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ABSTRACT

Pathologically relevant behaviors of Vibrio, such as the expression of virulence

factors, biofilm production, and swarming motility, have been shown to be controlled

by quorum sensing. The autoinducer-2 quorum sensing receptor protein LuxP is one

of the target proteins for drug development to suppress the virulence of Vibrio.

Here, we reported the potential molecular interaction of fatty acids identified in

vibriosis-resistant grouper with LuxP. Fatty acid, 4-oxodocosahexaenoic acid (4R8)

showed significant binding affinity toward LuxP (-6.0 kcal/mol) based on molecular

docking analysis. The dynamic behavior of the protein–ligand complex was

illustrated by molecular dynamic simulations. The fluctuation of the protein

backbone, the stability of ligand binding, and hydrogen bond interactions were

assessed, suggesting 4R8 possesses potential interaction with LuxP, which was

supported by the low binding free energy (-29.144 kJ/mol) calculated using

the molecular mechanics Poisson–Boltzmann surface area.

Subjects Aquaculture, Fisheries and Fish Science, Bioinformatics, Biotechnology
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INTRODUCTION
The aquaculture of brown-marbled grouper suffers from a high frequency of vibriosis

outbreak, which often causes massive mortality. Thus, vibriosis-resistant grouper is of

great interest to the aquaculture industry, as it could reduce economic losses and facilitate

aquaculture management. Studies have been conducted to comprehend the disease

etiology, and a marker-assisted selective breeding scheme has been developed to reproduce

grouper offspring with greater disease resistance. Disease resistance in grouper has been

extensively studied at the molecular level through transcriptomics (Huang et al., 2011;

Low et al., 2014a, 2015a; Mu et al., 2010), proteomics (Low et al., 2014b, 2015b), and
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metabolomics approaches (Johnson & Brown, 2011; Karakach et al., 2009). In addition to

extensive studies of several metabolites with antibacterial properties (Dee & Gradle,

2011; Desbois & Smith, 2010;Heath & Rock, 2004; Ouattara et al., 1997; Zheng et al., 2005),

a recently conducted study has identified highly abundant metabolites, such as

icosapentaenoic acid, eicosa-8,11,14-trienoic acid, and linoleic acid in brown-marbled

grouper, Epinephelus fuscoguttatus, which has resisted Vibrio vulnificus infection

(Nurdalila, Mayalvanan & Baharum, 2019). Study by Zhao et al. (2015) on the global

metabolic response of tilapia against streptococcosis showed the involvement of specific

metabolites in fish defense system against bacterial infection where they have

identified l-proline contributes to the increased survival rate. While study on the

V. vulnificus resistance in grouper has identified several fatty acids that were highly

abundant during infection (Nurdalila, Mayalvanan & Baharum, 2019), nine fatty acids

were selected to evaluate their potential molecular interaction with quorum sensing

receptor, LuxP through molecular docking and simulation analysis. The findings from this

experiment would support the importance of specific metabolites in fish defense against

bacterial infection.

Quorum sensing is a bacterial cell-to-cell communication that allows a population of

pathogenic bacteria to coordinate their gene expression, achieving collective behavior

to evade the host immune system, to express toxic virulence factors and form

antibiotic-resistant biofilms (Annous, Fratamico & Smith, 2009; Kim, Lee & Choi, 2012;

Kim et al., 2003; Liang et al., 2007; Liu et al., 2013). Quorum sensing system regulation in

V. harveyi is well characterized (Chen et al., 2002; Liu et al., 2013; Zhu et al., 2012).

In V. harveyi, the quorum sensing system is activated by a boron-containing signaling

molecule, furanosyl borate diester, that binds to the periplasmic receptor protein LuxP

(Chen et al., 2002), which then forms a complex with LuxQ, a membrane protein.

