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Abstract 

Taguchi’s T-method is a prediction model introduced by Genichi Taguchi under the Mahalanobis-
Taguchi System to determine the future state or unknown output based on existing or historical data. 
The prediction model was constructed using normalized signal data involving subtraction of average 
value of unit space data from signal data. The objective of this research is to determine a group of 
data having homogeneous characteristics from a densely populated region in a dataset to functioned 
as a basis for unit space data selection in T-method for predicting an accurate outcome. Histogram 
was utilized as a tool in representing data in multiple groups and a group with highest data frequency 
defined as unit space data. Nine different number of bins was used in assessing the effect of unit 
space data towards prediction accuracy. The result from the experiments on six different datasets 
indicates that no single number of bin fit for all in offering an optimal result. In addition, the size of 
unit space data and signal data do not significantly affect the final outcome. However, except for 
Auto MPG dataset, all different numbers of bin resulted in better prediction accuracy with less MSE 
and RMSE as compared to conventional T-method. 
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1. Introduction 

Taguchi’s T-method (T-method) is a regression-based predictive model 
introduced by Genichi Taguchi under Mahalanobis-Taguchi System (MTS) to 
predict the future state or unknown output based on existing or historical data. 
Similar to any regression-based model, T-method determined and explained the 
relationship between response variable and explanatory variable in the form of a 
mathematical model with the objective to produce an accurate prediction. The 
distinctive aspect of T-method as compared to other regression-based predictive 
models is the introduction of unit space concept for normalization and the used of 
signal-to-noise ratio (SNR) as variable’s weightage and evaluation function. T-
method is relatively new method and only few research works found in the literature 
mainly on the application, comparison, and enhancement of the method. Some of 
the recent work on the enhancement of T-method conducted by Harudin et al. [1] 
in adapting Shamos Bickel and Hodges Lehman estimator into T-Method for 
normalization, Suguru and Yasushi [2] on multiple output of T-method, Harudin 
et.al  [3] on feature selection optimization using Artificial Bee Colony, Harudin et 
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al. [1] in applying robust M-estimator in increasing T-method accuracy, Nakao and 
Nagata [4] in an analysis involving missing data in T-method, and Nishino and 
Suzuki  [5 on the introduction of median-median line for sample data with outlier 
in T-method. Earlier research by DasNeogi et al. [6], Cudney and Shah [7] and 
Cudney, Shah and Kestle  [8] highlighted that the prediction accuracy of T-method 
predictive model was significantly affected by the selection of unit space data and 
suggested that a proper procedure developed specifically in determining unit space 
data. According to Teshima et al. [9], T-method defines the unit space data where 
the output value is in the medium position and homogeneous (densely populated).  

Inoh et al. [10] introduced two different versions of unit space as alternatives to 
conventional T-method known as Ta-method and Tb-method where Ta-method and 
Tb-method are based on the average value of all output data and maximum SNR, 
respectively. Compared to Tb-method which involved high computational cost [4] 
Ta-method has been well accepted by researcher due to its ease of computation and 
replication. Negishi et al. [11], Nishino and Suzuki [5] and Matsushita et al. [12] 
used Ta-method unit space concepts to represent T-method instead of conventional 
unit space selection technique and used it for the analysis and comparison purposes 
between T-method and enhancement methods. In Ta-method, no unit space data 
was defined and all data was used as signal data to construct the predictive model. 
Normalization of signal data performed by subtracting the average value of each 
explanatory and response variable from signal data. Issues pertaining to unit space 
data in T-method lies to the lack of proper procedure in determining a subset of data 
to be used as unit space. Unlike Ta-method where selection criteria are fixed and 
dedicated to the average value, T-method existing procedure is subjective by user 
decision. Subjective in the sense of how the homogeneous data and the location of 
high dense populated region was defined in a dataset. In addition, upon 
identification of homogenous and dense populated data, how much data should be 
selected and whether it would yield optimal prediction accuracy resulted in more 
arguments. As a result, proper conclusion to the performance of prediction accuracy 
cannot be drawn.  

