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ABSTRACT Software-defined networking (SDN) is an emerging network architecture that promises to

simplify network management, improve network resource utilization, and boost evolution and innovation

in traditional networks. The SDN allows the abstraction and centralized management of the lower-level

network functionalities by decoupling the network logic from the data forwarding devices into the logically

centralized distributed controllers. However, this separation introduces new scalability and performance

challenges in large-scale networks of dynamic traffic and topology conditions. Many research studies

have represented that centralization and maintaining the global network visibility over the distributed

SDN controller introduce scalability concern. This paper surveys the state-of-the-art proposed techniques

toward minimizing the control to data planes communication overhead and controllers’ consistency traffic

to enhance the OpenFlow-SDN scalability in the context of logically centralized distributed SDN control

plane architecture. The survey mainly focuses on four issues, including logically centralized visibility,

link-state discovery, flow rules placement, and controllers’ load balancing. In addition, this paper discusses

each issue and presents an updated and detailed study of existing solutions and limitations in enhancing the

OpenFlow-SDN scalability and performance. Moreover, it outlines the potential challenges that need to be

addressed further in obtaining adaptive and scalable OpenFlow-SDN flow control.

INDEX TERMS SDN, OpenFlow, controller, scalability, global network view, flow rules placement,

centralized flow control, load balancing, discovery protocol.

I. INTRODUCTION

Today’s Internet is used as a global communication platform

for the heterogeneous and large number of dynamic appli-

cations, services, physical objects, and machines. Network

traffic control and orchestration in modern networks is a

very complex task that requires to adapt to the time-varying

changes in link utilization, bandwidth allocation, latency,

energy consumption, and jitter over a heterogeneous network.

The emerging Internet of Things (IoT) and the adoption

of multi-tenant data centers (DC) generate a large amount

of traffic and add more complexity to the network. Unfor-

tunately, traditional network’s architecture is complex and

not well designed to enable the fine-grained and QoS-aware

traffic engineering over the network. The compact integration

of control and data planes complicates the network traffic

monitoring process resulted in less QoS-aware flow control
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and inefficient resource utilization. It is time-consuming and

expensive to manage the network devices separately espe-

cially in time-varying and multi-tenant data center environ-

ments. According to the Enterprise Strategy Group (ESG),

traditional networks require to automate the manual pro-

cesses of network management, provides better visibility for

efficient resource utilization and provides dynamic network

orchestration to align with cloud computing. ESG stats that

as data center grows in scale, network management operators

struggle of too many manual and reconfiguration processes,

which may reach nearly 40 percent of the most common

network operations problems.

In addition to the configuration complexity, traditional

networks are not well designed to adapt and self-manage to

active, unpredictable faults and load changes in large-scale

networks [1]. The underline network architecture lacks

programmability, and hence cannot meet the application

layer needs in real-time. The time-varying and tremendous

amount of traffic in application layer requires global network
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visibility and abstraction for better QoS provisioning,

resource utilization and for avoiding the need to enforce

global policies by carefully crafting switch-by-switch

configuration.

Software-Defined Networking (SDN) is an emerging

network architecture that promises to simplify network man-

agement, improve network resource utilization, and boost

evolution and innovation in traditional networks. SDN intro-

duces the abstraction on the network layers by separating

the control plane (networking logic) from the data plane

(routers and switches) to an external entity (controller). This

separation decouples network devices from management and

allows both planes to evolve independently, provides design

flexibility and programmability compared to traditional net-

work architectures [2].

In SDN architecture, traffic forwarding devices become

simpler and easier to be deployed, upgraded or configured by

a centralized SDN controller. The network management and

configuration becomemuch simpler as they can be performed

from a centralized point in the network and thus significantly

reduce the operational expenses (OPEX). The centralized

management of SDN enables dynamic on the fly reconfigura-

tion and adaptation to the time-variant fault and load changes

in the network as well as reduces the complexity of routing

and traffic engineering. SDN simplifies orchestration for both

static and dynamic network changes. It also enables a stan-

dard based homogeneous network and network programma-

bility, portability, global management and optimization, and

efficient utilization of the network resources. Furthermore,

it provides true network visualization by enabling the abstrac-

tion of the underline network and offers a flexible Network

as a Service (NaaS) as proposed in OpenVirtex [3]. Virtual

networks can also efficiently slice and share the same physi-

cal hardware resources to be provisioned on-demand without

affecting virtual network operations [4].

Today SDN gains more interest in the industry. According

to Statistics MRC, ’’the Global Software Defined Network-

ing (SDN) Market accounted for $10.88 billion in 2015 and

is expected to reach $134.51 billion by 2022 growing at a

CAGR of 43.2% from 2015 to 2022’’, which is extremely

high. Google, as an instance, uses SDN in its data centers’

network solutions such as B4 [5], Jupiter [6] and Andromeda.

Google’s B4 is a network backbone that has adopted SDN

for interconnecting WAN data centers across the planet.

The reason behind using SDN in B4 is to increase efficient

link utilization and enable global network visibility over the

network edge. Thus, it promotes relative application traffic

demands/priorities during resource constraints, dynamically

reassign bandwidth in response to link failures or changes in

traffic patterns and control bursts traffic rather than a complex

over-provisioning. B4 shows an increase in link utilization

reaches to an average of 70% utilization which corresponding

to 2 − 3x efficiency of standard network practice.

Despite the advantages of decoupling the network control

logic from the underlying forwarding devices, there have

been concerns on the network scalability and performance.

The new communication channel between control and data

planes adds extra delay and increases the amount of control

traffic, which can be vertical between the control and data

planes or horizontal among the distributed controllers. This

amount of traffic increases proportionally to the time-varying

changes and scaling of the network, resulting in high commu-

nication and computational load in the control plane [7]–[9].

Several studies have been conducted toward improving

SDN-based networks scalability and performance. Early

works focused on restructuring the control plane by dis-

tributing the controllers hierarchically or horizontally while

maintaining a logically centralized control on each distributed

controller [10]–[16]. Other research works focus on the elas-

ticity and placement of the distributed controllers to dynami-

cally identify the optimal number and locations of controllers

in the network [17]–[22]. Researchers have also considered

the deployment of SDN switches and their controllers in

hybrid SDNs for maximizing the number of flows managed

by SDN and therefore enhancing legacy network’s scalabil-

ity and performance [23]–[32]. However, in this survey we

focus on the research studies toward re-engineering SDN

communication traffic vertically between control and data

planes or horizontally among controllers, resulted from some

SDN-scalability related challenges such as 1) controller’s

global visibility, 2) link-state discovery, 3) flow-rules place-

ment, and 4) controllers’ load unbalancing, in dynamic and

large-scale networks. Considering the importance of SDN

flow management in the future of wire/wireless networks,

this paper presents a comprehensive literature survey on some

of the key challenges and research efforts to enhance the

OpenFlow-SDN scalability and performance in the context

of logically-centralized distributed SDN controllers. It also

provides a discussion and comparison study on the currently

proposed solutions and demonstrates some future research

challenges.

The rest of the paper organizes as follows: Section II gives

an overview of the standard OpenFlow-SDN flow control.

Section III presents the key challenges in the OpenFlow-SDN

flow control that affect the performance and scalability of the

network. Section IV provides a detailed survey of existing

and state-of-the-art solutions proposed in the literature of

the OpenFlow-SDN logically centralized visibility. Section V

provides a detailed survey of existing and state-of-the-art

solutions proposed in the literature of the OpenFlow-SDN

link-state discovery. Section VI provides a detailed survey of

existing and state-of-the-art solutions proposed in the litera-

ture of the OpenFlow-SDNflow-rules placement. Section VII

provides a detailed survey of existing and state-of-the-art

solutions proposed in the literature of the OpenFlow-SDN

controllers load balancing. Section VIII discusses and sum-

marizes the research challenges and future directions. Finally,

Section IX wraps the paper up with concluding remarks.

II. AN OVERVIEW OF OPENFLOW-SDN FLOW CONTROL

SDN architecture consists of five main components;

application plane (AP), northbound interface (NBI),
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FIGURE 1. Physically distributed but logically centralized SDN
architecture.

control plane (CP), southbound interface (SBI) and data

plane (DP) [33] as shown in Figure 1. The application plane

is the set of network applications that leverage the exposed

northbound APIs to define the rules and instructions that con-

trol the network logic. The northbound APIs interface trans-

lates these instructions to the control plane which provides

fine-grained control over the forwarding nodes and offers

many network services such as routing, monitoring, load

balancers, and firewalls. These applications either embodied

in the control plane (e.g., routing optimization, network man-

agement and monitoring, security, traffic engineering, and

QoS control) or located in a proxy server (e.g., firewall and

authentication servers). The control plane consists of one or

more controllers that forward the instruction sets and policies

defined by network applications to the data plane via the

southbound APIs interface. Centralization and visibility over

the network allow the controller to orchestrate application

demands for limited dynamic network resources [33].

OpenFlow [35] is the first and predominant SDN flow

control protocol which has already been the de facto standard

for controlling SDN-based switches. It plays the role of the

southbound interface to allow the controller to have direct

access and control of the data forwarding network devices.

OpenFlow is standardized by Open Networking Founda-

tion (ONF) to address dynamic nature and high-bandwidth

of today’s applications, and reduce the management com-

plexity. Forwarding and Control Elements (ForCES) [36]

and Protocol-oblivious forwarding (POF) are other exam-

ples of the southbound flow control platforms. Similarly to

the flow tables in OpenFlow, ForCES uses logical function

blocks (LFB) in the data forwarding devices to provide net-

working functionalities, such as IP routing. However, this

research aims to study the state-of-the-art flow control mech-

anisms and research challenges in the OpenFlow-SDN. The

lowest layer of SDN architecture is the data plane that consists

of simple physical/virtual data forwarding nodes such as

switches or vSwitch. This layer includes the minimal neces-

sary network functions as packets lookups and forwarding in

which they are responsible for forwarding packets according

to the rules and instructions that are configured by the control

plane.

According to the OpenFlow Switch Specification version

1.5, an OpenFlow-based virtual or physical switch consists

FIGURE 2. OpenFlow version 1.5 switch components [34].

FIGURE 3. OpenFlow 1.5 flow entry [34].

of at least one ingress flow table, a group table and control

channels to communicate with the controller as shown in Fig-

ure 2. Flow tables are sequentially ordered and can perform

packet lookups and forwarding. Each flow table can store a

set of flow entries that consists of matching fields, statistical

counters and a set of flow instructions (actions) as illustrated

in Figure 3. Matching fields are used to match the packet

header fields such as Ethernet source and destination address,

packet ingress port, and other pipeline fields. The matching

field can use wild-card to match any value or in some cases

uses bit-masked to match a subset of bits. The controller can

send/receive events from/to the data forwarding node via the

OpenFlow-based control channels. It can also add, update or

remove the installed flow entries reactively or proactively.

If a packet arrives on an OpenFlow-based forwarding node,

the matching process starts in the first flow table and may

continue on the next tables in the pipeline unless a matching

flow entry is found. The process of checking flow entries

in the pipeline flow tables is performed sequentially. When

the packet’s matching header matches with a flow entry in

the pipeline flow tables, the instructions associated with the

flow entry will be executed. Otherwise, the instruction asso-

ciated with the table-miss flow entry in the last flow table

will be executed and depending on the configuration of the

table-miss flow entry, the packet either be forwarded to the

controller over the OpenFlow channel or simply dropped.

The instructions associatedwith each flow entry either con-

tain actions or pipeline processing. Actions are responsible

for giving instructions to packet modification, forwarding

107348 VOLUME 7, 2019



M. Alsaeedi et al.: Toward Adaptive and Scalable OpenFlow-SDN Flow Control: A Survey

or group table processing. On the other hand, pipeline pro-

cessing is responsible for giving instructions to sent pack-

ets to the subsequent flow tables and allows the commu-

nication of meta-data information among flow tables. The

matched packet may be forwarded to physical, logical or

a reserved port defined by the specification. The reserved

ports are only used for generic forwarding actions such as

broadcasting, sending and receiving to/from the controller,

or for non-OpenFlow based forward processing. Moreover,

OpenFlow-based data forwarding node contains logical ports

that are used to specify link aggregation groups, loopback

interfaces or tunnels. Flow packets may also be forwarded to

a group table, which specifies additional sets of actions such

as flooding or more complex forwarding semantics (e.g., fast

reroute, multi-path, and link aggregation). The Group table

consists of a set of group entries that contains a list of action

buckets with specific semantics dependent on the group type.

Furthermore, it enables to forward multiple flow entries to a

certain common IP address.

OpenFlow pipeline processing as illustrated in Figure 4

starts when a flow packet arrived at the ingress first flow table

and matched against flow entries. If the flow packet does not

match with any flow entry, the instruction set direct the packet

to the next flow table using the GotoTable instruction. The

same process will continue checking the matched flow entries

in every flow table until the matched flow entry founded

and the associated instruction set executed. On the other

hand, if pipeline processing completed while no matched

flow entry was found, packet then will be processed as a

table_miss. Depending on the pre-configured instructions in

the table-miss entry, the packet either be dropped, forwarded

to a subsequent table or sent to the controller on a packet_in

message via the control channel. In case the table_miss flow

entry does not exist, the unmatched packets are dropped (dis-

carded) by default. A large number of packet_in messages

are expected to be generated in the case of dynamic and

large-scale network traffic conditions where many unknown

flow packets frequently arrive at the forwarding node.

However, sending a flow request (packet_in message) to the

controller for every unknown packet can overwhelm the con-

troller because the controller needs to calculate the forward-

ing rules of every new packet and then install it to the flow

tables in all the respective data forwarding nodes (switches or

VSwitches). Such amount of traffic and computational load

may lead to a controller overhead and increase flow-rules

placement delay, and hence affects the network performance

and scalability [37].

