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ABSTRACT
Reliable prediction of evaporative losses from reservoirs is an essential component of reservoir
management and operation. Conventional models generally used for evaporation prediction have
a number of drawbacks as they are based on several assumptions. A novel approach called the
co-active neuro-fuzzy inference system (CANFIS) is proposed in this study for the modeling of evap-
oration from meteorological variables. CANFIS provides a center-weighted set rather than global
weight sets for predictor–predictand relationship mapping and thus it can provide a higher pre-
diction accuracy. In the present study, adjustments are made in the back-propagation algorithm
of CANFIS for automatic updating of membership rules and further enhancement of its prediction
accuracy. The predictive ability of the CANFISmodel is validatedwith threewell-established artificial
intelligence (AI) models. Different statistical metrics are computed to investigate the prediction effi-
cacy. The results reveal higher accuracy of the CANFISmodel in predicting evaporation compared to
the other AImodels. CANFIS is found tobe capable ofmodeling evaporation frommean temperature
and relative humidity only, with a Nash–Sutcliffe efficiency of 0.93, which ismuch higher than that of
the other models. Furthermore, CANFIS improves the prediction accuracy by 9.2–55.4% compared
to the other AI models.
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1. Introduction

Egypt is facing the challenge of growing water stress
owing to limited water resources. It receives a fixed share
of water of theNile River (55.5 billionm3/year) according
to the agreement the country made with Sudan in 1959
(Hassan, Ismail, Elmoustafa, & Khalaf, 2018). The water
supplied through the Nile is almost the total amount of
water available in the country. LakeNasser is located over
the Nile River in Upper Egypt and controls all the water
supplied through the Nile (Hassan, 2013). Assessment
of the water budget of Lake Nasser is therefore impor-
tant for better management of water resources of Egypt.
The evaporative loss from Lake Nasser is the most sig-
nificant factor contributing to the lake’s water budget.
Therefore, it has been taken into account in many pre-
vious studies. For the lake management, the authority
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considers 7.54mm/day as the yearlymean of daily evapo-
ration fromLakeNasser, with the highest evaporative loss
being 10.8mm/day in June and the lowest 3.95mm/day
in December (Ebaid & Ismail, 2010). This estimation
is based on pan evaporation and the lake’s water sur-
face area, which fluctuates both annually and seasonally
depending on the net water it receives (Jeuland & Whit-
tington, 2014). Accurate estimation of evaporation losses
is crucial for reservoir management (Ghorbani, Deo,
Yaseen, Kashani, & Mohammadi, 2018). In semi-arid
and tropical areas, lake evaporation is the major factor
that needs to be monitored for water resources alloca-
tion (Qasem et al., 2019). Thus, accurate estimation of
evaporative loss from Lake Nasser is important for water
resources allocation and management in Egypt (Elba,
Farghaly, & Urban, 2014; Sadek, Shahin, & Stigter, 1997).
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Evaporation from the lake occurs as a result of the
vapor pressure difference between the lake’s surface and
the atmosphere. It is driven by the availability of energy
required for the evaporation process (Burt, Mutziger,
Allen, & Howell, 2005; Shirgure & Rajput, 2011). There-
fore, a number of meteorological factors influences the
evaporation process, including air temperature, water
temperature, solar radiation, humidity and wind (Priest-
ley &Taylor, 1972; Sartori, 2000). Numerousmodels have
been implemented for the measurement of evaporative
losses from water bodies, which can be categorized as
experimental tests, physical methods and artificial intel-
ligence (AI) models. Among the experimental methods,
the pan evaporation ismostwidely used as it is reasonably
simple and inexpensive (Koza, 1992). Long-term record-
ings can be obtained by installing an evaporation pan
for a long period, which is considered to provide the
most creditable data on evaporation losses (Kişi, 2006). A
regression coefficient derived from pan evaporation data
is used for measuring the evaporative losses from open
water bodies (Cooley, 1983). However, pan evaporation is
time consuming and subject to large uncertainties. Con-
sidering the limitations of in-situ measurement, many
empirical models have been developed for the estimation
of evaporation from meteorological variables, which are
considered the most suitable methods for the measure-
ment of evaporative loss in the absence of pan evapo-
ration data (Allawi, Jaafar, Mohamad Hamzah, Ehteram,
et al., 2018). For example, the Penman equation is espe-
cially used to estimate evaporation losses from open
water bodies (Penman, 1948). These empirical meth-
ods are constructed considering the static initial condi-
tions (Adamala, Raghuwanshi, Mishra, & Tiwari, 2014).
Although several empirical models are available for the
estimation of evaporation, their potential is not satisfac-
tory owing to the nonlinear association of evaporation
with meteorological variables, and non-stationarity and
stochasticity in the evaporation process (Baydaroǧlu &
Koçak, 2014). Hence, it is difficult to derive reliable phys-
ical–empirical models to represent the physical mecha-
nismof the evaporation process. As a result, newmachine
learning models to simulate the evaporation process are
always being explored by climate and hydrology scien-
tists.