The objective of this research is to determine a group of data having 
homogeneous characteristics from dense populated region in a dataset to be used as 
a basis for unit space data selection in T-method for predicting an accurate outcome. 
This research will utilize histogram as a tool to materialize the objective due to its 
specialization in grouping data and represent the shape of distribution, dispersion 
and central tendency of univariate data [13]. One of the important elements with 
enormous effect in constructing histogram is the number of bins selected, despite 
other elements such as the range, bin size and the starting point [14]. Dogan and 
Dogan [15] highlighted 23 different formulas in determining the number of 
histogram’s bin. Realizing the importance of number of histogram’s bin in the 
representation of data, this research will also assess the effects of different number 
of bin to T-method prediction accuracy.  

2. Theoretical background 

2.1. T-method computation procedure 
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The computational procedure of T-method as explained by Teshima et al. [9] 
involved three main phases in model development which are a preparation of data, 
development of mathematical model and evaluation of model as described below: 
 
Phase 1: Sample data consists of m number of observation is gathered and 
organized, comprising of explanatory variables or item (xi1, xi2, xi3 … xik: k is number 
of explanatory variable; i = 1, 2, 3… m) and response variable or output (yi: i = 1, 
2, 3… m). The sample data is then sorted ascending order based on response variable 
value. A subset of n number of sample data at medium position and homogeneous 
selected as unit space data and extracted out from sample data as shown in Table 1. 
The remaining l sample data unselected used as signal data as shown in Table 2. 
The average unit space data computed for all variables and normalization of signal 
data performed by subtracting the average value of unit space from signal data. 
Table 3 shows normalized signal data using equation (1) and (2).  
 
                Table 1: Unit space data                                 Table 2: Signal data 

 
No Item 1 Item 2 … Item k Output   No Item 1 Item 2 … Item k Output  
1 x11 x12 … x1k y1  1 x'11 x'12 … x'1k y'1 
2 x21 x22 … x2k y2  2 x'21 x'22 … x'2k y'2 
… … … … … …  … … … … … … 
n xn1 xn2 … xnk yn  … … … … … … 

Average x̅1  x̅2  … x̅k  y̅=M0  l x'l1 x'l2 … x'lk y'l 
 

 Xij=xij' -xj̅          (i=1,2,…,l),(j=1,2,…,k) (1) 
 Mi=yi

'-M0             (i=1,2,…,l) (2) 
 

Table 3: Normalized signal data 
 

No. Item 1 Item 2 … Item k Output value 
1 X11 X12 … X1k M1 
2 X21 X22 … X2k M2 
… … … … … … 
l Xl1 Xl2 … Xlk Ml 

 

Phase 2: All computation in phase 2 performed using normalized signal data for 
model construction. Proportional coefficient, β and SNR, η computed using 
equation (3) and (4), respectively. In T-method, estimation of proportional 
coefficient, β is based on the ordinary least square method. Table 4 shows a 
summary of the Proportional coefficient, β and SNR, η for each of the explanatory 
variables. Integrated estimate value of output computed using equation (10) and the 
result compared with actual output value as shown in Table 5.  
 
 

 								Proportional Coefficient, βj	=
M1X1j+M2X2j+…+MlXlj

r
   ;(j=1,2,…,k) (3) 

 
                                      SNR, ηj	=

1
r $Sβj-Vej%

Vej
        $when Sβj>Vej%   ;(j=1,2,…,k) 

																																																										=	0                               $when Sβj≤Vej% 
 

(4) 

                                  Effective Divider, r	=	M1
2+M2

2+…+Ml
2 (5) 

                                                                          Total Variation, STj	=	X11
2 +X21

2 +…+Xlj
2 (6) 
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      		Variation of Proportional Term, Sβj	=

$M1X11+M2X21+…+MlXlj%
2

r
 (7) 

                                                                           	        Error Variation, Sej	=	STj-Sβj (8) 
 

                                  Error Variance, Vej	=
Sej

l-1
 (9) 

 

Table 4. Proportional coefficient, β and SNR, η for each item (explanatory 
variable) 

 
 No. Item 1 Item 2 Item 3 Item 4 … Item k 

Proportional Coefficient, β β1 β2 β3 β4 … βk 
SNR, η η1 η2 η3 η4 … ηk 

 

 

   
 

