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Abstract: In this work, Sr0.3Ba0.4Pb0.3Fe12O19/(CuFe2O4)x (x = 2, 3, 4, and 5) as strongly exchange-coupled
nanosized ferrites were fabricated using a one-pot sol–gel combustion method (citrate sol-gel method).
The X-ray diffraction (XRD) powder patterns of the products confirmed the occurrence of pure,
exchange-coupled ferrites. Frequency dependencies of the microwave characteristics (MW) were
investigated using a co-axial method. The non-linear behavior of the MW with the composition
transformation may be due to different degrees of Fe ion oxidation on the spinel/hexaferrite grain
boundaries and strong exchange coupling during the hard and soft phases.
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1. Introduction

Strongly correlated transition metal oxides exhibit a wide spectrum of unusual electronic and
magnetic phenomena [1–3] caused by the cooperative effects of charge and spin ordering. This class
of materials demonstrates such quantum phenomena as high-temperature superconductivity [4],
Bose-Einstein condensation of magnons [5], and multiferroicity (the coexistence of magnetic and
ferroelectric ordering) [6]. Functional materials with coexisting hard magnetic and soft magnetic
properties at room temperature have attracted much attention [7,8]. The most interesting classes are
the multiferroic and electromagnetic composites [9]. The coexistence of two separate magnetic phases
may provide strong coupling between them and as a result lead to an improvement of the functional
properties [10,11]. For example, it can lead to a modification of the initial electrical and magnetic
properties as compared to the pure materials [12]. The main aim is to determine the correlation between
chemical compositions (concentration ratio of different phases) and functional properties in composites.
The maximal effect in composites can be reached by strong exchange coupling (magnetostatic coupling,
intergranular interactions, microstructure effect).

Many researchers have been focused on complex metal oxides based on iron ions (hexaferrites,
spinels, perovskites etc.). Barium M-type hexaferrite (BaFe12O19) and solid solutions based on
it are the most attractive objects for investigation. These compounds have a magnetoplumbit
structure—space group P63/mmc (No. 194) with cell parameters a = b ≈ 5.90 Å, c ≈ 23.30 Å.
BaFe12O19 is an important material for microwave applications due to its high saturation magnetization,
low electrical conductivity and large magneto–crystalline anisotropy [13]. There are two main
mechanisms for microwave absorption in BaFe12O19: 1. Domain boundary resonance; 2. Natural
ferromagnetic resonance. Weakening of the transmitted electromagnetic radiation opens up a wide
range of perspectives for microwave absorbers [14–17]. Hard and soft ferrites are technologically
important materials owing to their special applications in data-storage media, microwave devices [18]
and permanent magnets [19]. Because strong exchange-coupling occurs [20] between two soft and
hard magnetic phases, an intensification of the microwave absorption can be observed [21–25].
Shen et al. [26] confirmed the advantages of exchange coupling ferrites.

In this study, Sr0.3Ba0.4Pb0.3Fe12O19/(CuFe2O4)x (x = 2, 3, 4, and 5) composites were produced
using a citrate sol-gel method. The correlation between the composition and microwave properties of
the composites are discussed.

2. Materials and Methods

Sr0.3Ba0.4Pb0.3Fe12O19/(CuFe2O4)x (x = 2, 3, 4, and 5) composites were produced usinga citrate
sol-gel method [27–30]. Nitrates of corresponding ions (Fe3+, Ba2+, Pb2+, Cu2+) were mixed to
a stoichiometric ratio by adding the citric acid and de-ionized water at a temperature of 355 K.
The weight ratio between the citric acid and ion nitrites was 1.5:1. Following that, the mixture was
slowly cooled to 298 K. A pH correction using citric acid and a chelation was done. This lead to
a 3D-structure formation (nitrate-citrate xerogel). Then the xerogel was heated for the “dark gel”
phase formation (water evaporation transforms xerogel in the next solution stage—“dark gel” with
high viscosity). The “dark gel” was then heated to 523 K by self-ignition. It was accompanied by
the formation of a large volume of gas. This first stage allowed us to obtain the initial powders.
After pre-firing (at 733 K), samples were calcined at 1373 K for 2 h. The features of the crystal
structure and phase compositions were investigated using X-ray diffraction (XRD) under Cu-Kα radiation
(Rigaku D/MAX-2400, Japan). The peculiarities of the chemical composition and microstructure were
analyzed using Scanning Electron Microscopy (SEM) (Hitachi S-4800, Japan) with Energy-dispersive
X-ray spectroscopy (EDX). In addition, we used a high-resolution transmission electron microscopy
(HRTEM) (FEI Titan S/TEM microscope, Netherlands). The frequency dependences of the permeability
and permittivity were investigated using a co-axial method with an Agilent network analyzer in 8–12 GHz
and 100–1000 MHz frequency ranges. The impedance of the co-axial line was normalized (Z = 50 Ohm).



