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Abstract

Various industrial standards and safety regulations specify the minim number of

cycles, which pressure equipment must tolerate during a single seismic event.

The compliance with these standards and regulations is necessary in order to

ensure safety and strength of critical structural components, eg, pressure pipe

system of the primary coolant loop of nuclear reactors or condensedwater supply

of large hospitals or other large facilities. However, the strength can degradewith

time due to flow accelerated corrosion causing wall thinning. Pipe bends are

particularly susceptible to the localised corrosion, and, therefore, these structural

elements need a special consideration. The current paper studies the effect of

localised corrosion on low cycle fatigue behaviour of a copper‐nickel elbows

using experiment and finite element method (FEM). The outcomes of the study

demonstrate a quite low reduction of low cycle fatigue life even at severe local

wall thinning at different locations.

1 | INTRODUCTION

Pipe bends and elbows are common structural elements and often represent the weakest link1 in pressure piping during

extreme loading such as earthquakes.2,3 Therefore, their performance and behaviour during seismic events are critical

from the structural integrity point of view. Various industrial standards, such as ASME and the Japanese JEAC, specify

the minimum number of cycles, which pressure equipment must tolerate during a single seismic event.4-7 However,

bends and elbows over time are subjected to the flow accelerated corrosion leading to the localised wall thinning.8-10

Therefore, it is important to understand the effect of these structural defects on the strength in order to maintain the

safety and integrity of hazardous structures. This problem was also emphasised during investigations of the integrity

and residual strength of piping containing wall thinning defects after recent powerful earthquakes in Japan.11

In the case of extreme event (eg, earthquake or shut down), the piping elements are subjected to high amplitude

loading excursions, leading to material cycling in low cycle fatigue regime.12,13 There were many analytical, numerical,

and experimental studies in this area with the ultimate aim of developing a method for the evaluation of low fatigue

strength of various piping elements with various wall thinning defects with and without internal pressure.2,10,11,14-25

For steel elbows, the recent studies have demonstrated that when the elbows are subjected to high amplitude cyclic
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loading, the cross‐section geometry distorts and bulges progressively with number of cycles, while the failure

mechanism is largely associated with the initiation and propagation fatigue cracks.11,18

The focus of the current study is the effect of the localised wall thinning on the low cycle fatigue resistance of elbows

made of copper‐nickel alloy. For this purpose, a series of full‐scale tests has been conducted under displacement‐

controlled loading conditions. The experimental study has motivated the development of the 3D elastoplastic finite

element model (FEM) to assist with the interpretation of the outcomes of experimental studies.

2 | DETAILS OF EXPERIMENTAL AND NUMERICAL STUDY

Pipe elbows (or 90° bends) were made of C70600 copper‐nickel 90/10 alloy (90% copper and 10% nickel), which is a com-

mon material for piping equipment. The test specimens consisted of the pipe elbow and two straight pipe segments that

joined together by welding. The welding was completed using tungsten inner gas (TIG) welding machine. The outer diam-

eter andwall thickness were 108 and 2.5mm, respectively. The ratio of straight pipe segment length to the pipe outer diam-

eter was about 3.2, which was consistent with the previous studies.15 Other main dimensions are provided in Figure 3.

The specimens were tested with configuration as shown in Figure 1A, at the room temperature utilising a universal test-

ingmachine INSTRON 5982. One end (the lower end) of the specimens was attached to the testingmachine grip through a

pin joint, and another end (the upper end) was subjected to cyclic displacement‐controlled loading with the displacement

range of ±20 mm. The specimens were equipped with strain gauges as illustrated in Figure 1B, which were attached to

intrados, extrados, and the crown areas of the elbow. The collected strain data were used to validate the numerical model.

Flow‐induced corrosion defects (wall thinning) of various severity were introduced by machining the inner pipe

surfaces near the crown, intrados, and extrados areas, as illustrated in Figure 2. The severity of the local thinning is

characterised by the different ratio of the machining depth to the wall thickness (t/h). The specimens with the following

range of values were tested: 0.25, 0.5, and 0.75.

In this investigation, a total of nine specimens were prepared with wall thinning was created on the elbow using

machining process. The machining process was done using CNC milling. Each specimen only has one wall thinning

spot with specific depth ratio either at intrados, crown, or extrados. The test was done until failure happen. The failure

was indicated by observing the appearing of crack using naked eyes.

In order to support experimental studies a 3D elastoplastic FEM was developed in order to investigate the stress

and strain field in other than the strain gauge locations. The geometry of the model and the mesh, which was based

on the hexahedral finite elements (FEs), are shown in Figure 3. A denser mesh was used in the middle of the

specimen where the large gradients of stress and strain were expected. The mesh convergence tests were done,

and the optimum configuration achieved with the total number of elements and number of nodes is 54 227 and

96 222, respectively.