Integrated Estimate Value, M& i=
η1× Xi1

β1
+η2× Xi2

β2
+…+ηk× Xik

βk

η1+η2+…+ηk
   ;(i=1,2,…,l) (10) 

 

Table 5. Actual Output values and integrated estimate values of output 
 

No. Actual Output Value Integrated estimate value 
1 M1 𝑀&1 
2 M2 𝑀&2 
… … … 
l Ml 𝑀& l 

 
Phase 3: The integrated estimate SNR computed using equation (11) used as a 
single index to assess the linear relationship between actual and estimated output 
value by taking into consideration three elements, which are sensitivity, slope and 
variability in evaluating a prediction model. 

 
																	Integrated Estimate SN Ratio, ηest	=	10 log (

1
r $Sβ-Ve%

Ve
)       (db) (11) 

          Linear equation, L		= M1M& 1+M2M& 2+…+MlM& l (12) 
 																																												Effective divider, r		= M1

2+M2
2+…+Ml

2 (13) 
 																																												Total variation, ST		= 	M)1

2+M& 2
2+…+M& l

2 (14) 
 

																	Variation of proportional term, Sβ	= 	
L2

r
 (15) 

  																																												Error variation, Se	= 	ST-Sβ (16) 
 																																													Error variance, Ve	= 

Se

l-1
 (17) 

 

The pre-normalized integrated estimate value, y*i computed using equation (18) 
to acquire the predicted value without normalization. 
 

 y*i=M& i+M0     ; (i=1,2,…,l) (18) 
 
The estimation of the unknown output value from new obtained dataset requires for 
normalization of data by subtracting the average value of unit space from newly 
obtained signal data. The average of unit space data referring to average value 
obtained from training data. Equation (10) used to determine the integrated estimate 
value of new normalized signal data. Equation (18) used to compute the new 
integrated estimate value before normalization.   
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2.2. Unit space concept 
The concept of unit space originated by Genichi Taguchi dated back during the 
development of the Mahalanobis-Taguchi method (MT method) where unit space 
is defined as homogeneous group with respect to others. In MT method, unit space 
is defined as a homogeneous group or population used as a reference point in 
developing a measurement system. The understanding of a homogeneous group or 
population also refers to a normal state, a normal group, a state of high density, a 
state of constant and extended to a state that associated with high frequency or an 
average. Genichi Taguchi later discovered that in recognition problem, the accuracy 
of recognition is improved if the unit space is set in the medium position. This has 
become a basis of unit space definition for T-method where unit space is defined as 
a subset of data within the sample of observation that located at medium position 
on top of having homogeneity characteristic and comes from dense region criterion. 
Figure 1 illustrates the concept of unit space in T-method. Unit space data in T-
method is used to normalized signal data before the construction of the 
mathematical model as explained in section 2.1.  

 
 

 
 

Figure 1: Unit space concept in T-method 

2.3. Unit space variants 

Inoh et al. [10] introduced two versions of unit space which are Ta-method and 
Tb-method. Ta-method uses an average value of each item and output for 
normalization of signal data as shown in equation (19) until (22). In Ta-method, 
signal data consists of all sample data without defining and discarding unit space 
data. The average value calculated using all sample data in each item and output. 
Normalization procedure similar to in T-method by subtracting the average value 
of each item and output value from signal data. The remaining procedure in 
estimating integrated estimate value is similar to T-method described in section 2.1. 
 

                          
																																										x,- =

1
𝑚 (x0- + x2- +⋯+ x4-);											(𝑖 = 1,2,… , 𝑘) (19) 

 
																																								M< =

1
𝑚 (𝑦0 + 𝑦2 +⋯+ 𝑦4) (20) 

                                                                    X?@ = 𝑥B- − �̅�-														(𝑖 = 1,2,… ,𝑚), (𝑗 = 1,2,… , 𝑘) (21) 
 																																									M? = 𝑦B −𝑀<													(𝑖 = 1,2,… ,𝑚) (22) 

 

Tb-method uses a value in each item and output that maximize SNR for 
normalization of signal data. Similar to Ta-method, signal data in Tb-method 
consists of all sample data without defining and discarding unit space data. Start by 
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considering the first item and the output value, normalized signal data performed 
using the first sample data of item and output to calculate SNR. The computation 
repeated for the first item and its output by normalizing the signal data using the 
second sample data to calculate SNR. In the end, sample data that maximize SNR 
for the first item selected for final normalization in estimating integrated estimate 
value. The procedure repeated for each item. The remaining procedure in estimating 
integrated estimate value similar to T-method as explained in section 2.1. 