The activated LuxPQ complex dephosphorylates the downstream proteins LuxU and

LuxO and subsequently activates the transcription of the luciferase targeted genes

(Liu et al., 2013; Schauder et al., 2001; Zhu et al., 2002, 2012), leading to the expression of

bioluminescence, biofilm formation and siderophore and metalloprotease production

(Guo et al., 2013). In the attempt to suppress the expression of the virulence genes

regulated by the quorum sensing system (Amara et al., 2010; Hentzer et al., 2002; Kalia,

2013; Guo et al., 2013; Rasmussen & Givskov, 2006; Saedi et al., 2012), studies have

identified a range of secondary metabolites from microorganism (Morohoshi et al., 2008;

Park et al., 2005; Rasmussen et al., 2005; Swem et al., 2009; Teasdale et al., 2009) and

plant species (Packiavathy et al., 2012) that possess potent inhibitory properties against

quorum sensing. In addition, it has recently been reviewed that fatty acid, cis-2-decenoic

acid possesses inhibitory properties against biofilm production that was regulated by

quorum sensing (Marques, Davies & Sauer, 2015). Antibiofilm activity has also been

demonstrated by mono-unsaturated chain fatty acids, palmitoleic, and myristoleic acids

(Nicol et al., 2018). Even though mammalian enzymes that hydrolyze the quorum sensing

signaling molecules have been identified and characterized, but these enzymes were

reported to be absent in model fish species (Morohoshi et al., 2008; Yang et al., 2005).

Therefore, it was proposed that fish species might possess metabolic strategies to
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suppress bacterial pathogenicity and prevent infections (Nurdalila, Mayalvanan &

Baharum, 2019; (Zhao et al., 2014, 2015). The potential of previously identified fatty acids

(Nurdalila, Mayalvanan & Baharum, 2019) to interact with autoinducer-2 (AI-2) quorum

sensing receptor were assessed by docking and molecular dynamic simulations in this

study. Through this computational approach, the list of fatty acids was screened by

AutoDockVina (Trott & Olson, 2010) to select for the best docking position with the lowest

binding affinity score toward LuxP receptor protein. The selected protein–ligand

complexes were then examined by molecular dynamic simulations using GROMACS

(Van der Spoel et al., 2013; Hess et al., 2008) to evaluate the stability of the structure.

MATERIALS AND METHODS
Computational methods

Preparation of protein receptors, ligands, and reference compounds

Autoinducer 2-binding periplasmic LuxP protein sequence of V. vulnificus was obtained

from the NCBI Protein Databank (accession number: WP_011152474). I-TASSER

(http://zhanglab.ccmb.med.umich.edu/I-TASSER/) was used to predict the 3D structure

of this protein. The top-ranked model was selected for further analysis and named

as V. vulnificus LuxP (vvLuxP) throughout this paper. The crystallographic co-ordinates

for LuxP V. harveyi (PDB ID: 1JX6), named as V. harveyi LuxP (vhLuxP) throughout

this paper, were selected and included in the study to serve as a control model for

vvLuxP. The model was prepared by removing the endogenous ligand (furanosyl borate

diester) and water molecules using AutoDockTools-1.5.6, and the hydrogen atoms

were added to the structure. The fatty acid structure coordinates were obtained from

Ligand Expo in the Protein Data Bank (http://ligand-expo.rcsb.org/). Three-dimensional

structures of the reference compounds were generated using an online open access

tool (https://web.chemdoodle.com). These reference compounds were randomly

selected based on the findings that they can inhibit quorum sensing in V. harveyi

(Zhu et al., 2012). Molecules were converted into the PDBQT file format prior to

molecular docking.

Docking and molecular dynamic simulations of protein–ligand complexes

A grid box of size 30 � 30 � 30 A3 was generated to contain the LuxP protein, with the

LuxP binding pocket set as a centroid using AutoDockTools-1.5.6. Fatty acids and

reference compounds were docked in LuxP receptor binding pocket using AutoDockVina

1.1.2 (Trott & Olson, 2010). The fatty acids with closest approximate affinity toward

LuxP receptor compared to the reference compounds were shortlisted and further

analyzed by molecular dynamic simulations using GROMACS 4.6.5 (Van der Spoel et al.,