Nanomaterials 2019, 9, 202 3 of 13

Based on the obtained values for the real and imaginary parts of the permittivity and permeability
(ε′, ε”, µ′ and µ”), the reflection coefficients were calculated by referring to the theory of propagation
of an electromagnetic wave in the transmission line:
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where, D is the outer diameter of the coaxial cable, d is the inner diameter of the coaxial cable, µ is the
complex permeability, and ε is the complex permittivity.

To calculate reflection losses, the following formulae were used:
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where the modulus of the reflection coefficient shows the ratio of the amplitude of the reflected wave
relative to the incident amplitude in dB.

3. Results and Discussion

3.1. Crystal Structure and Microstructure

The XRD patterns of the Sr0.3Ba0.4Pb0.3Fe12O19/(CuFe2O4)x (x = 2, 3, 4, and 5) samples are
presented in Figure 1.

Figure 1. The X-ray diffraction powder patterns of the Sr0.3Ba0.4Pb0.3Fe12O19/(CuFe2O4)x composite
samples x = 2 (a), 3 (b), 4 (c), and 5 (d).
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The analysis of the XRD data proved the coexistence of two main phases in the samples: CuFe2O4
(JCPDS 34-0425) and BaFe12O19 (JCPDS 00-043-0002). The XRD data was processed using Rietveld
Refinement (FullProf. Software). The soft magnetic phase (CuFe2O4) corresponds to the spinel
structure with Space Group Fd-3m (No. 227)

The hard magnetic phase (Sr0.3Ba0.4Pb0.3Fe12O19) corresponds to the magneto-plumbite structure
with Space Group P63/mmc (No. 194). The analysis of the following parameters; Rwp (weighted profile
R-value), Rexp (expected R-value), RB (Bragg R-factor), Rmag (magnetic R-factor) and χ2 (goodness-of-fit
quality factor) was performed after refinement suggested that the investigated samples were of
sufficiently good quality and the refinements are effective. The features of the crystal structure for each
phase are shown in Table 1.

Table 1. The features of the crystal structure (a and c unit cell parameters and D—average crystallite
size) for each phase (Sr0.3Ba0.4Pb0.3Fe12O19 and CuFe2O4) of composites were obtained using XRD data.

Composition

Sr0.3Ba0.4Pb0.3Fe12O1
hard magnetic phase

(Å)

CuFe2O4 soft
magnetic phase

(Å)

D
(nm)

a c a Sr0.3Ba0.4Pb0.3Fe12O19 CuFe2O4

Sr0.3Ba0.4Pb0.3Fe12O19/(CuFe2O4)2
(1:2) 5.888 23.126 8.411 12.0 32.2

Sr0.3Ba0.4Pb0.3Fe12O19/(CuFe2O4)3
(1:3) 5.880 23.105 8.397 31.8 48.6

Sr0.3Ba0.4Pb0.3Fe12O19/(CuFe2O4)4
(1:4) 5.884 23.104 8.370 25.4 48.3

Sr0.3Ba0.4Pb0.3Fe12O19/(CuFe2O4)5
(1:5) 5.887 23.128 8.323 8.0 38.3

The values of a and c for the hard magnetic phase were slightly varied from 5.880 Å to 5.888 Å and
from 23.104 Å to 23.128 Å respectively. The value for the soft magnetic phase was slightly varied from
8.323 Å to 8.411 Å. Negative deviations in unit cell parameters in comparison with bulk ceramics can
be explained by the effect of surface compression upon the transition of crystallites to the nano level.
For all samples, a structural phase transition was not detected. A phase transition for Cu-spinel from
the cubic phase (SG Fd-3m) to the tetragonal phase (sp. gr. I41/amd) was no observed. These results
demonstrate to us that the sol-gel method allowed for the growth of both hard and soft ferrites as
strongly exchange-coupled composites [18]. This means that there are two separate phases (soft
and hard magnetic phases) without chemical interactions with strong magnetostatic coupling (bias
exchange between grains) that influences the electromagnetic properties of each phases.

The FE-SEM images and EDX spectra of Sr0.3Ba0.4Pb0.3Fe12O19/(CuFe2O4)x composite ceramic
samples (x = 2, 3, 4, and 5) are presented in Figure 2. The chemical fractions of all elements confirmed
the formation of the desired compositions in different samples. The HRTEM images (Figure 3)
demonstrate values for distances between the atomic planes of 0.47 and 0.50 nm. This corresponds to
the (102) and (100) atomic planes of hexaferrite. Distances between atomic planes of 0.20 nm is typical
for the (400) atomic planes of spinels [17,29,30].
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Figure 2. SEM images (a, c, e) and EDX spectra (b, d, f) of Sr0.3Ba0.4Pb0.3Fe12O19/(CuFe2O4)x composite
samples x = 2 (a, b), 3 (c, d) and 5 (e, f).