2.4.  Histogram 

The term histogram was first introduced by a famous statistician named Karl 
Pearson back in 1891 which refers to a common form of graphical representation 
[16]. A histogram is obtained by dividing the range of the univariate data into equal 
size of bin to display the distribution of data in the vertical bar form. This can be 
done by first identifying the width of bin or specifying the number of histogram’s 
bin before the frequency of data lie in each bin counted. Being one of the oldest 
tools for graphical display of data, histogram continued to be relevant and opted by 
many researchers from various field in analyzing of data. For instance, Tan et al.  
[17] use histogram to investigation of static analog-to-digital converter nonlinearity 
measurement and Aflaifel et al. [18] uses histogram to assess the efficacy of 
uterotonic treatment for post-partum haemorrhage. One of the prevailing concerns 
in constructing a histogram is the suitable number of bin. Too many bins will result 
in a jagged histogram while too little of bin resulted in a loss of valuable information 
due to a single block histogram formed. He and Meeden [19] introduced a loss 
function that incorporates the concepts of rougher densities requires more bin than 
smooth densities using stepwise Bayes procedure based on Bayesian bootstrap in 
determining number of histogram’s bin. Lahoka [14] highlighted recommended 
number of bin from various researchers which claimed to be optimal and few 
formulas to determine the number of bin. Dogan and Dogan [15] compiled 23 
formulas developed by past researchers on how to determine the number of bin.  

3. Methodology 

3.1. Experiment data 

The data used in this research was obtained from UC Irvine Machine Learning 
Repository [20] involving six different datasets from various fields which are airfoil 
self-noise, auto mpg, concrete compressive strength, energy efficiency (cooling 
load), energy efficiency (heating load) and yacht hydrodynamics as shown in Table 
6. Each dataset contains 70 training data for model construction and 30 testing data 
for validation, randomly selected. This research focused on predicting the value of 
univariate response variable involving multiple explanatory variables.   
 

Table 6. Details of experiment’s datasets 
No Datasets (p) Explanatory Variable (xk) Response Variable (y) 

1 Airfoil Self 
Noise 

Frequency (Hz), Angle of Attack (0), Chord Length 
(m), Free-Stream Velocity (m/s), Suction Side 

Displacement Thickness (m) 
Scaled Sound Pressure 

Level (dB) 

2 Auto MPG Cylinder, Displacement, Horsepower, Weight, 
Acceleration Miles per Gallon (MPG) 
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3 
Concrete 

Compressive 
Strength 

Cement (kg/m3), Blast Furnace Slag (kg/m3), Fly Ash 
(kg/m3), Water (kg/m3), Superplasticizer (kg/m3), 

Coarse Aggregate (kg/m3), Fine Aggregate (kg/m3), 
Age (day) 

Concrete Compressive 
Strength (MPa) 

4 Energy 
Efficiency 

Relative Compactness, Surface Area, Wall Area, Roof 
Area, Overall Height, Orientation, Glazing Area, 

Glazing Area Distribution 

Cooling 
 Load 

5 Energy 
Efficiency 

Relative Compactness, Surface Area, Wall Area, Roof 
Area, Overall Height, Orientation, Glazing Area, 

Glazing Area Distribution 
Heating 
 Load 

6 Yacht 
Hydrodynamics 

Longitudinal Position of the Center of Buoyancy, 
Prismatic Coefficient, Length-Displacement Ratio, 
Beam-Draught Ratio, Length-Beam Ratio, Froude 

Number 

Residuary Resistance per 
Unit Weight of 
Displacement 

3.2. Bin estimation 

In determining unit space data in T-method, a group of data having homogeneous 
characteristic located in a dense populated region need to be identified before a 
subset of data can be selected as unit space data from that respective group. This 
research utilized a histogram as a tool to determine a group of homogeneous data 
and dense populated in a dataset and defined unit space data as data within highest 
frequency bin. Nine cases denoting nine different numbers of bins derived from 
various formulas compiled by Dogan and Dogan [15] were used in constructing the 
histogram to determine a group of data from a homogeneous and dense populated 
region in dataset. Table 7 shows nine cases with different number of bins based on 
70 training data derived from various formulas. The number of bins computed is a 
rounded up basis to the nearest integer whole number. 