2013; Hess et al., 2008). Protonation and structure minimization was performed using

the GROMOS 54A7 force field, where hydrogens were added for optimal hydrogen bond

network by default. Topology files for molecules were generated using PRODRG

server (http://davapc1.bioch.dundee.ac.uk/cgi-bin/prodrg). LuxP–ligand complexes were

solvated and fully immersed in the center of a cubic box prior to electrostatic energy

calculation. A default 3-point model of SPC water model of GROMACS was used
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to solvate the box. The number of water molecules adopted to solvate the complex

were as follow: vhLuxP_4R8 (23,331 molecules); vhLuxP_EPA (23,333 molecules);

vhLuxP_Lax (23,331 molecules); vhLuxP_C19 (23,336 molecules); vhLuxP_C31 (23,338

molecules); vvLuxP_4R8 (22,425 molecules); vvLuxP_EPA (22,427 molecules);

vvLuxP_LAX (22,430 molecules); vvLuxP_LAX#2 (22,417 molecules); vvLuxP_C19

(22,429 molecules); and vvLuxP_C31 (22,428 molecules). Electrostatic energy was

calculated using gromacs preprocessor, and the system was neutralized by adding in

accordance Na+ ions or Cl- ions to create zero charged system, and subsequent energy

minimization was performed. The energy minimization was performed using the steepest

descent minimization of 5,000 steps (maximum number of minimization steps to

perform). Energy minimization was stopped when the maximum force was less than

1.0 kJ/mol. The system was further equilibrated for 50 ps at constant volume and a

temperature of 293 K. The molecular dynamic simulations were run for 10,000 ps for

each protein–ligand complex, where the coordinates were saved every two ps interval.

LINear Constraint Solver, LINCS algorithm was applied to constraint all bonds,

including heavy atom-H bonds during the molecular dynamics (MD) simulations.

Long-range electrostatic interactions were treated with the adoption of Particle Mesh

Ewald method (Chen, Wang & Zhu, 2014), and the cut-off distances for the long

range electrostatic and Van der Waals interactions were set at 1.0 nm. Lastly, the

trajectories were saved for further analysis using the Xmgrace and UCSF Chimera

(Pettersen et al., 2004).

Re-scoring of protein–ligand complexes using interaction energy and

MM-PBSA approach

The interaction energy of the protein–ligand complexes was calculated using molecular

mechanics Poisson–Boltzmann surface area (MMPBSA) (Kumari et al., 2014) tool in

Gromacs. The binding energy components were calculated separately as the MM, PB, and

SA energy. The binding free energy of each complex was calculated from 20 snapshots

at time intervals of 0.5 from the 10 ns MD production run. In general, the binding free

energy (DGbind) of fatty acids/reference compounds at LuxP receptor protein was

calculated as follows:

Gbind ¼ Gcomplex � Gprotein � Gligand (1)

where Gcomplex, Gprotein, Gligand are the free energies of the complex, LuxP receptor protein,

and fatty acid/reference compound, respectively. The free energy (G) of each state was

calculated as follows:

G ¼ EMM þ GPB þ GSA � TS (2)

EMM ¼ Evdw þ Eele þ Eint (3)

where EMM is the molecular mechanical energy, GPB and GSA are the polar and nonpolar

terms of the free energy, and TS is the entropic contribution of the solute. The solvent

accessible surface area (SASA) and solvent accessible volume (SAV) models were

used to calculate its contribution to the binding free energy of the complexes.
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RESULTS