Figure 3. HRTEM images of Sr0.3Ba0.4Pb0.3Fe12O19/(CuFe2O4)x composite samples.
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3.2. Electrodynamic Properties

The tangent of the dielectric loss angle (tgδ), dielectric permittivity (real ε′ and imaginary ε” parts),
magnetic permeability (real µ′ and imaginary µ” parts) and impedance (Z) as functions of frequency
were extensively measured by widely adopted coaxial [31,32] and waveguides methods [33–35]. Due to
issues related to the measurement dynamical range, the waveguide method is appropriate for narrow
frequency ranges only and limited by the size of the sample. Thus, to measure the electrodynamic
parameters of the sample in a wide range, it is required to have different measuring sections of the
waveguide and to prepare samples of a suitable size.

It is better to use a coaxial or long-line method to measure the electrodynamic parameters of the
powder sample in wide-ranging frequencies [36].

Figures 4 and 5 demonstrate frequency dependencies of the permittivity and electrical conductivity.
Investigations were carried out at T = 300 K in the range of 8–12.5 GHz. Compacted Sr0.3Ba0.4Pb0.3Fe12O19/
(CuFe2O4)x composites (x = 2, 3, 4, and 5) were placed in the co-axial line (Z = 50 Ohm).
Figure 4 demonstrates that the real (top) and imaginary (bottom) parts of the permittivity depend slightly
on frequency.

Figure 4. Frequency dependencies of permittivity: real (a) and imaginary (b) parts for Sr0.3Ba0.4Pb0.3Fe12O19/
(CuFe2O4)x composite samples (x = 2, 3, 4 and 5).

In the investigated range, no critical changes in permittivity due to the absence of any electrical
losses in composites were observed over 8–12.5 GHz. Some blurred peaks on curves (deviation from
linearity) can be explained by some insufficient resonance due to geometric factors (interference losses).
For the real part, there was an observed dispersion in values for samples with x = 2, 4. This non-linear
behavior (decrease in permittivity only for samples with a determined concentration without any
concentration dependence) may be the result of different degrees of oxidation on the spinel/hexaferrite
grain boundaries with a high value of activation energy of conductivity.

Values for the imaginary part of permittivity and active electric conductivity were calculated
using the following equations:

ε”= ε′ × tgδ (5)

σa = ε”× ε0 ω (6)
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where, tgδ is the loss tangent, σ a is the active part of electric conductivity, ε0 is dielectric constant,
and ω, is the circular frequency (2πf).

Figure 5 demonstrates the frequency dependence of the electrical conductivity. The values
measured for the conductivity are typical for highly doped semiconductors or composites where
realized hopping conduction mechanism occur. The revealed blurred peaks are in agreement with
the measurement of permittivity in the same MW range. Differences in conductivity values between
compounds with x = 2 and 4; x = 3 and 5 were determined by the difference in the activation energy of
the intergranular potential barrier.

Figure 5. Frequency dependencies of electric conductivity for Sr0.3Ba0.4Pb0.3Fe12O19/(CuFe2O4)x

composite samples (x = 2, 3, 4 and 5).

Figure 6 demonstrates the frequency dependence of permeability (real and imaginary parts).
Further investigations were carried out at T =3 00 K in the range 8–12.5 GHz.

Figure 6. Frequency dependencies of permeability: real (a) and imaginary (b) parts for Sr0.3Ba0.4Pb0.3Fe12O19/
(CuFe2O4)x composite samples (x = 2, 3, 4 and 5).

There were no critical changes in permeability due to the absence of any magnetic losses in
composites observed in this region. Chemical substitution in hexaferrites must shift the peak of
the natural ferromagnetic resonance to the lower frequency region. The calculation of the magnetic
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permeability and dielectric permittivity of the Sr0.3Ba0.4Pb0.3Fe12O19/(CuFe2O4)x composites (x = 2, 3,
4, and 5) was performed using the Nicholson–Ross–Weer method (NRW) [37] by measuring the so
called ‘scattering’ parameters of the coaxial line segment S11 and S21. Figure 7a and b demonstrate the
frequency dependence of the S11–S21 parameters. These parameters correspond to the transition and
reflection losses (attenuation in incident power of the radiation).

Figure 7. Frequency dependencies of (a) S11 and (b) S21 parts for Sr0.3Ba0.4Pb0.3Fe12O19/(CuFe2O4)x

composite samples (x = 2, 3, 4 and 5).