In OpenFlow-SDN, the controller has a global network

state visibility over the network, which thereby can install

the forwarding rules (flow entries) proactively to the flow

tables in every connected data forwarding device. How-

ever, due to high wildcard lookup performance of Ternary

Content-Addressable Memory (TCAMs), it has been used to

implement flow tables. Unfortunately, TCAM is very expen-

sive and thus flow tables cannot scale well due to its capacity

limitation which usually from 4000 to 32000 entries [1].

According to OpenFlow version 1.5, only a maximum of

1082 bits can be used per flow entry. As a result, flow tables

cannot handle a large number of proactively installed flow

entries that can provide a network-wide state to the data

plane.

III. CHALLENGES AND BACKGROUND

Despite the significant advantages of deploying SDN archi-

tecture, the centralization of control plane introduces a major

scalability issue for SDN. The single controller architec-

ture of SDN can perform well and obtain optimal flow

management and configuration in the case of static and

small networks. Controllers like NOX [38], Beacon [39],

Floodlight [40], Maestro [41] and McNettle [42] are exam-

ples of a centralized single controller. Early research studies

focus on improving the performance and scalability of a sin-

gle controller by exploiting parallelism (e.g., multi-threading,

multi-core). For instance, the single-threaded NOX [38] con-

troller is optimized by enabling multi-threading (NOX-

MT [43]) to improve its throughput and response time.

Beacon [39] and Maestro [41] are also other examples of

optimized controllers that use parallelism to improve their

performance and scalability. Beacon can achieve a throughput

of 12.8 million rps (response per second) with an average

delay of 0.02ms using 12 processing cores while Maestro can

achieve 0.63 million rps with an average delay of 76ms using

7 processing cores [37].

Although a single and centralized controller of high com-

putational resources (super controller) can handle a large

amount of network flow, it will inevitably form a signifi-

cant bottleneck in the long run of a large-scale network of

dynamic tuning traffic and topology conditions where the

number of data plane elements and traffic flow grows over

the time. The single centralized SDN controller represents a

single point of failure and considerably increases the latency

when processing a massive number of data plane requests

and controlling the whole network topology. Moreover, in the

case of widely separated inter-connected data centers, a single

controller introduces a propagation delay. As a result, the idea

of multiple controllers is proposed as a solution to resolve

the scalability limitation and reliability of a single point

of failure controller. In this architecture, the controllers are

either logically distributed in one layer (flat) or hierarchically

distributed in multi-layer (hierarchical). Table 1 shows some

of the popular distributed controllers that can provide central-

ized management over the network.

Decoupling control logic from data forwarding nodes to

allow SDN centralized management and abstraction, intro-

duces new challenging scalability issues. Many research

studies have represented that maintaining global net-

work visibility to enable each distributed SDN controller

to act as a centralized controller introduces scalability

concerns [1], [4], [7]–[9], [49]. The logically centralized vis-

ibility can be a major concern for the dynamic and large-scale

networks as the Internet of Things (IoT) and Data-Centers

(DC) where a huge number of entities (e.g., physical objects,
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FIGURE 4. OpenFlow 1.5 Pipeline Processing [34].

TABLE 1. OpenFlow-SDN control plane architecture.

VMs, applications) communicate and dynamically join or

leave the network. As the size of a network grows, con-

trollers become a potential bottleneck and fail to handle

all the controller’s ingoing/outgoing control or consistency

traffic. Therefore, this survey presents some of the scalability

challenges facing current OpenFlow-SDN architecture that

can lead to control and consistency traffic overhead under

dynamic and large-scale network conditions. As illustrated

in Figure 5, this survey organizes these challenges into four

main categories: Logically Centralized Visibility, Link State

Discovery, Flow Rules Placement and Controllers’ Load

Balancing.
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FIGURE 5. OpenFlow-SDN scalability challenges under dynamic and
large-scale network conditions.

A. LOGICALLY CENTRALIZED VISIBILITY

In the distributed SDN control plane architecture, every con-

troller requires to have a global view of the network topology

to act as a centralized controller. Hence, every controller has

to share its local network state view with other controllers.

Replicating the global link-state view in every distributed

controller can guarantee a logically centralized controlling

and transparency over the data plane. However, maintaining

a consistent replica of the network-wide state among con-

trollers in a large-scale network of dynamic traffic and topol-

ogy conditions may result in a massive amount of frequent

synchronization traffic that can overwhelm the controller.

The interval time between two consecutive synchronizations

can also lead to forwarding errors such as routing Loops

and black-holes caused by the periodic state inconsistency.

Moreover, the time required to maintain a consistent replica

of global network state view may result in a spike in the con-

trol plane response time and therefore increases the overall

flow-rules placement delay and impacts the network scala-

bility and performance [9]. The logically centralized control

plane architecture should provide the flexibility to balance

the trade-offs between the centralized network-wide state

visibility, scalability, and timeliness. The inter-controller con-

sistency process that maintains global network visibility in

each controller has to be adaptive to the dynamic network

conditions to reduce the amount of consistency traffic that

can burden the network scalability.

B. LINK STATE DISCOVERY

In SDN, the control plane has to have a real-time up-to-

date view of the global network view and status to act as

a centralized controller and efficiently serve the data plane

forwarding requests. The entire control plane management

procedure is substantially affected by how efficiently it can

discover data plane forwarding nodes and links to maintain

a centralized global view of the network’s topology [50].

The forwarding errors such as Reachability Failures, Routing

Loops, Black-holes, Traffic Isolation, and Leakage due to

inconsistency between data and control planes proportionally

decrease to the efficiency and performance of the discovery

process. Furthermore, with the massive proliferation of net-

work devices and the complexity of dynamic and large-scale

network topologies, more sophisticated and efficient discov-

ery protocol mechanisms are needed. Therefore, it is impor-

tant that the SDN discovery protocol supplies the control

plane with a real-time view of the network topology to meet

the application and dynamic routing QoS demands.

C. FLOW RULES PLACEMENT

Flow-based forwarding nodes use Ternary Content Address-

able Memories (TCAMs) to match and forward the arrived

packets in constant time. Despite their high speed, TCAMs

are expensive and therefore have a minimal capacity. How-

ever, SDN traffic routing is per-flow with large flow entries

of minimum 356 bits in 15 field tuples out of 40 fields

as per the OpenFlow 1.5 specification [34]. To maintain a

per-flow fine-grained control, the controller may require to

install more than one entry in the flow tables to forward one

single flow. Consequently, the OpenFlow-based forwarding

element needs a large TCAM memory size to accommodate

such a large amount of flow entries.

To cope with the limited size of TCAMs flow tables,

controllers can reactively (on-demand) install flow entries

every-time a new flow packet arrives at the switch. Unfor-

tunately, in highly dynamic and large-scale networks where

traffic changes dynamically over time, the number of

flow-rules placement requests increase rapidly, and hence

lead to a controller traffic overhead, increase the con-

troller response time and the end-to-end flow-rules place-

ment delay [37]. This delay can significantly increase to a

level which can not meet with the requirements of real-time

applications and result in degrading network performance and

scalability [9].

The scalability and performance drawbacks resulted from

the limited size of the flow tables is represented when a

high number of new flows aggregated in the edge switches.

The data plane needs to forward every first packet of

the (unknown) new streams that does not match with any

stored flow entry to the controller. As a result, the con-

troller requires to calculate the forwarding rule for each

flow (stream) and install it in all corresponding data forward-

ing devices (switches or routers). Monitor every new stream

and install its forwarding rules can overwhelm the controller

and makes it as a potential bottleneck [51]. The controller

needs to calculate every new flow forwarding path and install

it as instructions into the flow table’s entries which may add

extra latency on routing process and therefore hinder the net-

work performance and scalability, see Figure 6. The reactive

placement of forwarding rules can be a serious scalability

problem in dynamic large-scale networks such as IoT where

a diverse of Internet-connected devices are increased in the
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FIGURE 6. OpenFlow-based controller’s response time to the flow rules
placement request.

volume and variety of network requests, creating a significant

load on the controller [52]. IoT networks typically commu-

nicate with SDN-based networks through OpenFlow-based

gateways and thus add more burden traffic load over the

TCAM data tables. Due to the capacity limitation of TCAM,

the OpenFlow protocol configures the flow entry’s idle time-

out with a small value. Therefore, if the flow has not been

transmittedwithin the idle timeout, its entries will be removed

to give more space in the flow tables for other active flows.

However, the diversity and heterogeneity of IoT communi-

cation networks and devices traffic can easily overwhelm

the timeout-based flow-rules placementmechanism [53]. The

mobility, fluctuation and infrequent transmission of flow

samples in IoT based devices make the static idle timeout as

an inefficient way to reduce the communication between the

controller and OpenFlow-based IoT gateways/sinks because

of the removal of IoT flow entries before the arrival of the

next IoT flow samples. Results in an additional burden on the

controller (controller bottleneck) and thus add extra latency

into the overall flow-rules placement process. Furthermore,

in mobile or wireless networks where nodes dynamically

join and leave the network, a big number of requests are

going to be forwarded to the controller to update flow entries

which introduce overhead on the control plane and affects

the network scalability and performance [37]. The research

work in [54] presents the impact of the timeout period on the

signaling traffic and the flow table occupancy by studying the

inter-arrival times of heterogeneous flows.

D. CONTROLLERS’ LOAD BALANCING

In the distributed SDN control plane architecture, the map-

ping between the data plane elements (switches or routers)

and the controllers are statically configured. As a result,

controllers can become overloaded due to uneven load bal-

ancing of the distributed controllers especially in dynamic

large-scale networks of temporal/spatial variations in the

traffic characteristics. A controller may become overloaded

when the direct connected switches/IoT gateways observe

a large amount of aggregated traffic, and hence increase

flow-rules placement latency and hinder the network avail-

ability and scalability [55]–[57]. Elastic controller provision-

ing in response to the temporal/spatial variation in network

traffic conditions can be used to improve scalability and

prevent the controller from being a potential bottleneck [58].

However, inefficient use of the available resources is wast-

ing resources and improperly increases capital expenditures

(CAPEX). As a result, the load-balancing among controllers

has to be adaptive to the network dynamic changes to main-

tain better network resource utilization and scalability.

IV. OPENFLOW-SDN LOGICALLY CENTRALIZED

VISIBILITY

The distributed controllers require to share their network

state view to provide an optimal end-to-end and fine-grained

network control and build a consistent and centralized global

view of the network. Replicating identical clones of the global

network state view in every controller is used to improve reli-

ability, fault-tolerance and (replication) transparency of the

distributed controllers. However, periodic synchronization to

maintain a consistent replica of the network-wide state among

controllers can intensively consume network bandwidth and

lead to problems such as controllers overloading or routing

misbehavior during the interval between two consecutive

synchronizations. Therefore, it is important to synchronize

any data plane related event in a timely fashion to keep a con-

sistent network state among the controllers and avoid poten-

tial routing misbehaviors such as routing loops and black

hols [59]. The trade-off between centralized network-wide

state visibility and scalability of the distributed control plane

has attracted researchers to propose different controller state

distribution techniques for better scalability and performance

under large-scale and dynamic network traffic and topology

conditions.

Hu et al. [60] provided a survey on the recent solutions for

maintaining a consistent global network state view among

multi-controllers. The literature classified the existing solu-

tions into two aspects: 1) consistency of control state; 2) con-

sistency of control strategy. However, in this survey, we aim

at presenting the research efforts toward re-engineering the

inter-controller traffic to prevent controllers from being

overloaded and therefore enhancing the network scalability.

Based on how the global network state view is maintained and

distributed among controllers, we classify the proposed dis-

tributed global network state view into three main schemes;

flat controller state distribution, hierarchical controller state

distribution, and hybrid controller state distribution as illus-

trated in Figure 7.

A Comparison of the different controller state distribution

mechanisms is also provided in Table 2.

A. FLAT CONTROLLER STATE DISTRIBUTION

Controllers of this scheme are horizontally distributed and

share their state view using a distributed data store, hash
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FIGURE 7. OpenFlow-SDN network state view mechanisms in multiple controllers.

tables or publish-subscribe messaging to build a consistent

and centralized global view of the network.

1) DISTRIBUTED DATA STORE

Controllers store their network state view in a flat-distributed

data store (e.g., Network Information Base (NIB), Stores,

sharding). Each controller in this scheme synchronizes its

state domain with other controllers to realize centralized

visibility over the network. The authors in [61] propose

two periodic synchronization schemes, i.e., Link Balance

Controller (LBC) and Separate State Link Balancer Con-

troller (SSLBC) to minimize the maximum inter-controllers

link utilization. However, the frequent periodic synchroniza-

tion may result in synchronization traffic overhead in the

distributed controllers. Moreover, these schemes are clas-

sified under eventual consistency (EC) model [63], which

can temporarily introduce state inconsistency, and there-

fore causes routing problems, such as forwarding loops and

black holes, due to the inconsistency in the interval between

two consecutive synchronizations. To overcome these issues,

the authors in [66] propose an event-based controller syn-

chronization mechanism so-called Load Variance-based Syn-

chronization (LVS) that synchronizes controllers only when

a load of a specific controller or domain exceeds a certain

threshold. The proposedmechanism reduces the synchroniza-

tion overhead as possible by updating all controllers with

the crucial variance of network status that could lead to

forwarding loops.

A controller as ONOS [12] uses the RAFT [67] consensus

algorithm to maintain strong consistency. Each controller

replica is assigned a follower, leader or candidate role. Fol-

lowing a committed state-update at the leader controller,

the update is propagated to the follower controllers only

after half of them have agreed on the update. Unlike the

eventually consistent model, the strong consistency comes

at the cost of increasing controllers’ response time and

lowering their availability. ONOS [12] is a logically cen-

tralized open-source controller which follows in the foot-

steps of ONIX [10] controller. It builds on the open-source

single-instance Floodlight [40] SDN controller. Each ONOS

instance is responsible for propagating the network state of its

data-plane viewwith the global network view. Controllers are

instantiated as the capacity of data plane grows. Each switch

in ONOS requires to be connected to multiple controller

instances to maintain a fault tolerance, but only one instance

is selected as a master. If a master instance fails, a new

instance is selected from the remaining pool of instances

to be the new master. Multiple instances of RAFT protocol

is running simultaneously to maintain strong consistency

among the controllers. To improve scalability, the controllers’

network state is partitioned into shards of distributed stores

data structure, where each shard is managed by a different

RAFT instance and shared among notmore than 3 controllers.