In recent years, AI-based models have emerged as
a valuable tool for estimating evaporation losses (Ali
Ghorbani, Kazempour, Chau, Shamshirband, & Taherei
Ghazvinei, 2018; Kisi &Heddam, 2019; Sebbar, Heddam,
& Djemili, 2019). The intelligence systems are advanced
technologies for simulating complex natural phenomena
(Yaseen, Sulaiman, Deo, & Chau, 2019). Such systems
comprehend the knowledge lying beyond the given his-
torical information by mimicking and processing the

actual variability and trend. The AI-based models are
simple, versatile and applicable at local scale. A number
of studies conducted in different climatic environments
and using various meteorological inputs reported higher
accuracy of AI models in the prediction of evaporation
compared to empirical models (Allawi & El-Shafie, 2016;
HosseinzadehTalaee, Tabari, &Abghari, 2014; Kişi, 2006;
Moghaddamnia, Ghafari, Piri, & Han, 2009). Nourani
and Sayyah Fard (2012) used a number of commonly
usedAImodels such as artificial neural networks (ANNs)
for the modeling of daily evaporative losses. They com-
pared the results with those obtained using a classical
regression model and confirmed the better performance
of the ANNmodel in predicting evaporation frommete-
orological variables such as air temperature and solar
radiation. Deo, Samui, and Kim (2016) compared the
performance of support vector regression (SVR) with
other AImodels, including genetic programming, for the
simulation of evaporation. Deo et al. (2016) employed
three AI models, namely relevance vector machines,
extreme learning machines and multivariate regression
spline approaches, for the modeling of monthly evapora-
tion. Both studies reported the significance of AI models
for the better prediction of evaporation. Moghaddamnia
et al. (2009) compared the performance of ANNs and the
adaptive neuro-fuzzy interface system (ANFIS) model
in simulating evaporation, and confirmed the improved
performance of these models compared to the empiri-
cal models. Kisi and Heddam (2019) used fuzzy genetic
(FG) techniques to model monthly evaporation losses
and compared the performance with ANFIS, ANN and
the Stephens Stewart method. The results confirmed the
power of FG in modeling evaporation compared to the
AI models.

ANFIS, implemented as the base model in the cur-
rent study, was first suggested as a multiple input–output
modeling approach. ANFIS can model highly stochas-
tic patterns by capturing the input–target relation-
ship. The selection of membership functions (MFs)
and fuzzy rules is important in designing the optimal
ANFIS model and achieving higher prediction accu-
racy. Therefore, an advanced version of ANFIS, known
as the co-active neuro-fuzzy inference system (CAN-
FIS), is proposed in this study for better accuracy in
prediction.

The structure of CANFIS allows change in the back-
propagation steps and re-evaluation of the membership
rule and functions (Malik, Kumar, & Rai, 2018; Prad-
han, Kumar, Kumar, & Sharma, in press). The CANFIS
model is implemented in this study with an improved
back-propagation technique to enhance model perfor-
mance (Chiroma et al., 2013). The model accuracy is
enhanced by selecting the numbers of optimal MFs in
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both automated and self-adaptive ways. These are the
main contributions of the current study.