Comparative modeling of LuxP protein

The V. vulnificus LuxP protein sequence was submitted to the I-TASSER online server

for homology structure prediction and five top final models with C-scores ranging

from -0.22 to -3.16 were generated. Higher C-score values correlate with higher

confidence levels in the 3D model, and, the model with C-score -0.22 was selected

for subsequent docking and MD simulation. The top-ranked template identified by

LOMETS with the highest normalized Z-score of 6.94 is the crystal structure of

V. harveyi LuxP (PDB: 1JX6), which is one of the closest species to V. vulnificus.

The surface electrostatic potentials of both protein models were assessed, and an open

binding pocket in the model was identified (Figs. 1A and 1B). The 3D model proposed

the open conformation (apo structure) as depicted in Fig. 1B represent the structure

in the absence of ligand. Protein sequence alignment of the model with template protein

identifies the potential helices and beta-sheets that might involve in the major

Figure 1 Surface electrostatic potential of crystal (A) and homology model (B) calculated according
to Coulomb’s law. Homology model presents an accessible open binding pocket compared to the holo-

structure of crystallized LuxP (A). Superimposition of the crystal and homology model (C) shows protein

folding in loops, helices and beta-sheets that contribute to the conformational changes upon ligand

binding in LuxP. Grey chain: crystal model of LuxP; orange chain: homology model.

Full-size DOI: 10.7717/peerj.6568/fig-1
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conformational changes upon ligand binding (Fig. 2). Both protein models were docked

with fatty acids and the reference compounds to analyze the stability of the complexes

via MD simulations.

Docking and binding pose analysis of fatty acids and reference

compounds

Fatty acids that were found to be differentially abundant in E. fuscoguttatus that

demonstrated their tolerance to the experimental infection by V. vulnificus were docked in

both vhLuxP and vvLuxP models using AutoDockVina 1.1.2. The results showed that

4-oxodocosahexaenoic acid (4R8), 5,8,11,14,17-icosapentaenoic acid (EPA), and

eicosa-8,11,14-trienoic acid (LAX) have significant binding affinity toward both vhLuxP

and vvLuxP model. The 2D conformation of the fatty acids and the reference compounds

with their binding affinity scores are given in Table 1. In the vvLuxP model, LAX was

found to present a second binding pose (LAX#2) posterior to the vvLuxP receptor binding

pocket, as shown in Fig. 3, with binding affinity score -5.5 kcal/mol (Table 1). This binding

pose of LAX#2 was included in the MD simulation to evaluate the stability of the

Figure 2 Sequence alignment after superimposition of crystal and homology model shows the RMSD of cα higher in loops, helices and beta-
sheets as graphic presentation in Fig. 1c. Full-size DOI: 10.7717/peerj.6568/fig-2
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Table 1 2D structures of the fatty acids and reference compounds 2D structures of the fatty acids and reference compounds used in molecular
docking, with the binding affinity score toward vhLuxP/vvLuxP computed using AutoDockVina1.1.2.

Name 2-D structures Affinity score (kcal/mol)

vhLuxP vvLuxP

Fatty acids 4-Oxodocosahexaenoic acid (4R8) -7.6 -6.0

5,8,11,14,17-Icosapentaenoic acid (EPA) -7.8 -6.0

Eicosa-8,11,14-trienoic acid (LAX) -7.4 -5.9
-5.5

Icosanoic acid (DCR) -6.6 -4.4

Linoleic acid (EIC) -7.2 -4.8

9-Octadecenoic acid (ELA) -6.8 -4.6

Alpha-linolenic acid (LNL) -7.1 -4.9

Oleic acid (OLI) -6.9 -4.9

Palmitoleic acid (PAM) -6.7 -5.4

Commercial compounds Compound 19 (Zhu et al., 2012) -8.0 -7.5

Compound 31 (Zhu et al., 2012) -7.6 -7.6
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complex. A significant cut-off binding affinity score of -5.5 kcal/mol was selected;

complexes with not significant higher binding affinity scores were excluded from further

molecular dynamic simulations analysis. Only parallel models of vhLuxP were selected

to serve as control models. Reference compounds showed binding affinity score ranging

from -7.5 to -8.0 kcal/mol against both LuxP models. eicosapentaenoic acid (EPA)

Table 2 H_bond interactions between fatty acids/reference compounds and key residues in the LuxP binding pocket.

