaghani, D.J.; Faradonbeh, R.S.; Momeni, E.; Fahimifar, A.; Tahir, M.M. Performance prediction of tunnel
boring machine through developing a gene expression programming equation. Eng. Comput. 2018, 34,
129–141. [CrossRef]

39. Eftekhari, M.; Baghbanan, A.; Bayati, M. Predicting penetration rate of a tunnel boring machine using
artificial neural network. In Proceedings of the ISRM International Symposium-6th Asian Rock Mechanics
Symposium; International Society for Rock Mechanics, New Delhi, India, 23–27 October 2010.

40. Javad, G.; Narges, T. Application of artificial neural networks to the prediction of tunnel boring machine
penetration rate. Min. Sci. Technol. 2010, 20, 727–733. [CrossRef]

41. Gholami, M.; Shahriar, K.; Sharifzadeh, M.; Hamidi, J.K. A comparison of artificial neural network and
multiple regression analysis in TBM performance prediction. In Proceedings of the ISRM Regional
Symposium-7th Asian Rock Mechanics Symposium; International Society for Rock Mechanics, Seoul, Korea,
15–19 October 2012.

42. Salimi, A.; Esmaeili, M. Utilising of linear and non-linear prediction tools for evaluation of penetration rate
of tunnel boring machine in hard rock condition. Int. J. Min. Miner. Eng. 2013, 4, 249–264. [CrossRef]

43. Torabi, S.R.; Shirazi, H.; Hajali, H.; Monjezi, M. Study of the influence of geotechnical parameters on the TBM
performance in Tehran–Shomal highway project using ANN and SPSS. Arab. J. Geosci. 2013, 6, 1215–1227.
[CrossRef]

44. Shao, C.; Li, X.; Su, H. Performance Prediction of Hard Rock TBM Based on Extreme Learning Machine.
In Proceedings of the International Conference on Intelligent Robotics and Applications, Busan, Korea, 25–28
September 2013; pp. 409–416.

45. Mahdevari, S.; Shahriar, K.; Yagiz, S.; Shirazi, M.A. A support vector regression model for predicting tunnel
boring machine penetration rates. Int. J. Rock Mech. Min. Sci. 2014, 72, 214–229. [CrossRef]

46. Koopialipoor, M.; Fahimifar, A.; Ghaleini, E.N.; Momenzadeh, M.; Armaghani, D.J. Development of a new
hybrid ANN for solving a geotechnical problem related to tunnel boring machine performance. Eng. Comput.
2019. [CrossRef]

47. Koopialipoor, M.; Tootoonchi, H.; Jahed Armaghani, D.; Tonnizam Mohamad, E.; Hedayat, A. Application of
deep neural networks in predicting the penetration rate of tunnel boring machines. Bull. Eng. Geol. Environ.
2019. [CrossRef]

48. Hasanipanah, M.; Monjezi, M.; Shahnazar, A.; Armaghani, D.J.; Farazmand, A. Feasibility of indirect
determination of blast induced ground vibration based on support vector machine. Measurement 2015, 75,
289–297. [CrossRef]

49. Liang, M.; Mohamad, E.T.; Faradonbeh, R.S.; Jahed Armaghani, D.; Ghoraba, S. Rock strength assessment
based on regression tree technique. Eng. Comput. 2016, 32, 343–354. [CrossRef]

50. Khandelwal, M.; Armaghani, D.J.; Faradonbeh, R.S.; Yellishetty, M.; Majid, M.Z.A.; Monjezi, M. Classification
and regression tree technique in estimating peak particle velocity caused by blasting. Eng. Comput. 2017, 33,
45–53. [CrossRef]

51. Jamshidi, A. Prediction of TBM penetration rate from brittleness indexes using multiple regression analysis.
Model. Earth Syst. Environ. 2018, 4, 383–394. [CrossRef]

52. Shijing, W.; Bo, Q.; Zhibo, G. The time and cost prediction of tunnel boring machine in tunnelling. Wuhan Univ.
J. Nat. Sci. 2006, 11, 385–388. [CrossRef]

53. Sundaram, M. The effects of ground conditions on TBM performance in tunnel excavation—A case history.
In Proceedings of the 10th Australia New Zealand conference on Geomechanics, Queensland, Australia,
21–24 October 2007.