The performance of the CANFIS model is examined
in this study in comparison with other popularly used
AI models, namely SVR, radial basis function neural
network (RBF-NN) and ANFIS. The proposed CANFIS
model is used for modeling monthly evaporation loss
from Lake Nasser, Egypt. Several meteorological vari-
ables are considered as input attributes for the develop-
ment of the models. The meteorological variables (sun-
shine, rainfall and surface pressure) with less influence
are initially removed using a simulation-based step-by-
step or one-by-one approach to determine the optimal
input combination. The rest of the paper is arranged as
follows. Section 2 presents a detailed description of the
case study area. Section 3 describes the theory of the AI
models employed in this study and the statistical metrics
used for the assessment of model performance. Section 4
presents the results obtained through the use of the pro-
posed model. The conclusions derived from the results
are provided in Section 5.

2. Case study and data description

Aswan High Dam, situated on the upper Nile River in
Egypt, was constructed during 1960–1970; afterwards, a
lake upstream of the dam, called Lake Nasser, was devel-
oped (Figure 1). The reservoir encompasses an area of
6540 km2 with a length of about 500 km. Themeanwidth
of the lake is approximately 10 km, reaching up to 60 km
in the middle. The reservoir has a maximum depth of
approximately 90m and an average depth of 25m. The
total storage capacity of the lake is 162.3× 109 m3 when
the water level reaches its maximum (Omar & El-Bakry,
1981). The reservoir controls the water supply for the
whole of Egypt. The climate of the regionwhere the reser-
voir is situated is hyper-arid. The average annual rainfall
in the region is less than 3mm, while the mean tem-
perature ranges between 17 and 36°C. Low rainfall and
high temperature have made the region hyper-arid. The
climatological data used in this study are for the period
1969–2010, based on the data availability for Nasser
Lake. Data were obtained from the Nile Water Author-
ity and Aswan High Dam Authority, Ministry of Water
Resources and Irrigation, Egypt. Historical climate infor-
mation included evaporation, air temperature, humidity,
wind speed and solar radiation.

3. Methodology

3.1. Artificial neural network (ANN)

ANNs were developed using the concept of informa-
tion processing in the human brain. They are capable

of solving complex nonlinear problems in modeling
stochastic time-series data. Through an iterative process,
the ANN can determine the optimal hidden neurons
and data patterns to predict unknown data (Abraham &
Khan, 2004). Owing to their predictive accuracy, ANNs
have been used extensively in water resources, hydrology
and climate science.

The RBF-NN is an advanced form of ANN. It is com-
posed of three layers of neurons known as the input,
hidden and output layers. The number of neurons in the
first layer is equal to the number of inputs. The first layer
is composed of input data, X = (x1, x2, . . . .., xn). The
nodes of the second layer (hidden layer) are described on
a radial basis. In the RBF, the input (x), a vector having a
dimension of I, is transferred to the hidden layer (Ahmed,
Noor, Allawi, & El-Shafie, 2018). The activation function,
∅(x), in each node of this layer, is a nonlinear function.
Thus, the output of the layer is derived according to the
radial distance of x and the center of the hidden neurons
(cj), as defined in Equation (1):

hj(x) = ∅(x − cj) (1)

Among the different RBFs, the Gaussian function
is the most popular. The Gaussian function can be
described by Equation (2):

∅j(x) = exp

[
−x − cj2

2ρ2

]
(2)

where x and ρ are the calibration data and the width of
the activation function, respectively. The width and the
center are related to hidden neurons in the model. The
last layer is the output layer, which is linear. It computes
all the responses of the network.

3.2. Support vector regression (SVR)

SVR is a neural network based on statistical learning. The
input vectors that support themodel architecture are cho-
sen through model training, which is detailed as follows.
Considering a simple regression problem trained with a
data set {(xi + di)}n (xi denotes input, di represents out-
put and n denotes data length), the regression function of
SVR can be defined as follows:

f (x) = wi · ∅i(x) + b (3)

where wi and b are the weight and bias, respec-
tively; ∅i is the nonlinear transfer function, which maps
the input variables into the high-dimensional feature
space, so that linear regression can be used to model
the nonlinear regression. Convex optimization with an
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Figure 1. Location of Lake Nasser in Upper Egypt (Allawi, Jaafar, Mohamad Hamzah, Mohd, et al., 2018).