The research work in [59] studied the inter-controller traffic

and realized that the significant source of traffic overhead is

mainly from the consensus protocols. The study developed

some empirical models to quantify the traffic exchanged

among the controllers, depending on the considered shared

data structures.

Adaptive consistency is also proposed in some recent

works as in [62], [63] and [68]. In this scheme of consistency,

the periodic synchronization is tuned according to the current

network state to achieve a certain consistency level. Changing

the controller consistency level on-the-fly can maintain a

scalable system that sacrifices application optimality for less

synchronization overhead. Adaptive consistency can achieve

consistency and availability among controller with lower

synchronization traffic overhead, and therefore enhances the

network scalability.

2) DISTRIBUTED HASH TABLES

Distributed Hash Table (DHT) is a type of decentralized

distribution that provides a lookup similar hash table of

key-value pairs to partition data among distributed nodes.

In this scheme, DHT is responsible for distributing the stor-

ing network state views among controllers. Each distributed

controller has a unique global identification (GUID) and a

hash table that contain a key and value pairs of its local

link-state views. Retrieving a certain link state view is per-

formed by sending a request message to the controller of an

index (GUID) that hosts the key resulted from a hash function

of that value. DHT based distribution of the network-wide

VOLUME 7, 2019 107353



M. Alsaeedi et al.: Toward Adaptive and Scalable OpenFlow-SDN Flow Control: A Survey

TABLE 2. A comparison of proposed openFlow-SDN controllers state distribution mechanisms.

state views among controller instances is used to avoid over-

whelming controller resources due to replicating and updat-

ing network stat at all controller instances to scale to a vast

network. However, it increases flow-rules placement latency

as a result of inter-controller communications to access topol-

ogy state for calculating the routing path of the control plane

packet_in flow-rules placement requests.

ONIX [10] and Beehive [21] are examples of distributed

controllers that use the DHT distribution primitive to obtain

logically-centralized control over the data plane. ONIX

has two types of consistency mechanisms for synchroniz-

ing network state updates among the controller instances:

a replicated transactional database designed for ensuring

strong consistency, and a distributed hash table for main-

taining an eventual consistency. Each ONIX instance shares

and disseminates its view of the underlying network state to

other instances within the network domain. The management

and control layer is implemented on top of ONIX’s APIs

and responsible for controlling the network behavior. ONIX

offers general-purpose APIs for control applications while

allowing them to make their trade-offs among consistency,

durability, and scalability. The controller can actively cache

its local view of the corresponding data plane elements while

reactively request other remote controllers’ views to maintain
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fragmentation transparency over the data plane forwarding

elements and ensure availability and scalability.

3) DISTRIBUTED PUBLISH-SUBSCRIBE MESSAGING

The publish-subscribe messaging pattern is a way of

decoupling the information providers and consumers. The

provider (publisher) disseminates data without knowing the

consumer while the consumer (subscriber) registers its inter-

est to the required data. Each controller can publish its local

network state view to other controllers without the delay

resulted from request-reply of the client-server communica-

tion model. This pattern can be used efficiently to maintain

global network state view over the distributed controllers

while guarantees better control plane scalability.

HyperFlow [44] is one of the early distributed event-based

controllers for OpenFlow using the publish-subscribe mes-

saging which implemented as an application for NOX

controller [38]. HyperFlow uses WheelFS [69] distributed

file system with a familiar POSIX interface which allows

applications to adjust the trade-off between prompt visi-

bility of updates from other sites and the ability for sites

to operate independently despite failures and long delays.

WheelFS allows these adjustments via semantic cues, which

provide application control over consistency, failure han-

dling, and file and replica placement. HyperFlow proposes

to localize decision making to interconnecting indepen-

dent distributed controllers that can serve data plane with-

out contacting any remote controller. To reduce the con-

troller response time and achieve better scalability, Hyper-

Flow implements event-based publish-subscribe messaging

to propagate and eventually replicate the controller’s network

view state among all distributed controllers. Every controller

has a HyperFlow instance which selectively publishes the

events that make a change to the state of the networks.

HyperFlow controllers in a specific domain can get most

of the updates of other domains from nearby controllers,

thus minimizes the cross-site traffic required to propagate

synchronization events.

Although, the HyperFlow controller passively publishes

state to other controllers to significantly reduce the response

time of contacting remote controllers, it does not efficiently

reduce the amount of link capacity required for maintaining

inter-controller consistency in a highly dynamic and scale-out

networks and assumes that only a tiny fraction of network

events cause changes to the network-wide view. Furthermore,

it can not prevents the routing problems as forwarding loops

caused by the temporary inconsistency during the passive

propagation of synchronization traffic among controllers.

OpenDayLight [13] controller platform is a distributed

controller that introduces modularity in implementing con-

trol functions by using Model-Driven Software Engineer-

ing (MDSE) specification. OpenDayLight went further

beyond the basic premise of SDN and supported multi-

ple southbound protocol plugins, services, and applications.

Furthermore, it supports some programmability technolo-

gies and SDN platforms, including OpenFlow, OVSDB,

NETCONF/YANG, and BGP, thus allows application

developers to focus more on SDN APIs rather than

underlying network communication protocols. OpenDay-

Light uses RAFT [67] consensus algorithm to maintain

strong consistency. It also supports both request-reply and

publish-subscribe communication patterns by implementing

a Model-Driven SAL (MD-SAL) service bus in each con-

troller. The request-reply pattern is implemented by RPC

module while publish-subscribe functionality is provided by

notification module.

DIstributed SDN COntrol (DISCO) [11] controller uses

(topic-based) publish-subscribe messaging based on the

Advanced Message Queuing Protocol (AMQP) to control

multi-domain SDN. DISCO is a flat distributed controller

implemented on top of Floodlight [40] controller and pro-

vides a lightweight and highly manageable inter-controller

channel to let all controllers share their link-state views.

DISCO does not impose a strong consistent network-wide

state in all controllers and provides a distributed con-

trol plane for WAN and constrained networks based

on a message-oriented communication bus. DISCO con-

troller consists of two main parts (intra-domain and inter-

domain) with different functionalities to reduce the overall

inter-controller consistency traffic using topic filtering to

adapt to the heterogeneous network topologies dynamically.

Intra-domain part gathers the main functionalities of the con-

troller while inter-domain part manages the communication

with other DISCO controllers (e.g., reservation, topology

state modifications, monitoring).

PLEROMA [64] is another example of a flat distributed

controller that uses the content-based publish-subscribe com-

munication model to distribute the network-wide state view

and obtain logically-centralized control over the data plane.

Two main components (dispatcher and configurator) in

PLEROMA are responsible for handling the events among

publishers and subscribers. The dispatcher (broker) compo-

nent is responsible for collecting control requests and events

from publishers and subscribers. On the other hand, the con-

figuration components are responsible for processing these

requests and performing network updates accordingly. How-

ever, using brokers to save bandwidth in a publish-subscribe

model can impose a significant delay by lengthening the end-

to-end pathwith a detour to the brokers and a processing delay

for matching events against filters’ rules.

ZeroSDN [65] splits control logic into lightweight con-

trol modules so-called controllers. The lightweight con-

trollers allow for pushing control logic onto switches and

enable local processing of data plane events to minimize

control latency and communication overhead. ZeroSDN

uses a publish-subscribe messaging to implement mes-

sage bus which enables event-based communication among

decoupling controllers and data (forwarding) elements. The

network-wide state is obtained by using the topology con-

trollers which subscribe to both SwitchRegistry and LinkDis-

covery events of certain partitioning topology groups to

obtain global network topology knowledge.
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Like Hash-based distribution, publish-subscribe based dis-

tribution of global network state view reduces the overhead

of maintaining replica in each controller and therefore allows

control plane to scale. However, it still requires some time to

access topology state for calculating the routing path of the

control plane reactive flow-rules placement requests. Con-

trollers, on the other hand, can efficiently utilize its insight

over the data plane to predict the expected network flows,

and thereby subscribe proactively to the most critical and

required application-based network state. Thus, significantly

reduce the overall amount of inter-controller consistency traf-

fic required for maintaining network-wide state visibility and

reduce the link utilization in the large-scale and dynamic

networks environments as IoT.

B. HIERARCHICAL CONTROLLER STATE DISTRIBUTION

Reducing the overhead of frequent events on the control

plane is essential for realizing an agile and scalable SDN net-

work. The flat-distributed control plane architecture cannot

solve the super-linear computational complexity growth of

the control plane when SDN network scales to large size [48].

As a result, some research works focus on how to reduce

the amount of control plane traffic by vertically distribute

the control plane as in Kandoo [14], Logical Xbar [15],

and ORION [16]. Controllers on this architecture are por-

tioned among multiple layers, typically two or three lay-

ers. This design gives a simpler approach to managing con-

trollers where controllers have different responsibilities and

can make decisions based on their level and view on the

network [70]. The low-layer controllers are responsible for

only their regional data plane, while top-layer controllers

offer a logically centralized and global view control over the

whole network.

Kandoo [14] as an instance proposes a two-layer structure

of control plane. The bottom layer controllers are not inter-

connected and only know its local network state view. The

top layer is logically centralized controllers which maintain

a global network state view over the whole network. Con-

trollers at the bottom layer can handle small and frequent

flows that can be processed using the local state knowledge of

the controller to reduce the load on the root controller effec-

tively. Top layer’s controller, on the other hand, takes charge

of the large volume streams (elephant flows) that requires

network-wide state for optimal routing path. Root controller

also acts as a mediator between bottom layer controllers.

Kandoo limits the overhead of consistency traffic on the

control plane to achieve synchronization among controllers

and relieve the load on the top layer. However, contacting

the upper layer to calculate the optimal forwarding rules of

any new flow-rules placement request brings a path stretch

problem and increases the controller response time.

C. HYBRID NETWORK STATE DISTRIBUTION

In the hierarchically distributed control plane architecture,

if the data plane forwarding request requires non-regional

routing information, it will be directed to the upper layer

domain controller. As such, the routing path increases by

the number of hops to the upper layer which brings a

path stretch problem and increases the controller response

time. As a result, some research work proposes a hybrid

hierarchical control plane architecture to resolve the path

stretch problem and decrease the controller’s response time.

ORION [16], [48] as instant, addresses this issue by propos-

ing a hybrid hierarchical control plane that acts as the

flat-distributed control plane architecture while hierarchically

distribute the controllers. The control plane has two layers:

the bottom layer includes local area controllers which are

responsible of collecting physical device and link informa-

tion, dealing with intra-area requests and updates, as well as

abstracting the network view and sending it to the upper man-

agement layer. The upper layer, on the other hand, contains

the domain controllers which maintain the global network

view for the bottom layer. ORION has a routing module

which can effectively reduce the path stretch problem of the

hierarchical structure. The domain controller can calculate

the shortest path by collecting the intra-area hops from the

inner switch to all edge switches which is sending by area

controllers, and adds the inter-area hops and the intra-area

hops together. Thus, abstracting views from the area to the

domain layer can reduce the problem of computational com-

plexity in large-scale networks. Although ORION can effec-

tively reduce the path stretch problem of the hierarchical

structure, it still requires to contact the domain controllers

when the destination address of the flow-rules placement

request is out of the area. Moreover, the vertical communi-

cation between the domain and area controllers is established

via a request/replay TCPwhich add extra propagation latency.

The bottom layer needs to be exposed to the network-wide

state by the upper layer through a messaging bus to reduce the

controller response time. Thus, calculating the routing path of

new flow can be done in the area layer and no need to send

packets to the upper domain layer.

V. OPENFLOW-SDN LINK STATE DISCOVERY

In the OpenFlow-SDN, the data plane forwarding elements

are meant to be simple forwarding devices. The implemen-

tation of networking logic such as routing or link discovery

services is the control plane responsibility. Hence, there is

no official discovery protocol standard for the OpenFlow-

SDN, and most of the current OpenFlow-based controllers

implement the Link Layer Discovery Protocol (LLDP)

standard [71]. LLDP is a vendor-neutral L2 single-hop pro-

tocol that allows IEEE 802 local area network devices to

advertise their identity, capabilities and direct connected

neighbors. Each LLDP discovery message encapsulated in

an Ethernet frame with an EtherType field (sets to 0x88cc)

while each frame contains one data unit (LLDPUD) which

consists of a sequence of type-length-value (TLV) variables

as illustrated in Figure 8. LLDP stores the gathered infor-

mation in the forwarding device’s management information

database (MIB) which can then be queried when crawling

the network’s nodes to retrieve the network state topology
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FIGURE 8. LLDP frame.

FIGURE 9. Open flow discovery protocol.

using a network management protocol like SNMP. NOX [38]

controller is the first SDN controller that leverages the Link

Layer Discovery Protocol (LLDP) in its implementation with

minor modification to perform the process of discovering

the network topology which is then known as OpenFlow

Discovery Protocol (OFDP). Unlike the single-hop advertis-

ing only feature of LLDP, OFDP is request-reply discovery

protocol that can receive the gathered discovery information

by sending a packet_in message to the controller.

In OFDP, the controller initiates the discovery pro-

cess by sending an LLDP discovery advertisement which

encapsulated in a packet_out message to the directly con-

nected forwarding devices using the OpenFlow Multicast

address. When an OpenFlow/non-OpenFlow forwarding

device receives the advertisement message, it floods all of

its ports with the received LLDP discovery advertisement,

and only the OpenFlow-enabled one updates its OFDP table.

To explain the OFDP discovery process, Figure 9 shows an

SDN topology of one controller and three linearly connected

forwarding nodes S1, S2 and S3. The discovery process can

be separated into two phases: the handshaking and config-

uration phase and the link-layer discovery phase as shown

in Figure 10. In the first phase, each data forwarding node

initially sends a handshaking hello messages ofpt_hello to

the assigned remote controller. The controller responds with a

message ofpt_feature_request, requesting more information.