54. Ietto, F.; Perri, F.; Cella, F. Weathering characterization for landslides modeling in granitoid rock masses of
the Capo Vaticano promontory (Calabria, Italy). Landslides 2018, 15, 43–62. [CrossRef]

55. Ietto, F.; Perri, F.; Cella, F. Geotechnical and landslide aspects in weathered granitoid rock masses (Serre
Massif, southern Calabria, Italy). Catena 2016, 145, 301–315. [CrossRef]

56. Abad, S.V.A.N.K.; Tugrul, A.; Gokceoglu, C.; Armaghani, D.J. Characteristics of weathering zones of granitic
rocks in Malaysia for geotechnical engineering design. Eng. Geol. 2016, 200, 94–103. [CrossRef]

http://dx.doi.org/10.1016/j.tust.2004.02.128
http://dx.doi.org/10.1016/j.jrmge.2019.01.002
http://dx.doi.org/10.1007/s00366-017-0526-x
http://dx.doi.org/10.1016/S1674-5264(09)60271-4
http://dx.doi.org/10.1504/IJMME.2013.053172
http://dx.doi.org/10.1007/s12517-011-0415-3
http://dx.doi.org/10.1016/j.ijrmms.2014.09.012
http://dx.doi.org/10.1007/s00366-019-00701-8
http://dx.doi.org/10.1007/s10064-019-01538-7
http://dx.doi.org/10.1016/j.measurement.2015.07.019
http://dx.doi.org/10.1007/s00366-015-0429-7
http://dx.doi.org/10.1007/s00366-016-0455-0
http://dx.doi.org/10.1007/s40808-018-0432-2
http://dx.doi.org/10.1007/BF02832128
http://dx.doi.org/10.1007/s10346-017-0860-5
http://dx.doi.org/10.1016/j.catena.2016.06.027
http://dx.doi.org/10.1016/j.enggeo.2015.12.006


Appl. Sci. 2019, 9, 3715 18 of 19

57. Yang, H.Q.; Li, Z.; Jie, T.Q.; Zhang, Z.Q. Effects of joints on the cutting behavior of disc cutter running on the
jointed rock mass. Tunn. Undergr. Space Technol. 2018, 81, 112–120. [CrossRef]

58. Duda, R.O.; Hart, P.E.; Stork, D.G. Pattern Classification and Scene Analysis; Wiley: New York, NY, USA, 1973;
Volume 3.

59. Franco-Lopez, H.; Ek, A.R.; Bauer, M.E. Estimation and mapping of forest stand density, volume, and cover
type using the k-nearest neighbors method. Remote Sens. Environ. 2001, 77, 251–274. [CrossRef]

60. Wu, X.; Kumar, V.; Quinlan, J.R.; Ghosh, J.; Yang, Q.; Motoda, H.; McLachlan, G.J.; Ng, A.; Liu, B.; Philip, S.Y.
Top 10 algorithms in data mining. Knowl. Inf. Syst. 2008, 14, 1–37. [CrossRef]

61. Akbulut, Y.; Sengur, A.; Guo, Y.; Smarandache, F. NS-k-NN: Neutrosophic set-based k-nearest neighbors
classifier. Symmetry 2017, 9, 179. [CrossRef]

62. Wei, C.; Huang, J.; Mansaray, L.; Li, Z.; Liu, W.; Han, J. Estimation and mapping of winter oilseed rape LAI
from high spatial resolution satellite data based on a hybrid method. Remote Sens. 2017, 9, 488. [CrossRef]

63. Qian, Y.; Zhou, W.; Yan, J.; Li, W.; Han, L. Comparing machine learning classifiers for object-based land cover
classification using very high resolution imagery. Remote Sens. 2015, 7, 153–168. [CrossRef]

64. Vapnik, V.; Vapnik, V. Statistical Learning Theory; Wiley: New York, NY, USA, 1998; pp. 156–160.
65. Kavzoglu, T.; Sahin, E.K.; Colkesen, I. Landslide susceptibility mapping using GIS-based multi-criteria

decision analysis, support vector machines, and logistic regression. Landslides 2014, 11, 425–439. [CrossRef]
66. Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [CrossRef]
67. Hong, H.; Pradhan, B.; Bui, D.T.; Xu, C.; Youssef, A.M.; Chen, W. Comparison of four kernel functions used

in support vector machines for landslide susceptibility mapping: A case study at Suichuan area (China).
Geomat. Nat. Hazards Risk 2017, 8, 544–569. [CrossRef]

68. Kalantar, B.; Pradhan, B.; Naghibi, S.A.; Motevalli, A.; Mansor, S. Assessment of the effects of training data
selection on the landslide susceptibility mapping: A comparison between support vector machine (SVM),
logistic regression (LR) and artificial neural networks (ANN). Geomat. Nat. Hazards Risk 2018, 9, 49–69.
[CrossRef]

69. Hopfield, J.J. Neural networks and physical systems with emergent collective computational abilities.
Proc. Natl. Acad. Sci. USA 1982, 79, 2554–2558. [CrossRef]

70. Breiman, L.; Friedman, J.; Olshen, R.; Stone, C. Classification and Regression Trees; Taylor & Francis Group:
New York, NY, USA, 1984; Volume 37, pp. 237–251.