ε-insensitive loss function (Vapnik, 1995) can be used to
solve Equation (3):

Minimize :
1
2
||w||2 + c

n∑
i=1

(ξi + ξ∗
i )

Subject to

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

wi · ∅i(x) + b − d ≤ E + ξi

i = 1, 2, 3, . . . . . .N
d − wi · ∅i(x) − b ≤ E + ξi

i = 1, 2, 3, . . . . . .N
ξi, ξi ≥ 0, i = 1, 2, 3, . . . . . . ,N

(4)

where ξi and ξ∗
i are slack variables which are used

to assess the deviation of training data beyond the
ε-insensitive region. The tolerance range of deviations
is depicted by C > 0, where C is a constant that defines
the penalizing loss in case of a training error. Misfitting
of data can be overcome by minimization of w2/2 and
C

∑n
i=1 (ξi − ξ∗

i ) in Equation (3).

3.3. Adaptive neuro-fuzzy inference system (ANFIS)

The ANFIS is an advanced form of fuzzy logic model. It
has gained much attention, particularly in applications
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of climate science and hydrology, because of its abil-
ity to map highly nonlinear relationships (Jang, 1993).
ANFIS employs a hybrid framework that combines back-
propagation and least-squares approaches to provide the
fuzzy ‘if–then’ rules. This framework, termed the neuro-
fuzzy system, includes the integration of theANNand the
fuzzy model, where a multilayer feed-forward network is
developed by employing neural network learning mod-
els and the fuzzy logic framework to map the input space
into the output space (Allawi, Jaafar, Mohamad Hamzah,
Abdullah, & El-shafie, 2018).

The common rules with two-fuzzy (i.e. IF–THEN) are
realized as shown in Equations (5) and (6):

Rule 1: if u is u1 and n is n1 then f1 = p1u + q1n + r1
(5)

Rule 2: if u is u2 and n is n2 then f2 = p2u + q2n + r2
(6)

where the MFs are represented by u, and n, p, q and r
represent the output for the model.

3.4. Co-active neuro-fuzzy inference system
(CANFIS)

The CANFIS incorporates the merits of fuzzy systems
and neural networks to improve the performance of the
neural network system. It has higher capacity to han-
dle input information as the fuzzy system can handle the
complete knowledge, which is clearly understood (Aytek,
2009). Two MFs are generally used, namely the general
bell and the Gaussian. The procedure also includes the
normalizing axon, which aims to normalize the output
variables into a range (0, 1). The fuzzy axons are very use-
ful for MF properties, which can be changed though the
model of back-propagation (Saemi & Ahmadi, 2008). In
the current research, the original CANFIS algorithm is
improved. Determination of the optimal internal param-
eters for the CANFIS model is essential. The selection of
an optimal number of MFs is considered as one of the
crucial parameters of CANFIS (Lohani, Kumar, & Singh,
2012; Tabari, Talaee, & Abghari, 2012).

The selection of MFs during the training phase can
provide a suitable mapping of the input–target pattern.
The CANFIS allows one additional phase to be added to
cover the back-propagation method at the beginning of
the fuzzification procedure. To improve the performance
of the CANFIS model, the original CANFIS model is
modified in this study to enable the back-propagation
method to choose the suitable weights in a localizedman-
ner. The mentioned modification enhanced the accuracy
of the CANFIS model. The procedure used for the devel-
opment of theCANFISmodel in the current research also

helps to sort the functionally classified input variables
into different classes of input type with different groups
of weights.

It is worth mentioning that the back-propagation
approach informs the weight coefficients for each input
variable. On the other hand, with the proposed modi-
fiedCANFISmodel, a search algorithm is achievedwhich
can change the MFs, as presented in Figure 2 (dashed
line). The classical CANFIS model targets the reduction
of prediction error through updating the neural network
without changing the fuzzy axons (Figure 2, solid line).
The new data processing approach proposed in this study
is utilized by the modified CANFIS model to reactivate
the fuzzification process with the provided newMFs and
also to readjust the fuzzy axons in a self-adaptive model
to improve the efficiency of the model.