As a response, each data forwarding node sends a message

ofpt_feature_reply to provide the controller with the rele-

vant discovery parameter such as node ID and active ports

with their respective MAC associates. The controller will

then send a ofpt_set_config to install the rules of forward-

ing LLDP encapsulated packet_in/out packets. In the next

phase, the controller sends an LLDP packet encapsulated in

a packet_out (OFDP) messages to every connected port or

forwarding node (as optimized in OFDPv2 [49]) immediately

after handshaking. The advertising message will then be

flooded to all ports of the adjacent nodes using the OpenFlow

Multicast address excluding the ingress port (controller port).

As such, each forwarding node can advertise itself to the

adjacent nodes.

LLDP is a one-way single-hope advertising protocol,

so when a forwarding node receives a forwarded packet_out

message by a port that is not the controller port, the executed

table-miss instructions will encapsulate the packet within a

packet_in and send it to the controller including the dis-

covery information of the source and adjacent nodes. After

the controller receives all the packet_in messages, it will

have complete link information between each connected

OpenFlow-based forwarding node. The discovery process is

performed periodically every amount of time [72].
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FIGURE 10. Open flow discovery protocol flow sequence.

According to [49], the controller requires to send an LLDP

packet_out for each port in each forwarding node, and in turn,

an LLDP packet_in will be sent to the controller form each

forwarding node. The total number of LLDP packet_in and

packet_out messages can be calculated using Eq. 1, where S

refers to the forwarding nodes, L refers to the links between

all forwarding nodes and P refers to the ports.

TOTAL(packet_in/out) = 2L.

S∑

i=1

Pi (1)

In a large-scale network of highly dynamic topology, keeping

up-to-date visibility of the topology is critical for perform-

ing optimal routing decisions by the controller. However,

this large number of regular discovery traffic can lower the

network throughput and hinder OpenFlow-based networks

performance and scalability. Furthermore, enabling a global

centralized control over a flow-based network requires that

the controller has to have an up-to-date real-time view of

the network state to act as a centralized controller and effi-

ciently serve the data plane forwarding requests and network

applications. The entire control plane management procedure

is substantially affected by how efficiently and timely it can

discover data plane forwarding nodes and links to maintain a

centralized global view of the network’s topology [50]. Link

state discovery is crucial for network services that require

real-time network state view. It is also essential for per-

forming traffic engineering in a highly dynamic network of

traffic and topology conditions. Some researchers focus on

how to enhance the OpenFlow discovery protocol to improve

the overall network performance and scalability. In this sur-

vey, we classify the proposed solutions into three schemes:

LLDP-based Link State Discovery, Tree Exploration Link

State Discovery and Layer-2 based Link State Discovery

as illustrated in Figure 11. A Comparison of the different

link-state discovery mechanisms is also provided in Table 3.

A. LLDP-BASED LINK STATE DISCOVERY

In this scheme, researchers focus on how to enhance the de

facto OpenFlow discovery protocol (OFDP) to reduce the

overhead of discovery traffic and improve the SDN scalability

and performance.

The authors in [49] propose a modification to the de facto

implementation of OFDP, called OFDPv2 to reduce the over-

head of OFDP discovery protocol by reducing the number

of packet_out messages that are required to be sent by the

controller. The idea is to send only one LLDP packet_out

message to the forwarding node and provides instructions to

the forwarding node to forward it via its ports, after adding the

Port ID TLV to allow the adjacent egress node to identify the

source port. This proposed solution uses the OpenFlow fea-

ture of rewriting packet headers to rewrite the MAC address

of forwarded LLDP packet. Another research work in [73]

proposes to include also hosts in the discovery to reduce the

ARP flooding when hosts initially generate traffic.

The OpenFlow-based discovery process is periodically

triggered to provide the controller with the current global

topology view. However, this may introduce unnecessary,

redundant discovery traffic to the controller. As a result,

research works as [50], [74] propose event-driven discovery

mechanisms to resolve this issue. In [74], the authors propose

a secure and efficient discovery protocol called sOFTDP

which implemented in the Floodlight controller [40].

sOFTDP enables forwarding nodes to detect link events

and asynchronously notify the controller autonomously. The

controller then keep listening only for link event notifications

from the data forwarding nodes to make topology updates.

Unlike OFDP and OFDPv2, the authors in [50] emphasize

that all information required by the controller to create the

topology map can be automatically extracted from the net-

work devices using the existing protocol without the need to

use the modified OpenFlow-based version like OFDP. Aim-

ing at obtaining a discovery mechanism capable of fetching

topology information from SDN and non-SDN devices, this

work proposes to use communally existing protocols like

ARP and LLDP without any modification. It proposes an

event-based listening mechanism in each forwarding node’s

port to send information to the controller whenever traffic

from a predefined protocol was detected. This way, the con-

troller can get information about the forwarding node and its

neighbor nodes. Using only the existing protocols to discover

the topology in SDN-based networks can efficiently reduce

the overhead of sending control traffic and solves the topol-

ogy discovery problem in a hybrid SDN network. However,

it limits the controller ability to get statistical information

about the discovery traffic in the data plane and requires to
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FIGURE 11. SDN link state discovery mechanisms.

TABLE 3. Comparison of the proposed SDN link state discovery mechanisms.

modify the forwarding node so it can trigger asynchronous

events to the controller. Furthermore, the proposed method

is only implemented and tested on ForCES, and need to be

tested on OpenFlow too.

B. TREE EXPLORATION LINK STATE DISCOVERY

Another way of discovering SDN topology proposes in [75]

so-called tree exploration discovery protocol (TEDP), which

reduces the traffic overhead of one-hope point-to-point

LLDP-based discovery process. Instead of sending and

receiving discovery messages among neighbors, TEDP pro-

poses to send only one single probe frame from the controller,

which then floods the network and explores the whole net-

work topology. Unlike OFDP, TEDP collects the topology

information at each hop and sends it directly to the controller.

As such, the controller can find the optimal path between

nodes without additional traffic cost. Although sending one

single flooded discovery advertisement reduces the number

of messages that need to be sent by the controller to only

one, it may introduce a delay in updating the controller with

up-to-date topology view especially in the context of highly

dynamic large-scale networks.

C. LAYER-2 BASED LINK STATE DISCOVERY

More optimization for OFDP is also proposed by

SD-TDP [76], in which discovery traffic is sent only by few

forwarding nodes in a hierarchical SDN network architecture.

SD-TDP reduces the number of messages exchange in OFDP

by proposing an agent-based layer-2 only topology discovery

protocol (SD-TDP) that divides the discovery process into

phases and distributes hierarchically the discovery functions

between the network nodes. Thus, allows for obtaining the

network graph as quickly as possible without incurring scala-

bility issue. SD-TDP proposes to select nodes for aggregating

the topology information and send it to the controller. The

drawback of this solution is that each forwarding node has
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to support the proposed algorithm through an agent which

follow a hybrid non-standard SDN. Furthermore, the aggre-

gating of discovery topology information can lead to delay

constraints.

In addition to the hierarchical distributed discovery,

the authors in [77] state that the discovery process in

LLDP-based discovery protocols starts after handshaking

process in which controllers have prior knowledge of IP

addresses and the list of active ports of each SDN forwarding

element. As a result, it proposes a layer-2 discovery protocol

so-called Enhanced Topology Discovery Protocol (eTDP)

that hierarchically distributes the discovery functions among

forwarding elements. The discovery process in eTDP can start

without the need for previous network configurations or con-

troller knowledge of the network. However, eTDP requires

that every forwarding element has an eTDP agent, which

need modification on both OpenFlow-based/non-OpenFlow-

based forwarding elements.Moreover, eTDP is not a listening

event-based protocol and depends on the periodic exchange

of topoReplymessages to inform the controller about any link

failures or port-down. The periodic exchange of discovery

messages can lead to unnecessary bandwidth wastage and

control traffic overhead especially when the network topol-

ogy changes rarely.

Previous literature does not give a robust study and anal-

ysis on the effect of discovery protocol in the context

of large-scale SDN-based networks of dynamic traffic and

topology conditions. Discovery process is either statically

configured to be repeated periodically to keep up the con-

troller up-to-date with the global topology view or reac-

tively configured to update the controller when receiving

links change events. However, the statically configured dis-

covery process may result in unnecessary discovery traffic

in long-time non-changing topologies while reactive con-

figuration needs to be fast enough to avoid packet loss

or routing mistakes. Furthermore, most of the proposed

OpenFlow-based discovery protocols are for specific net-

works type and cannot work in a heterogeneous network of

both wired and wireless devices like IoT. Therefore, more

research requires for proposing an efficient and dynamic

discovery protocol for large-scale heterogeneous networks

where topology and traffic dynamically change. The discov-

ery process has to be triggered asynchronously in response

to the reactive or predicted topology changes to save network

resources and avoid sending redundant topology information

to the controller.

VI. OPENFLOW-SDN FLOW RULES PLACEMENT

The controller involvement in response to every new

unknown flow arrives at the forwarding node can be avoided

by installing flow entries proactively. Rather than reacting

to the arriving flow packets, the OpenFlow controller can

proactively populate the flow entries of all traffic matches.

The long non-prefix matching of flow entries can match

the most granular route to a destination. As a result, all

flows and actions can be predefined and installed to the data

forwarding node in advance to the flow arrival and prevent-

ing any Packet_In flow-rules placement request to the con-

troller. Such proactive action is suitable for simple network’s

topologies where flow tables memory size is fit with the

global network state view. However, in large-scale networks,

the TCAM-based flow tables can be overflowed by the high

number of installed flow entries that match traffic between

all ingress and egress ports. Although proactive flow-rules

placement approach is preferable for achieving better perfor-

mance, the flow control granularity is broken when new flows

are forwarded without the controller awareness or when the

flow entry compression is achieved based on the relationship

among flow entries [78]. The flow granularity is essential

to obtain better SDN controller’s visibility over the network

and therefore guarantee an optimal QoS provisioning and

controlling by monitoring and collecting per-flow statistics.

Meanwhile, allocating the pre-calculated forwarding rules

before flow transmission without reacting to the dynamic

changes can lead to routing problems like routing loops, black

holes and dropping packets.

OpenFlow protocol holds only the recently arrived flow

entries in the flow tables by configuring every flow entry with

an idle timeout to cope with the limitation of the flow tables

memory size. The flow entries with expired idle timeout are

removed from the flow tables to offer space for the newly

installed flow entries, and thereby avoid flow tables over-

flow. However, this mechanism increases the communication

traffic between control and data planes due to the controller

involvement in every new flow-rules placement process.

An on-demand flow-rules placement request is created and

sent as aPacket_In by the forwarding element to the controller

every time a new unknown flow arrives with unmatched

flow entry. The controller then responds with the new cal-

culated forwarding rule and adds it to the flow tables of the

directly connected forwarding nodes. Such on-demand flow-

rules placement process can introduce a significant delay and

controller traffic overload in the case of a high number of

congested new flows, and consequently, increases the con-

troller response time and decreases data plane throughput as

the network scale grows dynamically [37].

This section provides a survey on the OpenFlow-based

state-of-the-art research studies on how to reduce the amount

of traffic between control and data planes, and efficiently

utilize the data plane flow tables in response to the dynamic

nature and resource limitations of the network.

Nguyen et al. [79] provided a survey on the proposed solu-

tions toward data plane memory management and reducing

signaling traffic to improve SDN scalability. Compared to this

work, we focus on the state-of-the-art proposed mechanisms

toward reducing the traffic overhead between control and

data planes caused by the reactive flow-rules placement, and

classify them into five schemes: Control back to data plane,

flow table entries reduction, per-flow source routing, adaptive

flow entry’s timeout and predictive flow rules placement.

In addition, we cover also other OpenFlow SDN-scalability

related issues. A taxonomy of the OpenFlow-SDN flow-rules
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FIGURE 12. OpenFlow-SDN flow rules placement mechanisms.

TABLE 4. Comparison of the proposed openFlow-SDN control back to the data plane mechanisms.

placement mechanisms that have been proposed to enhance

the network scalability and performance is also provided

in Figure 12.

A. CONTROL BACK TO THE DATA PLANE

Some research works focus on how to gently break the

coupling between the control and global visibility to the

network state by reactively processing some traffic routing

in the data plane without the control plane involvement, see

Table 4.

DevoFlow [80] argues that fine-grained control and

network-wide visibility of OpenFlow controller comes at the

cost of involving the controller in every flow-rules placement

and statistical gathering events. Therefore, such design of the

OpenFlow model cannot meet the needs of high performance

and scalable networks. DevoFlow proposes to bring back

some of the control logic to the data forwarding elements,

in a way that preserves central control and visibility over all

significant flows only – aggregate flows that might become

sufficiently intense (elephant flow), while limiting the load

on the central controller. DevoFlow augments the action part

of each OpenFlow packet with a Boolean CLOONE flag.

If the flag value is clear, the switch follows the normal

OpenFlowwildcard matching; otherwise, it locally clones the

wildcard rule. The cloning process creates a new flow entry

by replacing all the wildcard fields with values matching the

(micro-flow) and inheriting other aspects from the original

entry. As such, the switch locally routes short-lived flows

(micro-flows) without contacting the controller and only

significant flows are reactively forwarded to the controller.

Thus, it reduces the load on the controller and improves the

network scalability. The idea is to push as many decisions

as possible to the data plane, but in a way that guaran-

tees a simple and cost-effective hardware implementation.

Although DevoFlow gently breaks the coupling between con-

trol and global visibility, it can maintain a useful amount

of visibility without imposing unnecessary costs. However,

it can not proactively detect the potential elephant flows, and

instead, the controller detects elephant flows as they become

significant.