71. Kass, G.V. An exploratory technique for investigating large quantities of categorical data. J. R. Stat. Soc.
Ser. C 1980, 29, 119–127. [CrossRef]

72. Toghroli, A.; Suhatril, M.; Ibrahim, Z.; Safa, M.; Shariati, M.; Shamshirband, S. Potential of soft computing
approach for evaluating the factors affecting the capacity of steel–concrete composite beam. J. Intell. Manuf.
2018, 29, 1793–1801. [CrossRef]

73. Jian, Z.; Shi, X.; Huang, R.; Qiu, X.; Chong, C. Feasibility of stochastic gradient boosting approach for
predicting rockburst damage in burst-prone mines. Trans. Nonferrous Met. Soc. China 2016, 26, 1938–1945.

74. Zhou, J.; Li, E.; Wang, M.; Chen, X.; Shi, X.; Jiang, L. Feasibility of Stochastic Gradient Boosting Approach for
Evaluating Seismic Liquefaction Potential Based on SPT and CPT Case Histories. J. Perform. Constr. Facil.
2019, 33, 4019024. [CrossRef]

75. Zhou, J.; Shi, X.; Du, K.; Qiu, X.; Li, X.; Mitri, H.S. Feasibility of random-forest approach for prediction of
ground settlements induced by the construction of a shield-driven tunnel. Int. J. Geomech. 2016, 17, 4016129.
[CrossRef]

76. Asteris, P.; Roussis, P.; Douvika, M. Feed-forward neural network prediction of the mechanical properties of
sandcrete materials. Sensors 2017, 17, 1344. [CrossRef] [PubMed]

77. Asteris, P.G.; Kolovos, K.G. Self-compacting concrete strength prediction using surrogate models.
Neural Comput. Appl. 2019, 31, 409–424. [CrossRef]

78. Liao, X.; Khandelwal, M.; Yang, H.; Koopialipoor, M.; Murlidhar, B.R. Effects of a proper feature selection on
prediction and optimization of drilling rate using intelligent techniques. Eng. Comput. 2019. [CrossRef]

79. Koopialipoor, M.; Jahed Armaghani, D.; Haghighi, M.; Ghaleini, E.N. A neuro-genetic predictive model to
approximate overbreak induced by drilling and blasting operation in tunnels. Bull. Eng. Geol. Environ. 2019,
78, 981–990. [CrossRef]

80. Swingler, K. Applying Neural Networks: A Practical Guide; Academic Press: New York, NY, USA, 1996;
ISBN 0126791708.

http://dx.doi.org/10.1016/j.tust.2018.07.023
http://dx.doi.org/10.1016/S0034-4257(01)00209-7
http://dx.doi.org/10.1007/s10115-007-0114-2
http://dx.doi.org/10.3390/sym9090179
http://dx.doi.org/10.3390/rs9050488
http://dx.doi.org/10.3390/rs70100153
http://dx.doi.org/10.1007/s10346-013-0391-7
http://dx.doi.org/10.1007/BF00994018
http://dx.doi.org/10.1080/19475705.2016.1250112
http://dx.doi.org/10.1080/19475705.2017.1407368
http://dx.doi.org/10.1073/pnas.79.8.2554
http://dx.doi.org/10.2307/2986296
http://dx.doi.org/10.1007/s10845-016-1217-y
http://dx.doi.org/10.1061/(ASCE)CF.1943-5509.0001292
http://dx.doi.org/10.1061/(ASCE)GM.1943-5622.0000817
http://dx.doi.org/10.3390/s17061344
http://www.ncbi.nlm.nih.gov/pubmed/28598400
http://dx.doi.org/10.1007/s00521-017-3007-7
http://dx.doi.org/10.1007/s00366-019-00711-6
http://dx.doi.org/10.1007/s10064-017-1116-2


Appl. Sci. 2019, 9, 3715 19 of 19

81. Looney, C.G. Advances in feedforward neural networks: Demystifying knowledge acquiring black boxes.
IEEE Trans. Knowl. Data Eng. 1996, 8, 211–226. [CrossRef]

82. Shams, S.; Monjezi, M.; Majd, V.J.; Armaghani, D.J. Application of fuzzy inference system for prediction of
rock fragmentation induced by blasting. Arab. J. Geosci. 2015, 8, 10819–10832. [CrossRef]

83. Zorlu, K.; Gokceoglu, C.; Ocakoglu, F.; Nefeslioglu, H.A.; Acikalin, S. Prediction of uniaxial compressive
strength of sandstones using petrography-based models. Eng. Geol. 2008, 96, 141–158. [CrossRef]

84. Bruines, P. Neuro-fuzzy modeling of TBM performance with emphasis on the penetration rate. Mem. Cent.
Eng. Geol. Neth. Delft 1998, 173, 202.