The CANFIS uses a functional rule which can be
applied to the modular network and the input values.
Matching the MFs is the target of a number of treat-
ment components, and these are the second component
of the proposed CANFIS model. In addition, the num-
ber of modular supplied to the learning network is an
essential for the prediction accuracy (Hanafy & Hanafy,
2014; Patil & Valunjkar, 2016). In general, the CANFIS
network has a combined axon which releases the output
of the MFs to an output of the working network (Alec-
sandru & Ishak, 2004; Jang, Sun, & Mizutani, 1997); for
example, the outputs are passed to the final output layer.
On the other hand, the error is circulated to both theMFs
and the employing network. The first layer contains sev-
eral nodes and handling elements where, in each node,
the membership class for a fuzzy set (R1, R2, T1, T2)
is quantified (Allawi, Jaafar, Mohamad Hamzah, Mohd,
et al., 2018; Memarian, Pourreza Bilondi, & Rezaei,
2016).

Three MFs describe the fuzzy group. Layer 2 receives
the signal produced by each output pair from layer 2 and
layer 3, which comprises two components, the upper and
lower components (Saemi & Ahmadi, 2008). Finally, the
fourth layer produces the final output of the model by
providing the final shape of the network output and com-
puting the weighted normalizations of the outputs which
are produced in layer 3.

The proposed and the comparativemodels used in this
research were developed using MATLAB and NeuroSo-
lutions software.

3.5. Performance indicators andmodel structure

Different statistical metrics are used to evaluate the
model’s capability (Sanikhani, Deo, Yaseen, Eray, & Kisi,
2018; Sanikhani, Kisi, Maroufpoor, & Yaseen, 2019). The
metrics can be used to select the most suitable model
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Figure 2. Architecture of the co-active neuro-fuzzy inference system (CANFIS) model with multiple inputs–signal output.
Note: Solid line = procedure of the back-propagation algorithm used in the original CANFIS; dashed line = new procedure of the back-propagation algorithm
proposed in this study.

based on its predictive ability. Among those, the mean
absolute error (MAE), root mean square error (RMSE),
Nash–Sutcliffe efficiency (NSE), correlation coefficient
(R2), mean absolute percentage error (MAPE) and rela-
tive error (RE) are the most widely used (Ghorbani, Deo,
Karimi, Yaseen, & Terzi, 2018; Yaseen, Kisi, & Demir,
2016; Yaseen, El-Shafie, et al., 2016). These metrics can
be expressed as follows:

MAE = 1
N

N∑
t=1

|Ft − At| (7)

RMSE =
√√√√ 1

N

N∑
t=1

((Ft) − (At))
2 (8)

NSE = 1 −
∑n

t=1 (Ft − At)
2∑n

t=1 (At − Ft)
2 (9)

R2 =
∑n

t=1[((At) − (At))((Ft) − (Ft))]√∑n
t=1 ((At) − (At))

2 ∑n
t=1 ((Pt) − (At))

2

(10)

MAPE = 1
N

N∑
t=1

Pt − At

At
(11)

RE =
(
Pt − At

At

)
∗ 100 (12)

where Pt is the predicted value, At is the actual value and
N is the number of data.

The number of input variables has a significant effect
on the model accuracy. Several meteorological variables
are initially considered in this study to predict monthly
evaporation (Ep), including temperature (Ta), relative
humidity (RH), wind speed (Ws) and solar radiation
(SR). The historical data are divided into two phases
(training and testing). The first 75% of the data is used to
train the models, whereas the remaining 25% is used to
test the performance of the models. The architectures of
the predictive models which are considered in this study
to select the best model are as follows:

Model 1 : (Ep = f (Ta)) (13)

Model 2 : (Ep = f (RH)) (14)

Model 3 : (Ep = f (Ta,RH)) (15)
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Model 4 : (Ep = f (Ta, SR,RH)) (16)

Model 5 : (Ep = f (Ta, SR,RH,Ws)) (17)

4. Application results and discussion

4.1. AswanHigh Dam

In this study, the SVR is first implemented for modeling
monthly evaporation losses from Lake Nasser. The mod-
els are developed for all input combinationsmentioned in
Equations (13)–(17). Five performance metrics are used
to assess the accuracy of the SVR models during model
calibration and validation. The results are presented in
Table 1. It can be observed from the table that the worst
prediction results are obtained using Model 1. Model 1
comprises only air temperature as an input to predict

monthly evaporation. This indicates that utilizing tem-
perature alone is not sufficient for evaporation prediction
using AI models. The SVR model needs more informa-
tion to understand the evaporation pattern to provide
acceptable results. Table 1 shows that the accuracy in pre-
diction improves significantly when all meteorological
variables are considered as inputs (i.e. Model 5).