Table 7. Formulas and estimated number of bins [15] 
No. Case (q) Number of Bin Formula 
1 a 4 Cohran = Fn/5 
2 b 5 Cencov = 	 √n3  

3 c 6 
Larson = 1+N2.2×log10(n)O 
Terrel	and	Scott = 	 √2n3  

4 d 7 Anonymous2 = 2k≥n 

5 e 8 
Sturges = 1+N3.3×log10(n)O 

Ishikawa = 6+(n/50) 
Anonymous1 = 2.5×√n4  

6 f 9 Rice = 2×√n3  
7 g 10 Mosteller and Tukey = 10×log10√n 
8 h 11 Bendat and Piersol	=	1.87×(n-1)0.4 
9 i 17 Velleman = 2×√n  

3.3. Experiment design 

In this research, for each dataset, nine experiments conducted by differentiating 
the number of bin in constructing a histogram using response variable value as 
illustrated in Figure 2. In every experiment, the bin with the highest frequency of 
response variable data selected as a basis for unit space data selection for 
explanatory variables. The minimum and maximum value in the respective bin 
constitute a range of unit space data. The average value of unit space data used for 
normalization of signal data by subtracting the average value from signal data for 
each explanatory and response variable. In these experiments, unit space is 
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discarded from signal data for model construction as in conventional T-method. The 
result obtained from the experiments will be compared to result of T-method and 
Ta-method. The result from T-method is based on 5 samples of unit space data 
obtained from the medium position of response variable. 
 

 
 

 

 

Figure 2. Framework of experiment design 

3.4. Performance criteria 

The performance of T-method prediction accuracy evaluated using Mean Square 
Error (MSE) and Root Mean Square Error (RMSE) as the error metrics and 
Coefficient of Determination (R2) as a measure of goodness-of-fit. The calculation 
of the error metrics and goodness-of-fit as shown in equation (23), (24) and (25). 
The prediction model constructed using training data assessed using both error 
metrics and measure of goodness-of-fit while the predicted value using testing data 
evaluated using error metrics only. 

 
Mean Square Error, MSE	= 

1
l
W (Mi-M& i)

2
l

i=1

 (23) 

 

Root Mean Square Error, RMSE	=	X
1
l
W (Mi-M& i)

2
l

i=1

 (24) 

 
Coefficient of Determination, R2	=	1-

∑ (Mi-M& i)
2l

i=1

∑ (Mi-MZ i)
2l

i=1

 (25) 

 

4. Result and discussion 

4.1. Effect of different number of histogram’s bin 

The experiments using a different number of histogram’s bin resulted to a 
different number of unit space data selected as the range of unit space data changed 
with respect to the highest frequency bin. A small number of unit space data selected 
as a result of more number of histogram’s bin used resulted in more number of 
signal data left for model construction. However, the result from the experiments 
indicates that the size of unit space data and signal data is not a significant factor in 
achieving the optimal prediction accuracy. The ability to group a homogeneous and 
dense populated data has more influent to the final prediction outcome.   

4.2. Analysis of case study 

4.2.1 Airfoil noise dataset 

Dataset (p)) Case (q))  Unit Space 

Signal data 

Highest 
freq bin 

Yes 

No 

T-method 
estimation 
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The result in Table 8 shows the prediction performance based on train and test 
data in predicting the scaled sound pressure level using airfoil noise dataset. The R 
squared value for case (a), (c) and (d) shows that the model constructed using train 
data fit better as compared to conventional T-method by 7%, 5% and 10%, 
respectively. Case (c) recorded the lowest of MSE and RMSE for test data despite 
case (d) recorded the lowest for train data. All cases surpassed the conventional T-
method prediction’s accuracy for the test data in terms of MSE and RMSE at a range 
of 15% to 56% and 8% to 34% improvement, respectively. However, as compared 
to Ta-method, only case (a), (c), (e), (f), (h) and (i) recorded a better result with less 
error.   