Fatty acids/
compounds

Hydrogen donor::Hydrogen acceptor (H_bond distance, Å)

vhLuxP 4R8 GLN 116.A NE2 4R8 365.B O3 (2.009); ASP 136.A N::4R8 365.B O1 (1.863); THR 137.A N::4R8 365.B O2 (1.650);

THR 137.A OG1::4R8 365.B O2 (1.754)

EPA ASN 159.A ND2::EPA 365.B OB (1.932); ARG 215.A NH1::EPA 365.B OA (2.058); ARG 215.A NH2::EPA 365.B OA

(2.185); ARG 215.A NH2::EPA 365.B OB (2.290); ARG 310.A NH1::EPA 365.B OB (2.003)

LAX SER 79.A OG::LAX 365.B O1 (1.919); ARG 215.A NH1::LAX 365.B O2 (2.295); ARG 215.A NH2::LAX 365.B O2

(2.131); ARG 310.A NH1::LAX 365.B O2 (1.878); ARG 310.A NH2::LAX 365.B O1 (2.118); ARG 310.A NH2::LAX

365.B O2 (2.688)

C19 –

C31 GLN 116.A NE2::C31 365.B NAM (2.016)

vvLuxP 4R8 ASN 159.A ND2::4R8 367.B O2 (1.836); ARG 215.A NH1::4R8 367.B O3 (2.319); ARG 215.A NH2::4R8 367.B O3

(1.728)

EPA ARG 310.A NE::EPA 367.B OA (1.947); ARG 310.A NH1::EPA 367.B OA (2.239)

LAX ARG 310.A NE::LAX 367.B O2 (1.732); ARG 310.A NH1::LAX 367.B O2 (2.688)

LAX#2 LYS 3.A NZ::LAX 367.B O2 (2.040); GLN 32.A N::LAX 367.B O1 (1.986)

C19 –

C31 C31 367.B NAL::THR 266.A OG1 (2.199); C31 367.B NAL::THR 266.A OG1 (2.199)

Figure 3 Binding poses of the small molecule metabolites/reference compounds in crystal (A) and
homology model (B). Molecule surfaces shown in mesh (50% transparency) fit in the LuxP binding

pocket and the interacting residues in LuxP protein were colored by element. Grey chain: crystal model;

orange chain: homology model; small molecule metabolites/reference compounds: �4R8 �EPA �LAX

�LAX#2 �C19 �C31. Full-size DOI: 10.7717/peerj.6568/fig-3
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presented the highest affinity toward both LuxP models, with affinity scores of -7.8 and

-6.0 kcal/mol. To visualize the interaction pattern, the UCSF Chimera molecular

visualization tool was used to generate graphical representations of the hydrogen bonds

(H_bonds) formed between the amino acid residues. Details of the hydrogen bonds

formed between the amino acid residues with the fatty acids were reported in Table 2.

The EPA molecule was found to interact with three key binding residues in vhLuxP

receptor protein, as shown in Fig. 4. All these complexes were further assessed by MD

simulation for structural behavior and flexibility analysis.

Molecular dynamic simulations

The structural behavior and flexibility of vhLuxP and vvLuxP docked with fatty acids and

reference compounds were assessed by 10 ns of MD simulation using Gromacs 4.6.5

for each complex. Preliminary simulation for 50 ns was assessed and the stabilized protein

backbone was identified after 10 ns of simulation. Due to the limitation in computing

power and the preliminary simulation result, the structural behavior and flexibility of

LuxP complexes were assessed for 10 ns of MD simulation. The root mean square

deviation values of both vhLuxP and vvLuxP were calculated against the initial structure in

the protein–ligand complexes and plotted using the 3-D plotting tool Xmgrace to

compare the protein backbone stability. The backbones of the vvLuxP–ligand complexes

Figure 4 Binding pose of molecule EPA in LuxP crystal model. EPA molecule has been shown in stick

format and molecule surface shown in mesh (50% transparency). Residues involved in hydrogen bonding

have been labelled and hydrogen bonds were presented in cyan lines; bond length has been shown in unit