Reactively processing some of the control logic in the data

plane can significantly reduce the amount of traffic between

control and data planes, and hence reduce the control traffic

overhead on the controller. However, the amount of traffic

among data plane elements to retrieve data-forwarding rules

may introduce overhead in the data plane and can lead to

potential routing loops and congestion due to non-optimal

routing decisions and inefficient link utilization. Moreover,

allowing data forwarding devices to decide on the rout-

ing of some flows contradicts with the main purpose of
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SDN and comes at the cost of coarse-grained flow control.

Hence, each packet may match multiple rules which

consequently reduces the controller ability to imple-

ment fine-grained flow-level policies such as multipathing

and prevents forwarding decisions from being calcu-

lated based on more information than just destination

addresses.

Motivated by these drawbacks, Song et al. [81] propose

a flow-rules placement mechanism so-called ‘‘controller-

proxy’’ that can delegate the control back to the data plane

without sacrificing the advantages of the SDN centralized

fine-grained control. Although the data forwarding elements

in this flow-rules placement mechanism can handle some

event-processing logic, the control plane still maintains high

visibility over the whole network by communicating with a

proxy executor via a proxy path to synchronize the network

state. The idea is to send an assist request to the hotspot

data forwarding elements whenever traffic spikes occur to

delegate the event-processing logic for packet_in events. The

proxy executor in a hotspot data forwarding element can han-

dle the new flows directly instead of sending a packet_in to

the controller.Meanwhile, the packets from non-hotspots data

forwarding elements are still handled by the controller. The

proxy executor is periodically synchronizing the topology

view with the controller so it can route the flows on time.

The delegation process of the controller-proxy mechanism

can improve the timeliness and scalability of the forward-

ing processes, but it pushes the overhead and complexity

to the data plane. The amount of space required for saving

the network view in the data forwarding element to main-

tain a fine-grained flow control consumes more memory

and computational resources which can overload the data

plane.

ZeroSDN [65] is another research work that supports the

idea of bringing some of the control logic back to the data

plane. ZeroSDN argues that a highly flexible SDN distributed

architecture has to allow the full spectrum of distribution,

from fully centralized to fully distributed architecture by

including data forwarding nodes in the control distribution

and allow network decisions on the local view. To minimize

control latency, ZeroSDN focuses on the network timeliness

by processing control decisions locally as possible while

leveraging the logically centralized global network state view

to improve the decision quality. Due to the nature of the

local network state data of being the most recent and consis-

tent, ZeroSDN, applies a fast heuristic mechanism to quickly

decide whether the control event has to be processed locally

or propagated to the middleware bus to be processed by

remote entities in the control plane.

B. FLOW TABLE ENTRIES REDUCTION

To cope with the limitation of TCAM space and proactively

install flow entries, some researchers focus on how to effi-

ciently reduce the amount of memory space required to store

flow entries by either compressing, aggregating, distributing

or caching flow entries, see Table 5.

1) FLOW ENTRIES COMPRESSION

Some research works focus on how to efficiently compress

the flow entries to reduce the number of flow requests arrived

at the controller. Source Flow [82] is one of the early research

works that propose to reduce the number of flow entries

on core nodes without changing the granularity of flows.

Source Flow proposes to remove the redundancy of flow

matching rules for a selected routing path on all intermediate

nodes. The idea is to embed the actions for all intermediate

nodes as a form of a list into a user packet and store the

forwarding rule actions as a pointer to an action table that

stores the actual actions in the forwarding node. As such

Source Flow can save the memory space to save redundant

flow matching rules. However, the number of flow entries

on edge nodes are not reduced and requires to modify Open-

Flow to implement action table in the same way as a flow

table.

The authors in [83] propose a compression mechanism

called Compact TCAM which encodes the flow entry match-

ing header while augmenting the action part of the rule with

a boolean COMPACT flag. It proposes the use of shorter

tags for identifying flows to optimize the TCAM space.

The controller encodes the information of each unique flow

entry as a numeric identifier so-called Flow-ID. The con-

troller responds to each new flow request with a message

consists of the flow ID and actions. Only in the egress

switch, the encoded matching header is decoded back to

save more TCAM space along the ingress and interme-

diate switches, and therefore allows storing more control

flow entries. The packet’s standard actions are executed

if the COMPACT flag value is set to clear; otherwise,

the packet’s operations corresponding to the Flow-ID are

executed. Compact TCAM needs to upgrade the OpenFlow

standard flow tables to implement the Flow-ID table. The

drawback of the compression mechanism is that it prevents

the flow granularity along the forwarding path and therefore

it cannot guarantee a fine-grained control over the network

traffic.

2) FLOW TABLES PARTITIONING

In traditional IP routing tables, each routing entry mainly

consists of destination IP, gateway IP and interface while the

forwarding process requires only 32 bits (IPv4) or 128 bits

(IPv6) ofmatching destination IP to forward the packet. How-

ever, in the OpenFlow protocol, each flow routing entry occu-

pies 40 field tuples of 1227 bits memory storage while many

of these fields are optional and empty, resulting in memory

space wastage. Hence, compressing the match header fields

is not enough to reduce the amount of memory space required

to store flow entries. Accordingly, the authors in [78] pro-

pose a Heuristic Storage Space Optimization algorithm for

Flow Tables (H-SOFT) to reduce the storage space required

for each flow entry. H-SOFT partitions the flow table into

simple files and stores them in multiple sub-flow tables, so it

performs the compression by assigning each flow entry into

those sub-flow tables. If the newly added flow entries exceed
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TABLE 5. Comparison of the proposed openFlow-SDN flow table entries reduction mechanisms.

the predefined threshold, H-SOFT dynamically adjusts the

valid fields in each sub-flow table to optimize the storage

space.

3) FLOW ENTRIES AGGREGATION

Although flow entries compression mechanism can effi-

ciently optimize the size of the flow tables to accept

more flow entries, the compression-decompression process

requires high computational resources which add more

overhead on the data plane especially in the condition

of a large amount of aggregated traffic. Therefore, some

research works focus on aggregating the original fine-grained

TCAM flow entries into fewer coarse-grained ones with a

larger matching range at the cost of losing some matching

information. Unlike compression mechanism, flow entries

aggregation mechanism can be implemented as a soft-

ware plug-in on the OpenFlow controller and does not

require any change in the OpenFlow protocol. Following

the idea of prefix aggregation (summarization) in tradi-

tional IP routing to reduce the amount of routing tables,

some research works such as [95], [84], [85] and [86] pro-

pose to aggregate the OpenFlow wildcard matching headers

of the same action to allow installing more TCAMs flow

entries.
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Braun and Menth [84] as an instance, proposes to aggre-

gate the flow matching entries to more generic wildcards

using Espresso heuristic. Unlike IP prefix aggregation, flow

entries contain a non-prefix matching field, which length-

ens the flow tables updating time and hence increasing the

flow-rules placement latency especially when the flow tables

are frequently updated.

The aggregation process must not change the action part

of any flow entry. As a result, motivated by Bit Weaving [96]

TCAMs aggregation, the authors in [87] propose a non-prefix

FFTA offline aggregation scheme that can aggregate 100 rule

partition in just several milliseconds. It cuts the non-prefix

matching fields to prefix permutable partitions and then

aggregates each partition respectively. FFTA construct a

Binary Search Tree (BST) of prefix partitions and then

apply the Optimal Routing Table Constructor (ORTC) algo-

rithm to omit the permutations and simplify the aggrega-

tion process. In the flow entries aggregation scheme, it is

possible that a new unknown flow matches with an aggre-

gated flow entry resulted in potential routing mistakes. As a

result, Leng et al. [88] propose a Flow Table Reduction

Scheme (FTRS) to solve this problem. FTRS pointed out that

core switches are more likely to encounter flow table con-

gestion than the boundary (edge) switches. Therefore, FTRS

focuses on aggregating flow entries that are less important in

the middle of the flow path while reserving the existence of

flow entries at the edges to maintain fine-grained manage-

ment. To achieve this, FTRS uses binary trie (prefix tree) to

traverse a selected matching attributed from each flow entry

(e.g., IP Address) into nodes and then reduce the number

of flow entries by replacing the non-empty sub-trees with

coarse-grained nodes.

Flow entries aggregation scheme is much faster than

the compression scheme and consumes less computational

resources. However, in dynamic and large-scale networks,

the aggregation process may cause a routing delay because

of the time requires to aggregate each new rule with all the

existing ones. Furthermore, flow entries must share the same

routing action to be eligible for aggregate. Hence, the high

variety of the instructions field of flow entries can signifi-

cantly reduce the number of possibly-aggregated flow entries.

4) FLOW ENTRIES DISTRIBUTION

Distributing the pre-calculated flow-rules among network

forwarding nodes is another way to efficiently utilize flow

table and reduce the communication traffic between the con-

trol and data planes, controller traffic overhead and hence

improve the network scalability.

DIFANE [89] as an instance provides an architecture to

distribute the pre-calculated forwarding rules and keep the

traffic in the data plane to avoid the reactive controller

involvement for routing each miss-matching packets. The

controller first pre-calculates the forwarding rules and allo-

cates them as even partitions to a subset authority switches of

the existing ones. Upon receiving unknown new flow packet

in the ingress switch, it will be encapsulated and sent to the

appropriate authority switch based on the partition informa-

tion. The authority switch de-encapsulates the packet and

forwards it to the egress switch,meanwhile, sends feedback to

the ingress switch to cache the flow entry to avoid long rout-

ing path for active flows. DIFANE provides a scalable solu-

tion that can efficiently reduce the control traffic overhead

and eliminate the delay resulted from controller involvement

in every new flow entry installation. However, it moves the

complexity and overhead to the data plane by partitioning the

flow entries in subtables distributed among selected authority

switches. Furthermore, the authority switches play a main

different rule in DIFANE which contradict with the main

idea behind SDN in making the networking devices as a

simple decoupling forwarding nodes. The coupling among

the selected authority data forwarding nodes adds more com-

plexity, unnecessary traffic on the data plane and increases

the propagation delay. It also introduces a flow forwarding

reliability and resiliency issues when authority switches fail.

To avoid the management and redirection overhead of

packet forwarding at data plane in DIFANE, Palette [90]

proposes a distributing framework for decomposing the flow

tables into small ones and distribute them across the data

plane elements. Kang et al. [91] on the other hand, proposes

a rule replacement algorithm that distributes the forwarding

rules across an abstracted data plane layer so-called one big

switch to maintain the TCAM rule-space constraints. Rather

than grappling with TCAM sizes, the control plane defines

one big switch that manages the installation of rules on the

data forwarding nodes.

Unlike other flow entries reduction mechanism, distribut-

ing flow entries among the data forwarding nodes reserves the

fine-grained control policies. However, it adds more traffic

overhead in the data plane to maintain the distribution of for-

warding rules especially when the network topology changes

dynamically.

5) FLOW ENTRIES CACHING

Flow entries caching is another solution to the limitation

of TCAMS and the control channel traffic overhead. The

idea is to cache heavy-hitting rules in the TCAMS flow

tables and the remaining rules in a software data structure

or software switches as part of the same hardware switch or

on separate servers. Hence, give the controller the illusion

of fast-forwarding/updating and large flow tables. In Open-

Flow, if a flow packet matches multiple rules in a flow table,

the data forwarding element will execute the actions of the

highest priority matched rule. The problem with the rule

caching scheme is that it breaks the long-chain rule matching

dependencies leading to a rules dependency issue. In other

words, if the high-priority rule of a certain flow is cached

in the Non-TCAM flow table, the flow’s arriving packet will

incorrectly match the low-priority rule (because the priority

is for rules cached in TCAMs). As such, the dependent rules

of a TCAM-cached rule should also be cached to preserve

the semantics of the fine-grained control policy. Meanwhile,

the dependency checkingmechanism has to be able to capture
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all of the policies direct and indirect dependencies. More-

over, rule caching scheme should be adapted to the dynamic

changes in the rule policies so it can update the cached rules

in a proper time.

To resolve the rule dependency issue, CacheFlow [92], [93]

proposes a hardware-software hybrid switch to cache the

most popular rules in the available TCAMs flow tables

while caching the remaining rules in a software switches.

CacheFlow splices long dependency chains to cache small

groups of rules while trying to preserve the semantics of

network policies. To handle rule dependencies, CacheFlow

represents the rule’s priority as an annotated Directed Acyclic

Graph (DAC) in which rules are incrementally added or

removed. It also proposes a cache-replacement algorithm to

decide which rules to place in the TCAMs.

Sheu and Chuo [94], on the other hand, proposes to use

a cover-set approach to solve the rule dependency problem

and utilize the TCAM space more efficiently. It proposes a

(cover-set) based rules caching algorithm to cache the most

frequent and important matched wildcard rules which have

higher weight values. Unlike the standard cover-set caching

algorithm, it calculates the accumulated contribution value of

a set of rules instead of the individual contribution value of a

rule. Moreover, it proposes a rule cache replacement (RCR)

algorithm to increase the cache hit ratio. Once cache miss

occurs, the RCR algorithm would replace cached victim rules

with the cache miss rule to keep the rule in the TCAM.

Although a well-designed rule cache replacement algorithm

can resolve rules dependency problem, the rules partition

makes rule updates more difficult and challenging, especially

when rules change dynamically according to evolving net-

work states.

C. PER-FLOW SOURCE ROUTING

The per-hop configuration-based forwarding in OpenFlow

requires to generate multiple flow entries along a route to

forward a single flow, resulting in a huge redundancy in flow

tables. Hence, the flow tables space efficiency and manage-

ment usually coupled with how the forwarding method is

efficient. Instead of keeping the redundant forwarding rules

in all the forwarding nodes along the route, some research

studies propose to use source routing to make packet forward-

ing obeys the forwarding labels/instructions provided by the

packet, see Table 6.

Having the global network state knowledge, the SDN con-

troller can install the routing path information proactively

to the ingress nodes. Thus the forwarding rule of the for-

warded packet can be inspected in each node without the

need to reactively contact the controller or proactively install

the corresponding forwarding rules in the intermediate for-

warding nodes. According to [110], source routing has been

designed to be highly scalable, where the scaling capability

of source routing has been tested successfully on a use case

of 600,000 nodes and 300 millions of endpoints. Unlike

traditional per-flow routing, no direct interaction is required

between the SDN controller and each node along the route

path. Furthermore, the controller can re-send the packet with-

out the need for installing the forwarding rules in the related

forwarding nodes [108].