The second AI model implemented for the prediction
of monthly reservoir evaporation is RBF-NN. Different
input combinations mentioned in Equations (12)–(16)
are used to develop the RBF-NN model to select the
model giving the highest predictive accuracy. The perfor-
mance indicators are computed for different input combi-
nations and presented inTable 2. The prediction accuracy
of the RBF-NN models is also affected significantly by
different input combinations. It is observed that only the

Table 1. Performance of support vector regression (SVR) models in simulating monthly
evaporation losses from Lake Nasser.

Training Testing

Model MAE RMSE MAPE NSE R2 MAE RMSE MAPE NSE R2

Model 1 62.53 57.82 0.55 0.61 0.74 63.74 72.45 0.43 0.53 0.52
Model 2 38.23 53.42 0.63 0.69 0.74 41.85 65.67 0.37 0.54 0.55
Model 3 40.71 63.57 0.71 0.67 0.75 41.21 66.82 0.45 0.60 0.58
Model 4 52.87 74.81 0.84 0.69 0.66 55.02 75.77 0.71 0.63 0.59
Model 5* 26.31 35.72 0.34 0.82 0.75 33.87 39.64 0.26 0.65 0.61

Note: Five metrics, mean absolute error (MAE), root mean square error (RMSE), mean absolute percentage
error (MAPE), Nash–Sutcliffe efficiency (NSE) and correlation coefficient (R2), were used to assess the model
performance during model calibration and validation.

*Best performance.

Table 2. Performance of radial basis function neural network (RBF-NN)models in simulating
monthly evaporation losses from Lake Nasser.

Training Testing

Model MAE RMSE MAPE NSE R2 MAE RMSE MAPE NSE R2

Model 1 55.91 56.73 0.31 0.76 0.80 56.77 65.23 0.26 0.62 0.64
Model 2 35.22 56.87 0.34 0.77 0.82 37.11 62.33 0.18 0.65 0.67
Model 3 49.77 72.42 0.25 0.78 0.75 52.03 74.51 0.23 0.63 0.65
Model 4 34.21 47.58 0.28 0.89 0.86 32.48 34.87 0.16 0.70 0.66
Model 5* 21.72 30.82 0.24 0.85 0.89 30.12 29.24 0.14 0.71 0.69

Note: Five metrics, mean absolute error (MAE), root mean square error (RMSE), mean absolute percentage
error (MAPE), Nash–Sutcliffe efficiency (NSE) and correlation coefficient (R2), were used to assess the model
performance during model calibration and validation.

*Best performance.

Table 3. Performance of adaptive neuro-fuzzy inference system (ANFIS) models in simulat-
ing monthly evaporation losses from Lake Nasser.

Training Testing

Model MAE RMSE MAPE NSE R2 MAE RMSE MAPE NSE R2

Model 1 51.74 51.74 0.36 0.76 0.83 53.47 69.54 0.33 0.78 0.68
Model 2 29.47 46.37 0.22 0.85 0.85 33.21 67.44 0.21 0.79 0.68
Model 3* 18.82 29.55 0.17 0.86 0.87 22.45 19.47 0.11 0.81 0.77
Model 4 35.24 52.47 0.34 0.84 0.84 25.14 22.11 0.14 0.75 0.71
Model 5 47.28 66.84 0.21 0.82 0.82 45.42 68.54 0.13 0.74 0.75

Note: Five metrics, mean absolute error (MAE), root mean square error (RMSE), mean absolute percentage
error (MAPE), Nash–Sutcliffe efficiency (NSE) and correlation coefficient (R2), were used to assess the model
performance during model calibration and validation.

*Best performance.
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RBF-NNModels 4 and 5 are able to attain acceptable pre-
diction accuracy. The minimum RMSE, MAE and mean
absolute percentage error (MAPE) are achieved by using
three different meteorological variables as inputs (i.e.
Model 4). However, the maximum agreement between
the predicted and actual evaporation data is obtained by
RBF-NNModel 5, where all five meteorological variables
are used as inputs for the development of the model.