Table 8. Train and test result for airfoil noise dataset

 

4.2.2 Auto mpg dataset 

The result in Table 9 shows the prediction performance based on train and test 
data in predicting the vehicle’s fuel consumption in miles per gallon using auto-
mpg dataset. The R squared value for case (a), (c), (d), (e), (f), (g), (h) and (i) shows 
that the model constructed using train data fit better as compared to conventional T-
method and Ta-method. Case (b) recorded the lowest of MSE and RMSE for both 
test data and train data. As compared to conventional T-method for test data, only 
case (b), (f) and (g) recorded a better MSE and RMSE result by 33%, 21%, 21% 
and 18%, 11%, 11% improvement, respectively. Overall, case (b) performed better 
than both conventional T-method and Ta-method for test data at 33% and 11% MSE 
improvement and 18% and 6% RMSE improvement, respectively.  

Table 9. Train and test result for auto MPG dataset

 

Train:
Case a b c d e f g h i T-method Ta-method
No. of Unit space Data 22 22 17 16 16 14 12 14 11 5 1
No. of Signal Data 48 48 53 54 54 56 58 56 59 65 70
R squared 69.88% 57.78% 68.64% 71.79% 58.80% 59.12% 53.36% 64.95% 63.12% 65.38% 65.23%
MSE 37.01 50.43 39.96 30.26 32.76 56.02 61.73 43.98 44.20 53.50 33.55
RMSE 6.08 7.10 6.32 5.50 5.72 7.48 7.86 6.63 6.65 7.31 5.79

Test:
Case a b c d e f g h i T-method Ta-method
R squared 38.74% 36.60% 35.48% 37.60% 34.90% 38.65% 38.10% 38.90% 40.33% 34.13% 37.91%
MSE 65.12 106.79 54.95 90.03 65.26 57.83 80.98 56.23 72.43 126.01 77.30
RMSE 8.07 10.33 7.41 9.49 8.08 7.60 9.00 7.50 8.51 11.23 8.79

Train:
Case a b c d e f g h i T-method Ta-method
No. of Unit space Data 26 22 19 20 17 15 15 11 11 5 1
No. of Signal Data 44 48 51 50 53 55 55 59 59 65 70
R squared 77.51% 44.37% 73.97% 71.19% 74.85% 67.88% 67.88% 71.66% 71.37% 67.81% 67.61%
MSE 45.74 20.95 45.98 38.72 50.68 24.31 24.31 40.10 46.91 30.25 23.49
RMSE 6.76 4.58 6.78 6.22 7.12 4.93 4.93 6.33 6.85 5.50 4.85

Test:
Case a b c d e f g h i T-method Ta-method
R squared 70.32% 70.23% 69.56% 69.25% 70.11% 69.60% 69.60% 70.64% 69.74% 70.67% 69.99%
MSE 39.65 25.11 45.65 38.89 49.26 29.24 29.24 42.86 48.79 37.24 28.30
RMSE 6.30 5.01 6.76 6.24 7.02 5.41 5.41 6.55 6.98 6.10 5.32
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4.2.3. Concrete compressive strength dataset 

The result in Table 10 shows the prediction performance based on train and test 
data in predicting the concrete compressive strength using concrete compressive 
strength dataset. The R squared value for all cases except case (c) shows that the 
model constructed using train data fit better than the conventional T-method and 
Ta-method. Case (i) recorded a better performance in terms of MSE and RMSE for 
both train and test data and surpassed the performance recorded using conventional 
T-method by 41% and 23% improvement, respectively and Ta-method by 11% and 
6% improvement, respectively. In general, all cases performed better with less MSE 
and RMSE recorded for test data as compared to T-method at a range of 2% to 41% 
and 1% to 23% improvement, respectively but only case (e), (h) and (i) recorded 
better result as compared to Ta-Method by 6%, 3% and 14% less MSE and 3%, 1% 
and 7% less RMSE, respectively.  