The authors in [97], [98] propose to utilize source routing

method to reduce the distribution of network state in all the

data forwarding nodes along the routing path for improv-

ing the controller’s scalability and network coverage time

in an SD-WAN production deployment. It also proposes to

change the output interface number in the path packet header

with the input interface number at each intermediate node

for maintaining the packet reverse path without sending a

routing request to the controller. Although source routing

can significantly enhance the SDN network scalability and

performance, the controller involvement in calculating a new

routing path is still necessary when a routing link fails.

To avoid the consequent routing latency, a research study

in SlickFlow [99] proposes a resilient source routing mech-

anism that combines the source routing with alternative path

information carried in the packet header.

Some other research studies propose to encapsulate the

arrived flow packet in the ingress port with multiple MPLS

labels indicating the forwarding port numbers of other for-

warding nodes on its route. Intermediate forwarding nodes

will use the MPLS label to forward the packet to the next

hop and delete the used header. This process is repeated in

every intermediate forwarding node until the packet reached

the egress port of the destination forwarding node. Thus,

the controller needs to only install one flow entry in the

ingress forwarding node, and perform the matching process

once. However, using MPLS labels to forward flow packets

in OpenFlow-SDN significantly reduces the redundancy of

installing flow entries and the latency of the flow matching

process. However, the packet headers needed to encapsulate

the MPLS route labels generate too much overhead on the

edge forwarding nodes and their links especially when the

controller is configured to install all matching flow entries

proactively. Each MPLS label requires 32 bits, which will be

worse in a long route of multiple MPLS labels. The longer

the forwarding path is, the larger the overhead becomes.

To resolve this issue, some research studies such

as JumpFlow [100], Arbitrary Jump Source Routing

(AJSR) [103] and Kitsuwan et al. [104] propose more effi-

cient bandwidth utilization MPLS-like source routing tech-

niques. JumpFlow [100] proposes to use the available VLAN

identifier (VID) of the packet header to carry the routing

information. JumpFlow considers the constraints of the flow

table space and proposes to partition the routing information

and distribute them on a few selected contact forwarding

nodes. However, due to the limitation of 12-bits VID filed

space and the reactive flow entries placement, JumpFlow

can only carry little routing information and therefore cannot

work properly in SD-WANandmay lead to a scalability issue.

Inspired by JumpFlow, the authors in [101]–[103] propose

to divide the complete routing path of a particular flow into

arbitrary length sections and distribute these sections at dif-

ferent selected forwarding nodes along the route. The authors
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TABLE 6. Comparison of the proposed openFlow-SDN per-flow source routing mechanisms.

in [101], [102] propose a heuristic algorithm called K Similar

Greedy Tree (KSGT) to intelligently select nodes to install the

MPLS-based flow entries. KSGT divides flows into clusters

and greedily selects a small number of switches to install

entries. However, using MPLS labels to carry each per-hop

forwarding information can induce a significant bandwidth

overhead. As a result, the authors in [103] propose a forward-

ing scheme called Arbitrary Jump Source Routing (AJSR)

to achieve a trade-off between control traffic overhead and

bandwidth overhead which can carry an arbitrary number of

forwarding information and leverages MPLS labels to carry

routing bath.

Segment routing (SR) [111] is another variant of source

routing which has been proposed to provide flexibility and

scalability to the traditional MPLS networking. SR can

be implemented on top of either the MPLS or the IPv6.

In MPLS-based SR, segment routing uses label forwarding

but with no more additional protocol just extensions to Inte-

rior Gateway Protocols IGPs such as Intermediate System

to Intermediate System (IS-IS) and Open Shortest Path First

(OSPF). Segment routing uses the classical Dijkstra shortest

path algorithm based routing protocols like IS-IS and OSPF

to advertise the segment information and to compute the

routing paths. However, in IPv6-based, segment routing uses

IPv6 addresses to carry the segment list in an Extension

Header called SR header (SRH) [112]. At the ingress node,

SR encodes the routing path in the packet header as an

ordered list of segments (stack of labels) to be executed on

the subsequent nodes along the packet’s route. There are two

types of segments: nodal segment and adjacency segment.

The nodal segment is globally significant and identifies the

node and the prefix of its loopback interface. The adjacency

segment is locally significant and identifies the local segment

(e.g., switch port number) to a specific SR node [111]. Unlike

MPLS, segment routing maintains per-flow state only at the

ingress node. Thus, no need for signaling the forwarding

labels to the nodes along the route path. Using segment rout-

ing in SDN-based networks can reduce the overhead of using

Dijkstra-based routing algorithm to advertise the segment

information because of the centralized view of global net-

work topology that can be provided by the controller. Mean-

while, it can significantly minimize the need for keeping a

large number of flow entries in the intermediate forwarding

nodes. As a result, authors in [113] implement an SDN-based
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segment routing to control the label stacks in a multi-layer

network testbed for testing the scalability of the network.

The results show that the deep label stacking can increase

the average required time to configure the overall flow into

1mswithout experiencing performance degradation. Segment

routing attracts the researchers’ interest to propose it in SDN

because of its ability to utilize the network bandwidth more

efficient than traditional source routing mechanisms.

The authors in [105] propose to improve the energy effi-

ciency of large-scale backbone networks by using SDN

and segment routing to dynamically adapt the number of

powered-on/off links in response to the traffic load. They

utilized segment routing to reduce the transmission overhead

and the power of SDN centralized controller to selectively

turn off a subset of links in response to the traffic load. The

authors in [106] also propose an architecture that integrates

SDN with segment routing. Trying to solve the Flow Rules

Placement problem, they implemented a heuristic SR-based

path assignment algorithm to find the minimum-length SR

paths corresponding to each path. The scalability of the net-

work when applying SR for SDN has been studied by [107].

An SDN-based SR implementation on a Multi-layer net-

work is performed to demonstrate the scalability of the SDN

network while performing dynamic traffic rerouting at the

ingress node. The implementation uses OpenFlow 1.3 based

RYU controller to control the SR segments configuration.

It also relies on a Novel path computation algorithm to deter-

mine the routing path. The experimental results show that

no packet loss was experienced during dynamic rerouting

without the need for using signaling protocols.

Previous studies do not study the proper routing algorithms

for SDN-based SR to reduce the extra cost of deep label stack

in the packet header. In other words, if the count of path hops

is long, it causes extra wastage of the network bandwidth

due to the deep SR list in the packet header. As a result,

the authors in [108] propose a heuristic routing algorithm

with bandwidth guarantee. The proposed algorithm uses traf-

fic engineering to select the proper routing path for achieving

traffic load balancing among the network. The routing algo-

rithm considers both the link’s maximum residual bandwidth

and minimum interface for selecting the routing (MIRA)

methods to decide a routing plane for unicast communication

in SDN. A multicast routing algorithm for SDN with SR is

also proposed by [109] to serve the bandwidth requirements

of multicast routing requests. The research work proposes a

multicast heuristic routing algorithm with bandwidth guaran-

tee to achieve traffic load balancing.

The authors in [114] went further and proposed an

SDN-based SR on top of IPv6. Motivated by the central-

ized control of SDN, they propose an SDN architecture to

control IPv6-based SR enabled networks. The segment list is

carried in the segment routing header (SRH) as explained in

IETF draft [112]. The proposed solution was applied in four

different implementations of the southbound APIs: GRPC,

REST and NETCONF, and remote command-line interface

respectively. The research work also provides a comparison

with OpenFlow-SDN solutions and represents that unlike

IPv6, using OpenFlow as southbound API can lead to a lack

of broad support and can easily transform in vendor lock-in.

Although source routing can significantly minimize the

need for keeping a large number of flow entries in the inter-

mediate forwarding nodes, the ingress/edge nodes still form a

bottleneck due to the extra header size required to encapsulate

a multi-hop route. OpenFlow defines the MPLS label with

32-bits which make the process of encapsulating each flow

packet with the routing path introduces extra transmission

overhead, especially in large-scale networks, resulting in

bandwidth waste. Source routing also spoils the advantages

of per-flow route selection in adaptive to the dynamic QoS

demands and load balancing. Moreover, all the existing stud-

ies do not provide a clear study on how to traffic engineering

SR mechanisms to fit with the proactively installed flow

entries under dynamic traffic and topology conditions.

D. ADAPTIVE FLOW ENTRY’S TIMEOUT

In OpenFlow 1.3, the flow entry’s idle timeout value (mini-

mum of 1 second) is statically configured to remove entries

of inactive flows from the flow tables to offer space for the

entries of the most recent flows. The static configuration

of the idle timeout can significantly increase the number

of flow-rules placement requests to the controller due to

the lack of estimating the precise per-flow inter-arrival and

transmission intervals. The coarse-grained configuration of

the idle timeout is usually inefficient since some flow entries

of inactive flow can be still cached. Permanent placement of

flow entries can resolve this issue; however, the limitation in

flow tables resources cannot accommodate the huge amount

of active flow entries without minimizing the flow granular-

ity. On the other hand, OpenFlow 1.4 allows to automatically

remove entries of lower importance to offer space for newer

flows. However, flow tables can still be easily overflowed and

result in a flow entries eviction of some active flows, which in

turn, degrades the network performance and scalability. The

fixed value of the idle timeout of each flow entry can be adap-

tively adjusted according to the current network conditions.

The timeout can be reactively configured by the controller to

give certain priority for adding/removing flow entries, so the

flow table can always serve the most significant flows.

In this scheme, maintaining a fine-grained flow control

is crucial to classify each flow and decide on how long the

flow entry should reside in the flow table. As a result, some

research works propose to utilize the logically centralized

controller to adaptively configure the flow entry’s idle time-

out in response to the current traffic matrix, see Table 7.

In this essence, the research works in [115], [116]

and [117] propose to dynamically adjust the timeout of flow

entries. The authors in [115] propose an Adaptive Hard Time-

out Method (AHTM) to dynamically adjust the flow entry’s

hard timeout according to the number of interrupted flows.

However, using hard timeout may lead to a large amount of

flow interruption in the case of dynamic traffic conditions and

can cause a rule removal during the transmission of a burst
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TABLE 7. Comparison of the proposed openFlow-SDN adaptive flow entry’s timeout mechanisms.

of packets, which increases latency and damages network

performance. The authors in [116] propose to set an adaptive

timeout to each flow according to its estimated duration, flow

type, and the current flow table utilization ratio. The authors

in [117] focus on optimizing idle_timeout value to utilize

network resources in OpenFlow-based networks efficiently.

Based on the ON/OFF traffic model, they experiment and

analyze the influence of static idle timeout value in both flow

tables and the controller. The invalid lifetime of flow entry is

used to represent flow table resource cost, where packet_in

events generated per seconds are used to represent the con-

troller processing resource cost. These two resource cost

indicators represent the upper and lower bound of idle timeout

which can be used to calculate the effective idle timeout value

of flow entries. The research work in [118] also depends on

some factors in addition to the flow inter-arrival such as;

flow rate and flow type to dynamically set flow entry’s idle

timeout. The authors in [119] also propose to dynamically

adapt the idle_timeout to adjust the timeout value for the new

coming flow according to the current estimated remaining

resources in the flow tables. The proposed mechanism, first

estimates how many flow entries could survive to the next

sampling time. Then it estimates the number of newflows that

may need to be installed in the next sampling time. As such,

the proper timeout value can be estimated to satisfy that the

rest of new flows at the next sampling moment are less than

the remaining resources of flow tables.

Previously proposed solutions did not provide a mech-

anism to evict non-significant flow entries in the case of

highly-active networks. As a result, the authors in [120]

propose to control the idle timeout value of each flow

dynamically. It proposes an online routing scheme so-called

Software-defined Adaptive Routing (STAR) that can detect

the real-time flow tables utilization for evicting expired flow

entries when needed to accommodate new flows. STAR uses

the LRU replacement algorithm and idle timeout to allow

each switch to remove flow entries. Each flow entry is asso-

ciated with a binary flag to indicate whether the entry is

active or inactive. This flag is set to active when the controller

places a new flow entry and set to inactive when the switch

receives the last packet (FIN packet) of the flow. As such,

the controller can track the actual flow tables utilization by

estimating the counter of active-flows and in turn, remove the

inactive flows even before their expiry timeout.

Although dynamic flow entry’s idle timeout can adaptively

add/remove flow entries in response to the dynamic network

resource constraints, it cannot adaptively set the idle timeout

based on the traffic patterns and expected flow transmission

rate.

E. PREDICTIVE FLOW RULES PLACEMENT

Identifying and predicting traffic patterns to place, update or

remove flow entries proactively is crucial to reduce the over-

head of a large number of flow-rules placement requests and

guarantee an efficient resource utilization. The main idea is to

proactively install the flow entries of the predicted frequency

and elephant flows while removing flow entries of rarely and

light flows to give a space for more priority flows in the flow

tables and reduce the frequent reactive flow-rules placement

requests traffic to the controller. Predicting OpenFlow-SDN

traffic patterns can also help in obtaining optimal routing

calculation to avoid traffic congestion and therefore enhance
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TABLE 8. Comparison of the proposed openFlow-SDN predictive flow rules placement mechanisms.

network scalability and throughput. The controller has to

simultaneously gather per-flow measurements and statistical

information to measure the network accurate and timely traf-

fic matrix. The traffic matrix is the key factor in predicting

the future traffic trends to place flow entries optimally.

Due to the burst nature of large-scale networks traffic,

network-wide learning-based traffic measurement and clas-

sification is crucial for predicting network flow patterns to

utilize network resources efficiently. OpenFlow protocol has

a built-in data collection that can provide some basic flow

information such as packet size, timestamps, inter-arrival

time, source and destination MAC/IP/Port, flow duration,

byte count and packet count. Furthermore, the centralized

visibility of the SDN controller provides a new opportu-

nity for monitoring and predicting network performance.