The performances of ANFIS models during calibra-
tion and validation in terms of five performance indica-
tors are presented in Table 3. The performance of ANFIS
is found to be different from that of SVR and RBF-
NN. The minimum prediction error during testing is
obtained using two inputs, the air temperature and rel-
ative humidity (i.e. Model 3). Based on the correlation
coefficient and NSE coefficient indicators, the maximum

Table 4. Performance of co-active neuro-fuzzy inference system (CANFIS)models in simulat-
ing monthly evaporation losses from Lake Nasser.

Training Testing

Model MAE RMSE MAPE NSE R2 MAE RMSE MAPE NSE R2

Model 1 23.48 26.57 0.18 0.94 0.92 28.34 28.78 0.27 0.77 0.72
Model 2 42.51 52.73 0.35 0.78 0.78 41.24 47.24 0.32 0.78 0.81
Model 3* 26.47 40.12 0.21 0.91 0.91 18.47 17.66 0.9 0.93 0.97
Model 4 28.24 52.48 0.26 0.82 0.87 30.24 45.23 0.19 0.85 0.85
Model 5 31.77 70.28 0.28 0.75 0.75 37.77 70.21 0.27 0.77 0.77

Note: Five metrics, mean absolute error (MAE), root mean square error (RMSE), mean absolute percentage
error (MAPE), Nash–Sutcliffe efficiency (NSE) and correlation coefficient (R2), were used to assess the model
performance during model calibration and validation.

*Best performance.

Figure 3. Scatter plots of the actual and the modeled evaporation obtained using support vector regression (SVR), radial basis function
neural network (RBF-NN), adaptive neuro-fuzzy inference system (ANFIS) and co-active neuro-fuzzy inference system (CANFIS) models
with best input combination.
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agreement between predicted and observed evaporation
is also found byModel 3. The worst prediction results are
shown by Model 1.

Table 4 shows the performance of CANFIS models
for different input combinations. The performance of
CANFIS models is found to be similar to that of ANFIS
models. Model 3 (with temperature and relative humid-
ity as inputs) provides the best prediction result among
all of the AI models, while the worst results are obtained
using Models 1 and 2. It is also observed that the per-
formance of CANFIS is much better than that of the
other models in terms of all statistical metrics. The NSE
and R2 of the prediction are 0.93 and 0.97, respectively,
which are much higher than those obtained by the best
performing models using other AI methods. The results
also revealed temperature and humidity to be the fac-
tors with the greatest influence in predicting evaporation
from Lake Nasser. The CANFIS model has the high-
est ability to predict the evaporation pattern from the
temperature and humidity.

4.2. Comparison of the performance of themodified
CANFISmodel with other AImodels

The development of models for predicting evapora-
tion from easily available meteorological variables is an
important issue for decision makers in water resources
management. The results presented in the Section 4.1
indicate that the AI models developed using ANFIS and
CANFIS methods can provide a higher level of accuracy
in the prediction of evaporation from only two mete-
orological variables, temperature and relative humidity,
whereas the RBF-NN and SVR models provide opti-
mal prediction when all five meteorological variables are
considered as inputs. This demonstrates that the SVR
and RBF-NN need more meteorological information to
understand the behavior of lake evaporation. The per-
formances of different models with the best input com-
bination are compared in this section through graphical
presentations.

The scatter plots for the testing of each AI model with
the best input combination are presented in Figure 3. This

Figure 4. Relative error distribution obtained for support vector regression (SVR) and radial basis function neural network (RBF-NN)
models with best input combination.
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Figure 5. Relative error distribution obtained for adaptive neuro-fuzzy inference system (ANFIS) and co-active neuro-fuzzy inference
system (CANFIS) models with best input combination.

figure shows a higher association between the modeled
and actual evaporation for CANFIS than for the other
models. Agreement between the modeled and actual
evaporation for the whole range of values, high, medium
and low, is found only for CANFIS. The lowest corre-
lation between the modeled and actual evaporation is
observed for RBF-NN.