Table 10. Train and test result for concrete compressive strength dataset

 

4.2.4. Energy efficiency (cooling load) dataset 

The result in Table 11 shows the prediction performance based on train and test 
data in predicting the cooling load using energy efficiency dataset. The R squared 
value recorded for all cases shows that the model constructed using train data fit 
weaker than the conventional T-method and Ta-method. Case (d) recorded the 
lowest of MSE and RMSE for test data despite case (g) recorded the lowest for train 
data. All cases recorded a better MSE and RMSE performance for test data as 
compared to conventional T-method at a range of 3% to 21% improvement and 1% 
to 11% improvement, respectively but only case (a), (b), (c), (d), (e), (f) and (i) 
better than Ta-Method for test data.  
  

Train:
Case a b c d e f g h i T-method Ta-method
No. of Unit space Data 33 22 20 21 19 17 14 15 11 5 1
No. of Signal Data 37 48 50 49 51 53 56 55 59 65 70
R squared 51.63% 52.04% 45.37% 48.30% 53.90% 50.02% 49.70% 56.53% 52.72% 46.24% 46.51%
MSE 319.34 285.17 354.22 282.89 230.35 286.01 284.88 239.92 210.01 280.68 247.58
RMSE 17.87 16.89 18.82 16.82 15.18 16.91 16.88 15.49 14.49 16.75 15.73

Test:
Case a b c d e f g h i T-method Ta-method
R squared 63.31% 67.59% 59.49% 63.84% 70.44% 59.88% 66.12% 70.17% 71.69% 66.02% 67.40%
MSE 266.85 242.58 313.38 280.01 202.78 278.73 268.86 210.65 186.93 318.21 216.22
RMSE 16.34 15.58 17.70 16.73 14.24 16.70 16.40 14.51 13.67 17.84 14.70
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Table 11. Train and test result for energy efficiency (cooling load) dataset 

 

4.2.5. Energy efficiency (heating load) dataset 

The result in Table 12 shows the prediction performance based on train and test 
data in predicting the heating load using energy efficiency dataset. Most of the cases 
except case (c) recorded lesser R squared value as compared to conventional T-
method indicating weaker fit of actual value of training data to prediction model. 
Case (a) recorded the lowest of MSE and RMSE for test data despite case (d) 
recorded the lowest for train data. All cases recorded a better prediction 
performance in term of MSE and RMSE for test data as compared to conventional 
T-method at a range of `44% to 50% and 25% to 29% improvement, respectively 
and Ta-method at a range of 2% to 12% and 1% to 6% improvement, respectively.  

Table 12. Train and test result for energy efficiency (heating load) dataset 

 

4.2.6. Yacht hydrodynamics dataset 
The result in Table 13 shows the R squared value for all cases which constructed 

using train data fit better than the conventional T-method and Ta-method. Case (i) 
recorded the lowest of MSE and RMSE for the test data although case (a) recorded 
the lowest for train data. All cases recorded a better performance in term of MSE 
and RMSE as compared to result obtained through conventional T-method for test 
data at a range of 52% to 66% and 31% to 41% improvement, respectively. 
However, only case (e), (f), (g), (h) and (i) shows better MSE and RMSE result as 

Train:
Case a b c d e f g h i T-method Ta-method
No. of Unit space Data 33 31 30 26 22 21 15 17 16 5 1
No. of Signal Data 37 39 40 44 48 49 55 53 54 65 70
R squared 22.87% 39.27% 43.58% 55.69% 62.64% 63.80% 68.90% 67.41% 68.17% 76.01% 75.83%
MSE 45.16 44.35 43.43 39.98 37.81 37.23 34.41 35.61 34.63 36.30 28.37
RMSE 6.72 6.66 6.59 6.32 6.15 6.10 5.87 5.97 5.88 6.03 5.33

Test:
Case a b c d e f g h i T-method Ta-method
R squared 80.78% 81.23% 81.69% 82.41% 82.48% 82.55% 78.31% 78.22% 80.74% 80.71% 80.46%
MSE 23.13 22.98 22.61 22.26 22.76 22.81 27.52 27.50 24.59 28.33 25.00
RMSE 4.81 4.79 4.75 4.72 4.77 4.78 5.25 5.24 4.96 5.32 5.00