85. Sapigni, M.; Berti, M.; Bethaz, E.; Busillo, A.; Cardone, G. TBM performance estimation using rock mass
classifications. Int. J. Rock Mech. Min. Sci. 2002, 39, 771–788. [CrossRef]

86. Ulusay, R.; Hudson, J.A. ISRM (2007) The Complete ISRM Suggested Methods for Rock Characterization, Testing
and Monitoring: 1974–2006; ISRM Turkish National Group: Ankara, Turkey, 2007; p. 628.

87. Calcaterra, D.; Parise, M. Landslide types and their relationships with weathering in a Calabrian basin,
southern Italy. Bull. Eng. Geol. Environ. 2005, 64, 193–207. [CrossRef]

88. Jahed Armaghani, D.; Mohd Amin, M.F.; Yagiz, S.; Faradonbeh, R.S.; Abdullah, R.A. Prediction of the
uniaxial compressive strength of sandstone using various modeling techniques. Int. J. Rock Mech. Min. Sci.
2016, 85, 174–186. [CrossRef]

89. Bejarbaneh, B.Y.; Bejarbaneh, E.Y.; Fahimifar, A.; Armaghani, D.J.; Majid, M.Z.A. Intelligent modelling of
sandstone deformation behaviour using fuzzy logic and neural network systems. Bull. Eng. Geol. Environ.
2018, 77, 345–361. [CrossRef]

90. Yang, H.Q.; Lan, Y.F.; Lu, L.; Zhou, X.P. A quasi-three-dimensional spring-deformable-block model for
runout analysis of rapid landslide motion. Eng. Geol. 2015, 185, 20–32. [CrossRef]

91. Zhou, X.P.; Yang, H.Q. Micromechanical modeling of dynamic compressive responses of mesoscopic
heterogenous brittle rock. Theor. Appl. Fract. Mech. 2007, 48, 1–20. [CrossRef]

92. Yang, H.Q.; Xing, S.G.; Wang, Q.; Li, Z. Model test on the entrainment phenomenon and energy conversion
mechanism of flow-like landslides. Eng. Geol. 2018, 239, 119–125. [CrossRef]

93. Bieniawski, Z.T. Rock Mechanics Design in Mining and Tunnelling; A.A. Balkema: Rotterdam, The Netherlands,
1984; ISBN 9061915074.

94. Innaurato, N.; Mancini, A.; Rondena, E.; Zaninetti, A. Forecasting and effective TBM performances in a rapid
excavation of a tunnel in Italy. In Proceedings of the 7th ISRM Congress; International Society for Rock
Mechanics and Rock Engineering, Aachen, Germany, 16–20 September 1991.

95. Ribacchi, R.; Fazio, A.L. Influence of rock mass parameters on the performance of a TBM in a gneissic
formation (Varzo Tunnel). Rock Mech. Rock Eng. 2005, 38, 105–127. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/69.494162
http://dx.doi.org/10.1007/s12517-015-1952-y
http://dx.doi.org/10.1016/j.enggeo.2007.10.009
http://dx.doi.org/10.1016/S1365-1609(02)00069-2
http://dx.doi.org/10.1007/s10064-004-0262-5
http://dx.doi.org/10.1016/j.ijrmms.2016.03.018
http://dx.doi.org/10.1007/s10064-016-0983-2
http://dx.doi.org/10.1016/j.enggeo.2014.11.016
http://dx.doi.org/10.1016/j.tafmec.2007.04.008
http://dx.doi.org/10.1016/j.enggeo.2018.03.023
http://dx.doi.org/10.1007/s00603-004-0032-5
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Background of Supervised ML Models 
	K-Nearest Neighbor (KNN) 
	Support Vector Machine (SVM) 
	Neural Network (NN) 
	Classification and Regression Trees (CART) 
	Chi-Squared Automatic Interaction Detection (CHAID) 

	Materials and Methods 
	Model’s Assessment 
	Case Study and Data Preparation 

	Results and Discussion 
	Assessment of Models 
	Result of Selected Models 

	Conclusions 
	References