Hence, leveraging the global network view knowledge of

the OpenFlow-SDN controller to predict the flow patterns

and therefore achieve better QoS provisioning and resource

utilization has gained increasing interest among researchers,

see Table 8.

To adaptively providing desired QoS for different traffic

flows in OpenFlow-base SDN, it is also necessary to monitor

and classify network flows at the application level. Therefore,

when a new flow arrives, the application-layer classifier

can get the flow’s features and compares them with the

learned features, result in an optimal controller forwarding

rule decision. Unfortunately, OpenFlow-based networks are

only capable of monitoring Layer 2/3/4 header field of

packets and still lack in higher layers application awareness.

The OpenFlow-SDN controller can only perform forwarding

decisions based on the shortest path or load balancing. Data

set and classification features in OpenFlow-SDN must be

carefully selected. Therefore, it requires Layer 7 fine-grained

application awareness to achieve more intelligent forwarding

decisions to give more flow-rules placement priority for

real-time or large applications flows and guarantee better QoS

control and provisioning. Deep Packet Inspect (DPI) based

techniques are quite effective due to its high accuracy mea-

surement level [121]. However, DPI consumes a lot of CPU

resources and not effective for the encrypted traffic, which

makes it unreliable for large-scale and complex networks of

heterogeneous and enormous traffic conditions. On the other

hand, a machine learning-based approach does not require

packet payload inspection, and only some flow features are

selected carefully for training the classifier. The ML-based

approach can perform classification in a much lower com-

putational cost than DPI approach, but in a lower accuracy

rate due to its coarse-grained classification. Nevertheless, the

ML-based technique can bemore effective inOpenFlow-SDN

than traditional networks due to the global network visibility

of the SDN controller and the collected statistical information

of each flow entry.

Assume that no application signature is available, the accu-

racy problem of ML-based and fine-grained application-level

classification in OpenFlow-SDN has been addressed in some

research works such as [121] and [122]. Research work as
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Atlas [121] proposes to use C5.0 decision tree ML-based

technique and employ a crowd-sourcing labeling approach on

OpenFlow-SDN controller to obtain a fine-grained and accu-

rate application classifier. Atlas relies on deployed agents in

some employee devices to collect information about active

network sockets of each running application. These forma-

tions are sent to the controller where the ML-based classifier

is running to correlate and compose the ground truth training

data with other flow features such as packet size that are

collected by the OpenFlow protocol. Therefore, when new

guest devices join the network, OpenFlow sends the flow

features to the classifier which can detect the application and

recommend the appropriate actions to be installed by the con-

troller. The work gives a solution for an accurate and reliable

application awareness ML/OpenFlow based SDN classifier

that get 90% accuracy of only a test of 40 applications in

Google Play. However, the idea of employing agents for

collecting application-level information can add more com-

plexity and traffic in large-scale networks and may not be an

optimal solution in IoT network where data source devices

are of resource constraints and heterogeneous platforms.

The Accuracy of an ML-based network traffic classifier

can also be affected by the type of selected flow features

under a highly fluctuating traffic over time/space. Hence,

the network flow measurement has to be agile enough to

estimate both large and small traffic flows dynamically. SDN

has opened up new opportunities to collect per-flow fine-

grained measurements of specific features dynamically on-

the-fly and to cope with the dynamic network and traffic

conditions. According to [122], selecting some flow features

for certain ML-based classification techniques can be more

effective in achieving higher classification accuracy than

other classification techniques. As a result, [122] proposes a

software-defined traffic classification framework (vTC) that

dynamically choose the appropriate flow features and clas-

sifier to maximize accuracy and reduce classification delay.

The author uses a pool of ML-based classification mod-

els such as K Nearest Neighbors, Support Vector Machine

(SVM), Decision Tree (DT), Adaptive Boosting, Naive Bayes

and Multi-Layer Perception (MLP) to test the accuracy of

each model in categorizing network flows. The results show

that the accuracy of the classifier is highly dependent upon

the selected flow features and protocol.

Some other research works concentrate on predicting

dynamic OpenFlow-SDN network traffic patterns to enable

adaptive QoS provisioning and enhance the network’s

resources utilization such as [123], [124]and [127]. To avoid

the eviction of unfinished flows, the authors in [123] pro-

pose an algorithm to determine the number of flow entries

that are likely to be remaining in the flow table at the next

sampling period. As such, it dynamically adjusts the timeout

value of each flow to reserve space for the newly arrived

flows in advance. The proposed algorithm uses AutoRegres-

sion (AR) to predict the number of new flows and utilize

the Weibull distribution to estimate the number of remain-

ing flows. Research work as [124] uses the mathematical

tensor model that widely used in big data application to

proposes a tensor-based SDN (TSDN) model for efficient

QoS provisioning in OpenFlow-SDN. The High-order singu-

lar value decomposition (HO-SVD) method and incremental

updating approach are employed to extract the most valu-

able flow entry header fields and generate the forwarding

tensor. The dynamic update in the network topology can be

rapidly reported to the controller by incrementally updating

the forwarding tensor. The incremental tensor decomposition

approach is employed to generate the core tensor which

contains the most valuable forwarding information. All the

core tensors generated in the data plane are submitted to

the control plane to generate the controlling tensor which

capable of globally computing optimal paths for data packet

scheduling. The transition tensor model which consists of

four orders and uses the eigenvalue decomposition method to

compute the stationary distribution is also proposed to predict

the network traffic.

In OpenFlow-SDN, the controller needs to calculate and

install the forwarding rule of each unknown stream in real-

time, which may cause a computation and communica-

tion burden on both data and control planes in large-scale

networks [128]. In this essence, the authors in [125] propose a

Pre-Emptive Flow InstallationMechanisms (PFIM) to reduce

the load on the controller result from the burden flow requests

traffic. PFIM dynamically learns the periodic patterns of IoT

traffic and accordingly install the appropriate flow entries to

the flow-based switch before new packets arrivals. This work

only focuses on monitoring the packets arriving time of the

newflows at the forwarding device to identify flows of regular

intervals. However, non-regular interval flow patterns require

more complex learning-based algorithms to predict the IoT

based traffic pattern.

Other research works such as FlowSeer [126], and [129]

adopt learning algorithms to predict the dynamic traf-

fic patterns of OpenFlow-SDN large scale networks.

FlowSeer [126] proposes an elephant flow detection and

scheduling mechanism that monitor and train the first few

packets to predict the rate and duration of the initiated flow

under dynamic network and traffic conditions. However,

FlowSeer does not clearly explain the flow features selected

in the learning data set as inputs. Furthermore, the proposed

a cooperative prediction mechanism that enables the switch

to perform most of the classification decisions, requires to

update the data plane which contradicts with the main idea

of SDN to keep data plane abstract and simple for per-

forming the basic networking tasks. Elephant flow predic-

tion mechanism is also proposed in [129] to meet with the

demands of the traffic characteristics in data center networks.

Both research studies focus on how to reduce the controller

to switches communication overhead by predicting the ele-

phant flows and adapt their routing policies to meet with

the dynamic network conditions demands. However, none of

them study the scalability of the network when connecting to

more complex and dynamic large-scale networks as IoT, large

virtualized data centers and multi-tenant cloud networks.
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Taking into consideration the network-wide state knowl-

edge of the SDN controller is important for achieving an opti-

mal traffic measurement and performance prediction. Hence,

more research is required in selecting more valuable flow fea-

tures as a training set for predicting the flow patterns. Thus,

proactively set up the flow to minimize the control traffic

overhead on the controller that caused due to the huge amount

of flow-rules placement requests in the case of dynamic and

large-scale networks.

VII. OPENFLOW-SDN CONTROLLERS LOAD BALANCING

In the OpenFlow-based distributed SDN control plane archi-

tecture, the mapping between the data forwarding nodes and

controllers is statically configured. Any workload changes

in the data plane can easily lead to load imbalance in the

distributed controllers. The controller can be overwhelmed

by the high amount of flow-rules placement requests and

inefficient resource utilization due to uneven load balancing

among controllers under spatial and temporal variations in

the traffic conditions. Hence, the assignments of the data for-

warding nodes to the controllers need to be carefully config-

ured to prevent controllers from being overloaded. In Open-

Flow protocol, the problem of the overloaded controller is

partially resolved by assigning two controllers with different

roles (master, equal or slave) for each switch. If the master

controller fails due to overload or other exceptions, the role

of the equal controller can be changed to master. However,

this mechanism is not adaptive and robust enough to the

controller’s failure, and cannot achieve optimal load balanc-

ing and resource utilization in the control plane. To resolve

this issue, the authors in [130] propose a dynamic slave

controller assignment that prevents the network crash by

planning slave controllers assignment ahead of the controller

failures.

The hierarchically distributed controllers has been

also proposed to partition the load and functionali-

ties among controllers as in Kandoo [14], Xbar [15],

ORION [16], [48], [131] and [132]. Although the hierarchi-

cally distributed controllers can improve the network scal-

ability and partition the traffic load and functionality into

level-based controllers, it cannot optimally distribute the

load among the lower-level controllers of local network state

view. The local area controllers are statically mapped to their

local-view data plane forwarding nodes and do not consider

the current state and load fluctuation of the network in its

static load partition. As such, both the area and domain

controllers can still be overwhelmed by the high imbalance

aggregated flow in their mapping data plane forwarding

nodes.

Elastic controller provisioning in response to the tempo-

ral/spatial variation in network traffic conditions can also be

used to improve scalability and prevent the controller from

being a potential bottleneck. However, dynamic resource

provisioning without efficiently use the available resources

are wasting of resources and improperly increase the capital

expenditures (CAPEX). Therefore, proposing an efficient and

adaptive load balancing scheme for the control plane gains

more interest among researchers.

Wang et al. [133] provided a survey on the recent solutions

for balancing traffic across links in data center networks. Part

of the literature presents the load balancing mechanisms that

leverage SDN global link and traffic information to balance

the load in the data plane. However, in this survey, we aim

at presenting the scalability concern in the control plane due

to load imbalance in the logically-centralized controllers.

This paper presents the state-of-the-art load balancing mech-

anism in the control plane that dynamically reassigns con-

trollers to data forwarding planes or flow-rules placement

requests to different underloaded controllers. Another sur-

vey in [134] presented the proposed techniques toward bal-

ancing the load in both the data and control planes. How-

ever, we cover also the most recent research works toward

the controllers’ load balancing and compare the proposed

approaches. Finally, we classify the OpenFlow-SDN load

balancing in the control plane into two main schemes;

dynamic assignment of controllers and dynamic assignment

of flow requests, see Figure 13. A comparison of the differ-

ent controllers’ load balancing mechanisms is also provided

in Table 9.

A. DYNAMIC ASSIGNMENT OF CONTROLLERS

One of the proposedmechanism for balancing the load among

the distributed controllers is to dynamically migrate the data

plane forwarding nodes from the overloaded controllers to

the underloaded ones. For instance, ElastiCon [135] proposes

a switch migration protocol that monitors the load on all

controllers and adaptively reassign data plane forwarding

nodes to the underutilized controllers. ElastiCon also pro-

poses elastic provisioning of the controllers from a pool of

controllers that dynamically grow or shrink in response to the

aggregated load capacity threshold of all existing controllers.

To guarantee liveness, ElastiCon lets the controller remain

active when migration happens until the switch finishes the

command processing. ElastiCon implements a new 4-phase

migration protocol to make sure that at least one controller is

active (master or equal mode) and hence minimize disruption

to ongoing flows, and automatically fit with the spatial and

temporal variations in the flow conditions.

Partitioning or distributing network state views among con-

troller instances is used to avoid overwhelming the controller

resources due to replicating network state at all controller

instances. However, it can unacceptably increase flow-rules

placement propagation latency as a result of inter-controller

communications to access the topology state. An experiment

commenced by Pratyaastha [136] to measure the RTT of the

first packet of each new flow shows that computation time

requires for flow-rules placement is negligible while the key

factor in the high flow-rules placement latency is the time to

access remote state from the distributed network-wide state.

To address this problem, Pratyaastha proposes an approach

for assigning switches to controllers and partition the network

state views among the distributed controllers by minimizing
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FIGURE 13. OpenFlow-SDN controllers load balancing mechanisms.

TABLE 9. Comparison of the proposed openFlow-SDN controllers load balancing mechanisms.

the number of dependencies between SDN switches and a

specific state partition. However, in highly dynamic work-

load conditions, resource requirements and state partitions

can dynamically change and hence introduces a reconfig-

uration overhead due to a sharp and frequent controller to

switch reassignments.Moreover, such deterministic approach

that depends on a specific threshold needs is inflexible to

some extent for variable network environment. Therefore,
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an adaptive reassignment mechanism is required to reduce the

frequent disruption in SDN network configuration.

The research works in [55]–[57], [137] propose the online

migration of switches to controllers to utilize available

resources and balance a load of controllers efficiently. Some

research works [55], [56] focus on how to efficiently utilize

resources (CPU, bandwidth, and memory) to achieve load

balancing among controllers. Cheng et al. [55] as an instance,

proposes a GAME-Switch Migration (GAME-SM) mecha-

nism to carefully migrate a small number of switches among

controllers for each time of adjustment to efficiently maxi-

mize resource utilization with the dimension of CPU, band-

width, and memory. Unlike ElastiCon, the authors in [55]

propose to let both controllers with residual resources and

the overloaded controller to play a role in the load balancing

and resource utilization. Inspiring by the power of game

theory, the controllers with residual resources will act as

players that compete to fully utilize its resources by achieving

switchesmigration. On the other hand, overloaded controllers

will try to migrate their tasks to avoid service interruption.

Measuring the resource utilization by the controllers without

considering the relation between switches and controllers is

not enough to achieve efficient dynamic controllers assign-

ment. As a result, Ye et al. [56] propose a multi-dimensional

resource-consuming model that considers switches as

resources consumers and controllers as resource providers.