Angstrom. Full-size DOI: 10.7717/peerj.6568/fig-4
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showed significant fluctuation compared to the vhLuxP–ligand complexes (Fig. 5),

implying that the binding of fatty acids and the reference compounds in vhLuxP is more

stable and does not affect the protein backbone stability. The LuxP–ligand complexes

were snapshot at one ns intervals from the 10 ns MD production trajectory and were

superimposed to assess the ligand binding stability as in Fig. 6, observed the stability of the

ligand binding position in each of the complexes. Meanwhile, the stability of the

LuxP–ligand complexes was examined by calculating the residual mobility. The Root

Mean Square Fluctuation of the trajectory from the MD simulation for each complex was

calculated, and the protein residual fluctuations in LuxP–ligand complexes are minimal for

both LuxP models (Fig. 7).

Hydrogen bond analysis

The binding stabilities of the fatty acids/reference compounds in both LuxP models

were monitored during the trajectory period of the MD simulations. The stabilities of the

LuxP–ligand complexes were evaluated by calculating the H_bond profiles using the

g_hbond tool of Gromacs (Van der Spoel et al., 2013; Hess et al., 2008). The analysis

revealed that the protein–ligand complex of 4-oxodocosahexaenoic acid (4R8) in vhLuxP

has the highest (5.676) average number of hydrogen bonds per timeframe during the

MD simulation period (Fig. 8). The average numbers of H_bonds observed in EPA and

eicosa-8,11,14-trienoic acid (LAX) in vhLuxP were 3.776 and 4.331, respectively.

Poor H_bond interaction was observed in vvLuxP, with 1-2 H_bonds on average

throughout the MD simulation (4R8: 1.732 H_bonds; EPA: 1.615 H_bonds; LAX: 1.482

H_bonds; LAX#2: 1.958 H_bonds). However, the least H_bond interaction was recorded

in both reference compounds in vhLuxP and vvLuxP (vhLuxP::C19 0.459 H_bonds,

vhLuxP::C31 0.404 H_bonds; vvLuxP::C19 0.238 H_bonds, vvLuxP::C31 0.112 H_bonds)

(Fig. 8).

Figure 5 Backbone RMSD of crystal (A) and homology model (B) have been shown in figure against the initial structure during 10 ns MD
simulation. Crystal model: �4R8 �EPA �LAX �C19 �C31 Homology model: �4R8 �EPA �LAX �LAX#2 �C19 �C31.

Full-size DOI: 10.7717/peerj.6568/fig-5
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Figure 6 Superimposition of trajectory structures at 1 ns interval of 10 ns MD simulation. Proteins
presented as grey colored ribbon format. Snapshot of the superimposed small molecule ligands at 1 ns

interval in the LuxP ligand binding site (shown in stick format). Color coded for different time frame

extracted from trajectory structure. (A) 4R8, (B) EPA, (C) LAX, (D) C19, (E) C31.

Full-size DOI: 10.7717/peerj.6568/fig-6
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Re-scoring of interaction and binding free energies

The complex stability is further assessed by calculating the binding free energy using the

g_mmpbsa tool (Kumari et al., 2014). Polar and non-polar energy terms were calculated

for each complex. Both vhLuxP and vvLuxP hindered the binding of all fatty acids

and reference compounds in terms of the polar solvation energy, which was recorded

between 108.944 (lowest polar solvation energy) and 494.049 kJ/mol (highest polar

salvation energy) (Table 3). Various non-polar energy terms (Van der Waals, VdW; SASA;

and SAV) are favorable for all fatty acids and the reference compounds that bind in

both LuxP models. Although both reference compounds have the least hydrogen bond

interaction in vhLuxP and vvLuxP (Fig. 8), Compound C19 has the lowest binding free

energy recorded, which was mainly contributed by low electrostatic energy in both vhLuxP

(496.516 kJ/mol) and vvLuxP (-336.767 kJ/mol)and stabilized the binding of C19 in LuxP.

DISCUSSION
It has been reported that LuxP undergoes conformational changes upon (AI-2) binding to

form the AI-2-LuxPQ complex (Stock, 2006; Zhu et al., 2012). Template-model based

alignment (Fig. 2) has revealed the potential helices and beta-sheets that might be involved

in the major conformational changes upon ligand binding, as shown in Fig. 1C.