The finite element analysis (FEA) in this study was performed using Ansys Workbench 18.1 using an APDL solver

and model was prepared using Ansys SpaceClaim 18.1. The strain‐life approach was used to estimate the low cyclic

fatigue of the model. The material behaviour of this FEA was based on elastoplastic hardening solid with

rate‐independent category.26

In this study, the kinematic isotropic hardening model was used in order to simulate the material behaviour under

cyclic loading. The constitutive equation was based on the linear elasticity, von Mises yield function, and associative

plastic flow rule.

The material constants utilised in the numerical study are presented in Table 1.

where E is Young modulus and K′ and n′ are the cyclic hardening coefficient and exponent of the stabilised cyclic of

the stress in the Ramberg‐Osgood equation, which was utilised to model the inelastic response of the material and strain

curve; ε is total strain range, εe is the elastic strain range, and εp is the plastic strain range. The data above obtained from

curve fitting method on the experimental strain‐life curves and cyclic stress‐strain curve.

The failure is evaluated using the standard the Basquin‐Coffin‐Manson criterion,27 which can be written as
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3 | OUTCOMES OF NUMERICAL AND EXPERIMENTAL STUDIES

The typical FE strain results are shown in Figure 4 indicating that the critical location is in the crown area on the inner

wall, which agrees with the experimental findings, see Figure 1B and Table 2.

Figures 5 and 6 show the typical results of both FE (dotted lines) and experiment studies (solid lines) for the reaction

force (Figure 5) and longitudinal strains at the crown location (Figure 6). A good agreement can be observed from these

FIGURE 1 A, Elbow test specimen. B,

Locations of strain gauges and failure

(crack)

FIGURE 2 A, Test specimen and the

areas of wall thinning; B, Cross sectional

area and detect dimensions; and 3D elbow

model with thin wall at (C.i) extrados, (C.

ii) crown, and (C.iii) intrados
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FIGURE 4 Equivalent plastic strains after 208 cycles. A, Inner wall view; B, outer wall

FIGURE 3 A, Main dimensions of the

test specimen. B, Finite element (FE)

mesh

TABLE 2 Summary of experimental and FEM results

Life (Nf)

Eroded Ratio (h/t)

Extrados Crown Intrados

0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

Experiment 193 187 179 184 172 166 201 198 194

FEM 195 190 175 181 169 161 203 196 189

Abbreviation: FEM, finite element method.

TABLE 1 The values of the material constants

E, GPa K′ n′ σ
′

f ε
′

f b c

121.94 523 0.2172 6.9E+08 0.6 −0.13 −0.7
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figures indicating that a careful FE analysis is capable to describe low cycle fatigue response. The change in slope of

strain evolution shows the complexity strain at that location.

Table 2 presents the experimental and FEM data summarising the number of cycle to failure (crack initiation), Nf, for

elbows with different wall thinning location: extrados, crown, and intrados, see Figure 2. The uses of the appropriate

numerical model together with correct input data have effectively produced a reliable outcome which is nearly equal

with actual results. The combination of isotropic and kinematic hardening rule model has tremendously come out with

great results especially in terms of simulating the material plastic behaviours under cyclic loading.

The experimental results indicate that the location of the wall thinning (extrados, crown, and intrados; see Figure 2)

does not significantly affect the low cycle fatigue life of copper‐nickel alloy elbows. In the case of this investigation, it

seems that the wall thinning at the crown location has the largest impact on low cycle fatigue strength. However, this

impact is quite small, even for sever thinning h/t = 0.75) the reduction in the fatigue strength is only 10%, which is

comparable with the scatter in experimental results.

4 | CONCLUSIONS

In this paper, the effect of localised corrosion (or wall thinning) on low cycle fatigue behaviour of a copper‐nickel alloy

elbows was investigated experimentally and using FEA. It was demonstrated that the actual deformations at the critical

locations can be accurately predicted by FEM. Therefore, the further investigations can rely on the FE modelling with a

limited number of full‐scale tests.

The outcomes of the experimental studies demonstrated a quite low reduction of low cycle fatigue life of the elbows

even at severe local wall thinning. The latter conclusion agrees well with the previous experimental studies for steel

components.
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FIGURE 5 Reaction force during elbow

cycling: Finite element (FE) results (dotted

line) and experimental measurements

(solid line)

FIGURE 6 Comparison of finite

element analysis (FEA) and experimental

data strain gauge measurements
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