Since different data plane forwarding events have uneven

resource demands such as CPU, bandwidth and memory,

the migration decision is achieved based on how the model

can obtain load balancing among these multi-dimensional

resources to maximize resource utilization. For instance,

a controller that control more edge forwarding nodes needs

more CPU resources than others due to the high number

of flow request for unknown new flows. Core forward-

ing nodes, on the other hand, consume more bandwidth

resources than others due to the high amount of aggregated

traffic.

The dynamic online assignment of controllers has to con-

sider the trade-off between the load balance rate and migra-

tion cost and elaborately decide which forwarding node

and where it should be migrated to avoid service interrup-

tion. Some research works as in [57], [137], [138] study the

dynamic controller assignment problem (DCAP) and pro-

poses solutions to minimize the migration cost in production

networks as in data centers. For instance, the research work

in [137] proposes an efficient-aware switch migration-based

decision-making (SMDM) algorithm which based on the

greedy method. SMDM performs the migration process in

three main phases. First, it monitors the aggregated load

in each controller and measures the load diversity on the

controllers to decide on whether to perform the migration.

Second, it calculates the migration cost and migration effi-

ciency to prepare possible migration choices. The migration

efficiency of moving a switch to a controller is defined

as a ratio of load balance variation to the migration cost

of the increase in load cost and message exchange cost.

Finally, it prepares a migration plane for migrating some

switches to controllers with higher migration efficiency.

Another study in [57] formulates the dynamic controller

assignment problem (DCAP) as an online optimization to

minimize the total cost caused by the response time and

controllers maintenance. To let the forwarding nodes to be

re-assigned in a timely fashion in response to the dynamic

variation of network conditions, it proposes a two-phase

offline algorithm that uses the concepts of both matching

theory and conditional games. In the first phase, forwarding

nodes are defining their preferences over controllers based on

the worst response time that the controller can provide, and

in turn, the controllers are defining their preferences based

on the control traffic overhead caused by the communication

between them. In the second phase, the outcomes from phase

one are used to improve the matching solution by using a

coalitional game approach that further reduces the response

time. Then applying both the two-phase offline algorithm

and the Randomized Fixed Horizon Control (RFHC) frame-

work to develop an online algorithm for efficiently solv-

ing the switch-controllers assignment problem. Distributed

Decision Mechanism (DDM) [138] is another research work

that migrates switches according to the selection probability,

and the target controllers are determined by calculating the

migration cost of three integrated cost factors; data collection,

switch migration and controller state synchronization.

Although the dynamic assignment of switches to con-

trollers can improve the scalability of SDN, in very active

networks, the determination of the exact moment of con-

trollers’ hand-off in a disruption-free manner between con-

trollers can be minimal and useless. As a result, the dynamic

re-assignment of the forwarding nodes to controllers disturb

the ongoing flows and introduce liveness, consistency and

reliability concerns.

B. DYNAMIC ASSIGNMENT OF FLOW REQUESTS

Another attempt toward controllers load balancing is to

dynamically redirect the flow-rules placement requests from

the overloaded to underloaded controllers while preserving

the static mapping between control and data planes.

ASIC [139] proposes to redirect the flow-rules place-

ment requests to a load balancer to select the appropri-

ate intra-domain controllers for processing these requests

in parallel. However, the use of proxy load balancer can

form a potential single point of failure. BalanceFlow [140]

also proposes a controller load balancing architecture for

the OpenFlow-based wide-area networks that can dynami-

cally partition flow requests among controllers. Every con-

troller in BalanceFlow shares the same network-wide replica

and publishes its load information periodically through

a cross-controller communication system. Unlike ASIC,

a super controller in BalanceFlow is only responsible for

collecting the periodically published flow requests infor-

mation from all controllers. Next, it partitions the traffic

in response to the collected information and generates the

assignment information. Finally, the assignments rules are
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installed to the flow tables of the corresponding forward-

ing nodes. To assign each new flow-rules placement request

to a certain controller, BalanceFlow extends OpenFlow by

introducing the CONTROLLER X action to forward the

new flow to the under-loaded X controller. It installs all the

potential flows and their wildcard matching ingress-egress

route pairs with a permanent idle-timeout to the forward-

ing nodes. As such, the first packets of new flows always

match allocation rules and are sent to different controllers to

achieve controller load balancing. BalanceFlow also presents

a traffic partition heuristic to avoid propagation latency of

allocating flow-requests to distant remote controllers. The

drawbacks of BalanceFlow is that it adds more configuration

and monitoring traffic overhead and a single super-controller

for load balancing may not perform well in large-scale

networks.

The authors in [141] also propose a distributed load bal-

ancing algorithm for the control traffic based on the game

theory and converges to a specific equilibrium known as

Wardrop equilibrium. The switches estimate the controllers’

state according to the delay function and select the available

controller to process the flow-rules placement requests.

Controller elasticity and load balancing suffer from two

main problems in the case of variant traffic conditions

which can hinder scalability and performance of SDN. First,

the reactively threshold-based provisioning of new con-

trollers can introduce an overhead due to sharp and fre-

quent controller instances provisioning and shrinking. This

is because of the enormous traffic that can be generated by

control and data planes to maintain load-balancing, consis-

tency, and global domain network state among controllers.

Second, partitioning network state views among controllers

introduce a flow-rules placement delay due to inter-controller

communication to access applications or topology state. This

overhead can only be acceptable if forwarding rules are

proactively installed, however it can still disrupt many crit-

ical applications that depend on fast reactive forwarding

rule installation such as consistent load balancing, traffic

engineering, and dynamic traffic filtering. More researches

are required to be invested in proactive and soft controller

provisioning and flow-rules placement distribution, that can

minimize controller consistency overhead and balance load

among controllers.

VIII. RESEARCH CHALLENGES AND FUTURE DIRECTIONS

Decoupling control logic from data forwarding nodes to

enable centralized management introduces new scalabil-

ity and performance challenges in the SDN. Very limited

research works have discussed the performance and scala-

bility of the OpenFlow-SDN in dynamic and large-scale net-

works like the Internet of Things (IoT) where a huge number

of entities (e.g., physical objects, VMs, applications) com-

municate and dynamically join or leave the network. In this

section, we present some of the scalability and performance

challenges that encounter the OpenFlow-SDN and deserve

more research efforts.

A. CHALLENGES RELATED TO OPENFLOW-SDN

CENTRALIZED VISIBILITY

To obtain centralized and optimal network flow manage-

ment and configuration, controllers have to maintain a global

view of the network topology graph. Replicating the global

link-state view in every distributed controller can guarantee

a logically-centralized controlling and transparency over the

data plane. Moreover, it can prevent the routing misbehavior

caused by controllers’ inconsistency in the interval between

two consecutive synchronizations. However, maintaining a

consistent replica of the network-wide state among con-

trollers in a large-scale network of dynamic traffic and topol-

ogy conditions can result in a massive amount of frequent

synchronization traffic that can overwhelm the controller.

Previous literature proposed solutions that addressed

different consistency and synchronization mechanisms to

improve SDN scalability. Eventual consistency can guarantee

faster controller response time but it can lead to potential

routing problems (e.g., routing loops, black holes). On the

other hand, strong consistency can avoid routing problems

but with the cost of higher delay, lower availability and

computational complexity overhead. Adapting consistency in

according to the current network state canmaintain scalability

that sacrifices application optimality for less synchronization

overhead. However, in highly dynamic networks, it requires

more computational complexity to monitor and measure the

trafficmetrics for obtaining adaptive controllers’ consistency.

Event-driven synchronization can also reduce the consistency

traffic by synchronizing only the updated controller state

according to the data plane topology change and link failure

events.

Partitioning the controllers into clusters and using eventual

consistency in response to data plane changes events is a

practical and agile solution in the large-scale and dynamic

SDN networks. However, the packets that are traveling on

the failed link during inconsistency interval will be lost and

dropped until the assigned controller recalculate and install

the alternate forwarding rules to recover the network failure.

Therefore, it is crucial to enable OpenFlow-SDN to bypass

the link failures in less recovery time by providing alternate

routing paths in advance to avoid delay and communication

traffic overhead imposed by strong consistency.

B. CHALLENGES RELATED TO OPENFLOW-SDN

DISCOVERY PROTOCOL

Previous literature does not give a robust study and anal-

ysis on the effect of discovery protocol in the context

of large-scale SDN-based networks of dynamic traffic and

topology conditions. Furthermore, the proposed solutions

toward hybrid-SDN discovery either use the existing LLDP

protocol or propose a new protocol. However, none of these

studies proposed a solution to enable OpenFlow to discover

non-OpenFlow elements in hybrid-SDN, so the controller

can get statistical information about adjacent non-OpenFlow

topology for achieving optimal routing decisions on the
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border forwarding elements. Therefore, there is a need for

more research efforts to propose an efficient OpenFlow-based

discovery protocol in the context of hybrid-SDN. More

research efforts also required to enhance the discovery pro-

cess to be triggered asynchronously in response to reactive

or predicted topology changes to save network resources and

avoid sending unnecessary redundant topology information

to the controller.

In addition, the control plane has to have a real-time up-

to-date view of the global network view and status to act as

a centralized controller and efficiently serve the data plane

forwarding requests. The entire control plane management

procedure is substantially affected by how efficiently it can

discover data plane forwarding nodes and links to maintain a

centralized global view of the network topology. Therefore,

more research efforts are necessary to study the performance

of the OpenFlow discovery under large-scale and dynamic

network conditions.

C. CHALLENGES RELATED TO OPENFLOW-SDN

FLOW-RULES PLACEMENT

In a highly dynamic and large-scale network, the number

of flow-rules placement requests to the controller increase

rapidly, which can overwhelm the controller and delay the

forwarding process. This delay can significantly increase to a

level which can not meet with the requirements of real-time

applications and result in degrading network performance and

scalability. The OpenFlow controller can proactively popu-

late the flow entries of all traffic matches in advance to the

flow arrival. However, in large-scale networks, the TCAM-

based flow tables can be overflowed by the high number of

installed flow entries that match the traffic between all ingress

and egress ports. Previous literature proposed solutions such

as efficiently using memory resources in the data plane, bring

back some control logic to the data plane, use per-flow source

routing or adaptively adjust the flow entries idle timeout.

However, very few research efforts focus on predicting the

flow patterns to install the forwarding rules in advance to

the arrival of flows. Most of the proposed learning-based

mechanisms focus only on monitoring and classifying the

SDN traffic. Therefore, more research is required in selecting

more valuable flow features as a training set for predicting

the flow patterns. Thus, controllers can proactively install

the forwarding rules to minimize the communication traffic

overhead between the control and data planes.

The proposed solutions toward dynamically adjusting the

flow entries idle timeout focus on measuring the current

network traffic performance without considering the appli-

cation and QoS demands. There are also a lot of dynamic

applications whose traffic transmission inter-arrival cannot be

accurately estimated or predicted. For example, in on-demand

applications (e.g., VoIP and video-on-demand), flows come

and go unexpectedly, and their bandwidth requirements and

duration cannot be known in advance. Hence, it is also neces-

sary to monitor and classify network flows at the application

level to dynamically adjust flow entries’ timeout.

D. CHALLENGES RELATED TO OPENFLOW-SDN

CONTROLLERS LOAD BALANCING

Under spatial and temporal variations in the traffic condi-

tions, the controller can be overwhelmed by the high amount

of flow-rules placement requests and inefficient resource

utilization due to uneven load balancing among the logi-

cally centralized controllers. Most of the proposed solutions

toward controllers load balancing focus on either dynam-

ically reassigns controllers to the forwarding elements or

dynamically reassign flow-rules placement requests to the

underloaded controllers according to the dynamic variation

of network conditions. A sharp and frequent migration of

forwarding nodes to controllers can introduce a reconfig-

uration overhead which can be avoided by calculating the

migration cost and decide accordingly. However, most of

the proposed solutions suffer from large execution time and

cannot guarantee efficient resource utilization. A better solu-

tion to the reconfiguration overhead due to reactive migra-

tion is to predict the load imbalance and act accordingly.

On the other hand, most of the proposed solutions toward

reactively reassigning flow-rules request to the underloaded

controllers suffer from high response time due to propagation

delay and computational complexity. Moreover, none of the

proposed solutions study the possibility of proactively reas-

signing flow entries based on the predicted load imbalance in

controllers.

IX. CONCLUSION

Software-Defined Networking (SDN) is an emerging net-

work architecture that promises to simplify network manage-

ment, improve network resource utilization, and boost evolu-

tion and innovation in traditional networks. SDN allows the

abstraction and centralized management of the lower-level

network functionalities by decoupling the network logic from

the data forwarding devices into a logically centralized dis-

tributed controllers. However, in highly dynamic large-scale

networks, this separation introduces two types of communi-

cation overhead: 1) control traffic overhead between control

and data planes, and 2) consistency traffic overhead between

distributed controllers to maintain logically-centralized con-

trol over the network. This traffic can lead to problems such as

controller overloading, inefficient resource utilization, rout-

ing problems, high controllers response time and data plane

memory overloading. As such, impact the overall perfor-

mance and scalability of SDN.

In this survey, we have presented four main challenges in

OpenFlow-SDN that can be considered as primary sources

of such traffic overhead. The survey, have first given an

overview of OpenFlow-SDN flow control and presented

some critical challenges in the OpenFlow-SDN flow con-

trol that affects the performance and scalability of the net-

work such as logically-centralized visibility, link-state dis-

covery, flow-rules placement problem and controllers load

balancing. We have then discussed each issue and presented

the related existing solutions and limitations in enhancing

the OpenFlow-SDN scalability and performance. Finally,
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we have outlined the research challenges that need to

be addressed further toward more adaptive and scalable

OpenFlow-SDN solutions under large-scale and dynamic

network conditions. These challenges include the ability of

OpenFlow-SDN to bypass link failures in less recovery time,

discover non-OpenFlow elements in the context of hybrid-

SDN, avoid sending redundant topology information to the

controllers, monitor and classify network flows at the applica-

tion level to dynamically adjust flow entries’ idle timeout, and

proactively assign flow entries based on the predicted load

imbalance in controllers.
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