The most critical indicator generally used to evalu-
ate the capability of AI models is RE. The present study
used the percentage RE to evaluate the ability of the
models. Figures 4 and 5 illustrate the distribution of
RE over the testing period for each AI model with the
best input combination. The maximum RE is found for
RBF-NN, while CANFIS provides the lowest and the
most consistent RE over the testing period. This indicates
the higher efficiency of the CANFIS model compared
to the other AI models (SVR, RBF-NN and ANFIS), in
predicting lake evaporation from meteorological vari-
ables. However, some high magnitudes of RE are found
for all the models. These high REs could not be min-
imized using the proposed AI models. The relatively
high errors in a few years may be due to the sudden

variability in the climate in those years. This may be
solved by integrating the time-series data preprocessing
approach with models such as wavelet transformation
(Wu&Chau, 2011; Yaseen, El-shafie, Jaafar, Afan, & Sayl,
2015).

Figures 6 and 7 show the time series of the observed
and predicted evaporation by all four AI models used in
this study. It can be observed from the figure that neither
SVR nor RBF-NN is capable of replicating the seasonal
variability in the evaporation pattern for all of the years.
A shift in the predicted cycle is observed in a few years.
The ANFIS model is able to provide acceptable results
in detecting the behavior of evaporation. However, the
ANFIS model achieves a high level of accuracy only in
the prediction of medium values; it cannot successfully
replicate the minimum and maximum evaporation (i.e.
peaks) is most of the years. On the other hand, the CAN-
FIS model is found to perform best, as it reconstructs
the evaporation pattern completely. The results indicate
that the CANFIS model can be utilized for the accu-
rate prediction of monthly reservoir evaporation from
meteorological variables.
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Figure 6. Time series of observed andpredicted evaporation by support vector regression (SVR) and radial basis function neural network
(RBF-NN) models with best input combination during model validation.

For further analysis of the performance of theAImod-
els, the percentage improvement in accuracy indicator
(%IA) using theCANFISmodel is computed. TheRMSEs
are considered to estimate the %IA using Equation (8).
The accuracy of the prediction results is found to improve
by 55.4%, 39.6% and 9.2% when using CANFIS com-
pared to the SVR, RBF-NN and ANFIS models, respec-
tively. This indicates that the prediction accuracy is
highly improved using CANFIS. CANFIS is also found to
successfully predict evaporationwith a high level of accu-
racy in terms of all the performance metrics used in this
study.

5. Conclusion

The evaporation process plays a crucial role in water
resources management, particularly in the management

of lake water. Therefore, the accurate prediction of this
hydrological parameter is important for decision mak-
ing in the planning, development and management of
water resources. The ability of a new AI model known
as CANFIS to predict lake evaporation is investigated
in this study. The performance of the proposed model
is compared with three popularly used AI prediction
models: ANFIS, SVR and RBF-NN. The developed mod-
els are used for the prediction of monthly evapora-
tion losses from Lake Nasser, situated in the hyper-arid
region of Egypt. Fivemeteorological variables are consid-
ered to build the prediction models. The optimal input
combinations for the models are determined by care-
fully considering all the possible input combinations.
The results reveal that the SVR and RBF-NN models
need at least four meteorological variables to provide
acceptable prediction accuracy. On the other hand, the
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Figure 7. Time series of observed and predicted evaporation by adaptive neuro-fuzzy inference system (ANFIS) and co-active neuro-
fuzzy inference system (CANFIS) models with best input combination during model validation.

ANFIS and CANFIS models are able to predict monthly
evaporation with good accuracy using only two inputs,
namely mean air temperature and relative humidity. The
results indicate that temperature and relative humidity
are the meteorological factors with the greatest influence
in determining the evaporation losses from Lake Nasser.
Comparison among the prediction models revealed that
the prediction ability could be improved by 55.4%, 39.6%
and 9.2%using the CANFISmodel compared to the SVR,
RBF-NN and ANFIS models, respectively. The newly
adopted CANFIS-based evaporation model can be used
for reliable estimation of evaporative losses from reser-
voirs, irrigated crop land, etc., and can also be used for
other hydrological applications. As an extension to the
current study, a metaheuristic optimization algorithm
could be integrated with the CANFIS model for the

tuning of the MF, and the proficiency of the hybrid
model in the prediction of evaporation loss could be
investigated (Chau, 2017; Moazenzadeh, Mohammadi,
Shamshirband, & Chau, 2018).
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