Train:
Case a b c d e f g h i T-method Ta-method
No. of Unit space Data 34 23 22 23 25 22 22 22 15 5 1
No. of Signal Data 36 47 48 47 45 48 48 48 55 65 70
R squared 38.25% 68.18% 78.81% 76.66% 66.63% 69.34% 69.27% 69.27% 73.38% 78.81% 78.92%
MSE 41.27 34.41 30.38 29.00 39.13 34.83 33.92 33.92 32.03 36.19 27.37
RMSE 6.42 5.87 5.51 5.39 6.26 5.90 5.82 5.82 5.66 6.02 5.23

Test:
Case a b c d e f g h i T-method Ta-method
R squared 82.14% 82.28% 79.71% 80.65% 80.64% 81.62% 82.21% 82.21% 81.00% 81.09% 81.42%
MSE 19.24 20.48 21.37 20.83 20.31 20.00 20.24 20.24 21.12 38.30 21.85
RMSE 4.39 4.53 4.62 4.56 4.51 4.47 4.50 4.50 4.60 6.19 4.67
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compared to Ta-method by 5%, 7%, 8%, 10%, 15% and 2%, 35, 4%, 5% 8% 
improvement, respectively.  

Table 13. Train and test result for yacht hydrodynamics dataset

 

5. Conclusion 

In this research, a histogram’s bin with highest frequency of data was defined as 
a group of homogeneous with dense population and the width of the respective bin 
constitutes a range for unit space data selection. The result from nine experiments 
referring to nine cases of different number of histogram’s bin for six different 
datasets indicates that for different datasets having different data’s pattern and 
distribution, no single number of histogram’s bin fit to all datasets in offering an 
optimal prediction accuracy. Except for Auto MPG dataset, all nine cases in all 
datasets recorded better prediction accuracy for test data as compared to 
conventional T-method. Table 14 summarized the result of the experiments where 
bold font indicates improvement over Ta-method. Result of case (b) shows 
enhancement in all dataset as compared to T-method while case (e) and (i) shows 
improvement over T-method and Ta-method except for auto mpg dataset. This 
research concludes that histogram is a useful tool in determining a group of 
homogeneous data in dense populated region to be used as unit space data in T-
method. In addition, a selection of number of histogram’s bin is imperative to yield 
optimal prediction accuracy. Last but not least, histogram through bin’s width offers 
an interval or range of data to be used as a guideline for the selection of unit space 
data from overall sample data.   

In future research, the effect of prediction accuracy based on the inclusiveness of 
unit space data determined using histogram’s bin classification into signal data to 
be assessed and analyzed. The concept of unit space in conventional T-method is to 
separate and discard the unit space data from signal data for model construction and 
prediction. Contradicted to Ta-method and Tb-method which includes all data in 
model formulation and prediction. The inclusiveness of unit space data is important 
in making a prediction, especially when dealing with small sample size in dataset. 
  

Train:
Case a b c d e f g h i T-method Ta-method
No. of Unit space Data 56 54 53 51 49 48 47 46 41 5 1
No. of Signal Data 14 16 17 19 21 22 23 24 29 65 70
R squared 96.78% 97.44% 96.44% 96.20% 96.44% 94.95% 94.20% 93.87% 90.36% 66.40% 66.51%
MSE 112.99 136.49 143.16 158.25 173.92 175.81 178.55 182.34 192.75 418.43 125.12
RMSE 10.63 11.68 11.96 12.58 13.19 13.26 13.36 13.50 13.88 20.46 11.19

Test:
Case a b c d e f g h i T-method Ta-method
R squared 65.28% 65.28% 65.28% 65.28% 65.28% 65.28% 65.28% 65.28% 65.28% 65.28% 65.28%
MSE 210.62 194.38 188.99 178.89 169.67 166.54 163.56 160.78 150.88 440.57 178.35
RMSE 14.51 13.94 13.75 13.37 13.03 12.91 12.79 12.68 12.28 20.99 13.35



Open International Journal of Informatics (OIJI)                                            Vol. 7 Special Issue  (2019) 
 
 

179 
 

Table 14. Summary of test result for all datasets with improvement 
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