Crystal structure of LuxP without endogenous ligand is not available due to the fact that in

order to crystallize the target protein, the compositional and conformational stability of

the protein are prerequisite (Deller, Kong & Rupp, 2016). The binding of endogenous

ligand, furanosyl-borate diester (AI-2) as observed in vhLuxP (crystal structure) involving

the H_bond interactions with three key residues, which are ASN159, ARG215, and

ARG310. Although the binding affinity score of LAX was lower than the other molecules, it

is still considered as a potential candidate to interact with LuxP because it forms H_bond

Figure 7 Residue RMSF of the protein-ligand complexes from both the crystal (A) and homology model (B) generated during the trajectory
period of 10 ns MD simulation. Crystal model: �4R8 �EPA �LAX �C19 �C31 Homology model: �4R8 �EPA �LAX �LAX#2 �C19 �C31.

Full-size DOI: 10.7717/peerj.6568/fig-7
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Figure 8 Total number of hydrogen bond interactions between LuxP (crystal and homology model)
and small molecule metabolites/reference compounds (A) 4R8; (B) EPA; (C) LAX; (D) C19; (E) C31.

Full-size DOI: 10.7717/peerj.6568/fig-8
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with the key residue of ARG310 in vvLuxP. It also has the highest number of H_bonds

with the most key residues in the binding pocket of vhLuxP (Table 2). Surprisingly,

reference compound 19 shows no H_bond interaction in the binding pocket despite

having been proven to inhibit AI-2 quorum sensing (Zhu et al., 2012). The structural

behavior and flexibility of vhLuxP and vvLuxP were assessed and the results were not as

anticipated as the protein backbone of vvLuxP is expected to be more flexible since it is

known to undergo major conformational changes upon ligand binding (Stock, 2006;

Zhu et al., 2012). This may be due to the stability of ligands that bind inside the binding

pocket that is crucial to determine the efficiency of the ligand in inhibiting LuxP protein.

However, the relatively short MD simulation of 10 ns could be another limiting factor

to study and conclude the protein flexibility. Snapshots on the LuxP–ligand complexes

were taken at one ns intervals from the 10 ns MD production trajectory and were

superimposed to assess the ligand binding stability (Fig. 6). It showed that the positions of

the ligands bound in vhLuxP are more confined and stable compared to vvLuxP. The open

binding pocket of vvLuxP possesses higher accessible volume, and therefore the

interaction of the ligand inside the binding pocket must be stronger and more specific

in order to stabilize. When the stability of the LuxP–ligand complexes was examined,

no significant fluctuation on the residues involved in the interaction was recorded in both

vvLuxP and vhLuxP model. The simulation results showed similar dynamics for vvLuxP

model and the control vhLuxPmodel, further strengthening the proposed open conformation

of LuxP which was depicted in Fig. 1B to represent the LuxP apo structure. Although the

average number of H_bonds varies significantly among the different complexes, the binding

of these molecules in the protein binding site is relatively stable, except for the vvLuxP–LAX#2

complex, in which a higher level of fluctuation in the ligand binding pose is observable

(Fig. 6). Nevertheless, less H_bond interaction is observed in both reference compounds,

implying that the binding stability is contributed by the electrostatic forces. The continuous

Table 3 Interaction energy and binding free energy of vhLuxP–ligand and vvLuxP–ligand complexes calculated using the MM-PBSA
approach.

protein Fatty acids/
compounds

Electrostatic
energy (kJ/mol)

Polar solvation
energy (kJ/mol)

Van der Waal
energy (kJ/mol)

SASA energy
(kJ/mol)

SAV energy
(kJ/mol)

WCA energy
(kJ/mol)

Binding energy
(kJ/mol)

vhLuxP 4R8 -164.351 ± 38.398 476.780 ± 25.417 -184.121 ± 13.696 -22.966 ± 0.892 -173.708 ± 14.654 77.343 ± 17.396 8.977 ± 28.950