Figure 8 demonstrates the reflection losses (RL) for Sr0.3Ba0.4Pb0.3Fe12O19/(CuFe2O4)x
composites (x = 2, 3, 4, and 5). The maximal values of RL for x = 3 and 5 are less than –4.5 dB thus the
main losses are due to reflection rather than absorption. Using transmission (TL − transmission losses)
and reflection (RL − reflection losses) coefficients, the absorption coefficient kabs was calculated
as follows [22]:

kabs = 10log (1 − 100.1ktr − 100.1kre f ) (7)

Figure 8. Frequency dependencies of reflection for Sr0.3Ba0.4Pb0.3Fe12O19/(CuFe2O4)x composite
samples (x = 2, 3, 4 and 5).

Figure 9 demonstrates the frequency dependence of absorption losses for the composites
investigated in the frequency range 8–12 GHz. It is clear that no sufficient weakening was caused by
electromagnetic absorption in this frequency range. It must be mentioned that this frequency range is
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a typical region of absorption for ferrites with a hexagonal structure. It means that the mixing of hard
and soft magnetic phases in composites leads to a significant decrease in the microwave properties of
hexagonal ferrites (hard magnets).

Figure 9. Frequency dependencies of absorption for Sr0.3Ba0.4Pb0.3Fe12O19/(CuFe2O4)x composite
samples (x = 2, 3, 4 and 5).

Figure 10 demonstrates the frequency dependence of absorption losses measured using a coaxial
method in the frequency range 1 MHz–1 GHz. This frequency region was chosen due to the possibility
of observing resonance reflection (NFMR) in the soft magnetic phase (spinel). It is noted that the
presence of resonance (significant weakening of the reflected radiation) in this frequency range is
typical of spinels [38,39]. Such behavior is due to a strong coupling between soft magnetic and hard
magnetic phases that results in a weakening of the absorption for hard the magnetic phase and an
increased reflection for soft magnetic phase as a function of the phase ratio concentration.

Figure 10. Frequency dependencies of the reflection losses (in dB) for Sr0.3Ba0.4Pb0.3Fe12O19/ (CuFe2O4)x

composite samples (x = 2, 3, 4 and 5).

Figure 11 demonstrates the concentration dependence of the maximum value of reflection
or resonant amplitude (Ares) and of the resonant frequency (Fres) corresponding to Ares. It was
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demonstrated in the top graph of Figure 11 that the increase of the x value leads to an increase in the
reflection losses maximum (as modulus) from −8.36 dB for x = 1 to −20 and −19.5 dB for x = 4 and
x = 5 respectively.

Figure 11. Composition dependencies of the resonant amplitude −Ares (a) and resonant frequency
−Fres (b) for Sr0.3Ba0.4Pb0.3Fe12O19/(CuFe2O4)x composite samples (x = 2, 3, 4 and 5).

Monotonic increase in the reflection coefficient corresponds to the resonance absorption processes.
This could be due to an increase in the spinel phase in composite materials. It is well known that
resonant frequency of absorption for spinels is observed in the MHz range (from several tens to several
hundred MHz depending on the composition). Modification of the resonant frequency as a function of
x is not linear and has complex behavior. Nevertheless, the range of Fres is not wide (min Fres = 91 MHz
for x = 4 and max Fres = 121 MHz for x = 2). It means that absorption in investigated composites
is characterized by resonant phenomena in spinel phase (for M-type hexaferrites Fres~50-51 GHz).
Non-linear shifts in Fres may be the result of intergranular interactions between two magnetic phases
in composites.

4. Conclusions

Measurements of the MW characteristics for several typologies of nanoferrites [Sr0.3Ba0.4Pb0.3Fe12O19/
(CuFe2O4)x (x = 2, 3, 4, and 5)] were performed using a coaxial method in the X-band (frequency range
8–12 GHz). It was observed that differences in values of the real part of permittivity and conductivity
occur depending on the ferrites compositions. This non-linear behavior may be the result of different
degrees of oxidation on spinel/hexaferrite grain boundaries with a high value of the activation energy of
the intergranular potential barrier. As expected in the range of 8–12 GHz, the highest RL was found for
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x = 3 and 5 (less than −4.5 dB), meaning that the main losses are due to reflection rather than absorption.
The strong coupling between phases was established by measurements performed using a coaxial method
in the frequency range 1 MHz–1 GHz. In this frequency range there was a resonance behavior which is
typical for spinels. It was demonstrated that the reflection losses maximum (as modulus) increases with an
increasing x value from −9.1 dB (for x = 2) to −20–−19.5 dB (for x = 4 and x = 5 respectively). Monotonic
increase in the reflection coefficient corresponds to the resonance absorption processes. This may be due
to an increase in the spinel phase influence. Non-linear shifts in Fres may be the result of intergranular
interaction between two magnetic phases in composites. Effective absorption of these composites opens
broad perspectives for their exploitation in 4G-technology (information transfer) as well as for biomedical
applications (for example, as magnetic nanoparticles for hyperthermic applications against cancer).
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