EPA 15.865 ± 43.571 363.125 ± 32.139 -143.807 ± 14.356 -21.987 ± 1.102 -143.758 ± 19.078 69.899 ± 15.702 139.337 ± 40.764

LAX -2.922 ± 28.589 358.883 ± 21.159 -151.554 ± 15.144 -20.554 ± 1.107 -135.507 ± 17.623 69.548 ± 15.643 117.894 ± 31.620

C19 -496.516 ± 38.609 494.049 ± 27.222 -137.836 ± 13.859 -16.142 ± 0.523 -124.166 ± 10.287 56.472 ± 12.644 -224.139 ± 20.989

C31 -15.257 ± 5.854 124.379 ± 14.281 -111.304 ± 13.488 -14.726 ± 0.632 -85.076 ± 12.324 46.959 ± 10.506 -55.024 ± 17.178

vvLuxP 4R8 -38.303 ± 27.662 219.796 ± 42.493 -140.233 ± 16.467 -19.564 ± 1.624 -121.480 ± 15.673 70.640 ± 16.114 -29.144 ± 25.596

EPA 34.517 ± 44.631 189.767 ± 78.739 -126.031 ± 11.995 -18.294 ± 1.173 -112.833 ± 14.868 64.612 ± 14.851 31.739 ± 44.926

LAX -38.705 ± 56.060 279.238 ± 51.851 -152.987 ± 16.150 -19.424 ± 1.058 -124.314 ± 14.943 68.580 ± 15.511 12.389 ± 36.408

LAX#2 -3.545 ± 82.939 240.374 ± 116.852 -91.236 ± 25.199 -13.479 ± 2.817 -75.400 ± 25.372 69.699 ± 16.152 126.413 ± 44.006

C19 -336.767 ± 42.665 399.581 ± 50.967 -115.842 ± 14.969 -14.650 ± 0.966 -91.855 ± 11.493 57.774 ± 12.937 -101.759 ± 26.247

C31 -16.970 ± 4.250 108.944 ± 9.451 -121.784 ± 10.345 -14.950 ± 0.619 -102.954 ± 7.247 46.288 ± 10.356 -101.427 ± 11.162

Notes:
Each value represents the average value calculated from 20 snapshots at 0.5 ns intervals of the 10 ns MD production run.
SASA, solvent accessible surface area; SAV, solvent accessible volume; WCA, Weeks–Chandler–Andersen.
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contribution of H_bond interactions in the binding pose analysis suggests that these fatty

acids possess potential stable interaction with the LuxP protein.

The binding free energies calculated using the MMPBSA approach indicated that

among the three fatty acids, 4R8 displayed the lowest binding free energy (-29.144 kJ/mol)

in vvLuxP. The lower binding free energy suggests that the vvLuxP-4R8 complex is

more stable than the vvLuxP–EPA and vvLuxP–LAX complexes, which have higher

binding free energies of 31.739 and 12.389 kJ/mol, respectively. The results obtained from

this study suggest that 4R8 is a potential candidate possesses molecular interaction

with quorum sensing receptor LuxP protein. Nevertheless, further in vitro/in vivo

experiments are recommended to evaluate the biological effect of 4R8 interaction with

the quorum sensing receptor LuxP of quorum sensing signaling in Vibrio.

CONCLUSIONS
The MD of the LuxP–ligand complexes, as shown by MD simulation, identified

4-oxodocosahexaenoic acid (4R8) as a potential candidate to interact with the LuxP

receptor protein. The binding of 4R8 in both vhLuxP and vvLuxP displayed a stable protein

backbone conformation during the MD simulation and a stable ligand binding position

with the highest hydrogen bond interactions within the 10 ns MD simulation.

The computational analysis results suggest a molecular interaction of the fatty acid 4R8

with the quorum sensing receptor LuxP. This knowledge is highly valuable for further

in vivo/in vitro analysis to evaluate the effect of this molecular interaction in the

biological signaling of Vibrio quorum sensing system.
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