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Abstract Explicit schemes are attractive for obtaining finite difference solu-
tions to partial differential equations because of their simplicity. However this
feature is undermined by the severe restriction on stability that the schemes
suffer. One method that appears to have better stability properties is Charlie’s
method. The stability region of this method applied to a one-dimensional heat
conduction equation is discussed in this article.

Keywords Explicit schemes, Charlie’s method, predictor-corrector, stability.

Abstrak Kaedah tak tersirat sangat menarik dalam mendapatkan penyelesaian

beza terhingga bagi persamaan terbitan separa kerana sifatnya yang ringkas.

Akan tetapi batasan kestabilan yang teruk yang dialami oleh kaedah ini mele-

mahkan ciri ini. Suatu kaedah yang mempunyai sifat kestabilan yang lebih baik

ialah kaedah Charlie. Rantau kestabilan bagi kaedah ini untuk persamaan haba

matra satu dibincangkan di sini.

Katakunci kaedah tak tersirat, kaedah Charlie, peramal-pembetul, kestabilan.

1 Introduction

The simplest extrapolation techniques to solve partial differential equations are those ex-
plicit difference algorithms that normally suffer very stringent stability criteria. One method
that has far better stability properties than the standard explicit scheme is Charlie’s method.
It is a predictor-corrector type algorithm in which the predictor is a transient (e.g. parabolic
type) Euler forward approximation of the differential equation and the corrector is a convex-
type operation.

The algorithm was developed in 1982 [2] to solve fluid flow problems. Although it
has been around for almost two decades, it does not appear to be well-exposed to the
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computational community, perhaps because only a handful of literature is available written
by the original authors [1, 2, 3]. The aim of this paper is to explore the stability properties of
Charlie’s method on a simple one-dimensional heat conduction equation in order to establish
the computational credentials of the method.

2 The Algorithm

Consider the initial value problem

du

dt
= f(u); u(t0) = u0, (1)

to be approximated by Euler’s method

Um+1 = Um + ∆t f(Um), U0 = u0. (2)

∆t is the time step and Um is the grid function corresponding to u(tm), Um ' u(tm).
Charlie’s algorithm for solving equation (1) is a two-step procedure

predictor: Ûm = Um + ∆t f(Um)

corrector: Um+1 = (1 − γ)Ûm + γ[Um + ∆t f(Ûm)]
(3)

where 0 < γ < 1. If γ = 0 the original (explicit) method is recovered by the predictor.
The improved stability features of the method are closely related to an appropriate

choice of γ. As an example of a partial differential equation consider the familiar linear
heat conduction equation

∂u

∂t
=

∂2u

∂x2
. (4)

The solution of equation (4) by Charlie’s method may be obtained by applying the usual
explicit FD formula that utilises a forward Euler step for the time derivative and a central
difference replacement for the spatial derivative:

predictor: Ûm
i = Um

i + r(Um
i−1 − 2Um

i + Um
i+1), i = 1, 2, . . . , n

corrector: Um+1
i = (1 − γ)Ûm

i + γ
[

Um
i + r(Ûm

i−1 − 2Ûm
i + Ûm

i+1)
]

,

i = 1, 2, . . . , n

(5)

where Um
i = U(xi, tm) is the grid function corresponding to u(xi, tm), r = ∆t/h2, ∆t is

the time step and h is the spatial mesh size. If γ = 0 the corrector is not implemented
and the algorithm again defaults to the underlying explicit method. A stability analysis is
performed in order to determine the range of values of γ that may be used in (5).

3 Stability

Fourier analysis is a standard method for analysing the stability of discrete models of PDEs
on a uniform grid [4]. Let Em

i be the computational point error at the node xi defined by

Em
i = Um

i − V m
i (6)
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where U is the exact value satisfying the explicit method and V is the computed value (aris-
ing most commonly from the existence of rounding on finite-precision machine). Assume
that the error Em

i (6) is a multiple of the initial error,

Em
i = ξmejβih (7)

and |ξ| < 1 for stability. Since U and V share the same form of the linear finite difference
representation, so does E. Therefore, substituting (7) into the predictor form of (5) for E
leads to

Êm
i = ξmejβih(1 + θ) (8)

where

θ = −4rsin2

(

βh

2

)

,

i.e, θ < 0. Substituting equations (7) and (8) into the E corrector form of (5) gives

ξm+1ejβih = (1 − γ)ξmejβih(1 + θ) + γ ξmejβih

+ γ r
(

ξmejβ(i−1)h(1 + θ) − 2ξmejβih(1 + θ)

+ ξmejβ(i+1)h(1 + θ)
)

which simplifies to
ξ = 1 + θ + γ θ2. (9)

When γ = 0, then ξ = 1 + θ and |ξ| < 1 ⇒ −2 < θ < 0 and 0 < r ≤ 0.5 [4]. In other
words, the usual stability result for the explicit method is recovered. Otherwise,

−2 < θ + γ θ2 < 0.

The right hand inequality gives

− 1

γ
< θ < 0. (10)

Now consider the left hand inequality,

γ θ2 + θ + 2 > 0. (11)

The boundary of the region satisfying the inequality (11) is defined by the equation γ θ2 +
θ + 2 = 0, that is

θ =
−1 ±√

1 − 8γ

2γ
= {θ1, θ2}

with θ1 ≤ θ2. From inequality (11), (θ − θ1)(θ − θ2) > 0 which requires that

θ < θ1 or θ > θ2. (12)

Combining inequalities (10) and (12) leads to the following two conditions:

− 1

γ
< θ < 0 and θ > θ2 =

−1 +
√

1 − 8γ

2γ

− 1

γ
< θ < 0 and θ < θ1 =

−1 −√
1 − 8γ

2γ
.
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Figure 1: Stability region: γ − θ plane

By taking values γ ∈ (0, 1/8) we see that only the first condition holds. Figure 1 shows the
γ − θ stability region (the fourth quadrant of the plane) imposed by that condition.

For γ > 0.125, the quadratic curve no longer controls the method’s stability. For this
reason, the 0 < γ < 1 is sub-divided into two intervals as follows:

(i) for 0 < γ <
1

8
,

−1 +
√

1 − 8γ

2γ
< θ < 0 (13)

(ii) for
1

8
≤ γ < 1, − 1

γ
≤ θ < 0. (14)
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Figure 2: Stability region γ − r plane

Because r defines a required computational parameter, a more practical way to look at
the stability region is to transform the γ− θ plane to the γ− r plane. Since θ = −4rψ (ψ =
sin2(βh/2)), inequality (13) becomes

−1 +
√

1 − 8γ < −8rγψ < 0
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or

0 < r <
1 −√

1 − 8γ

8γψ
.

This result must hold for all 0 ≤ ψ ≤ 1, thus (taking the maximum value of ψ)

0 < r <
1 −√

1 − 8γ

8γ
, 0 < γ <

1

8
, (15)

(see Figure 2). Likewise inequality (14) becomes

−1 ≤ −4rγψ < 0,

that is

0 < r <
1

4γ
,

1

8
≤ γ < 1. (16)

To identify the limiting value of r as γ → 0, we may expand the upper bound of r in
condition (15) in a power series,

lim
γ→0

r = lim
γ→0

1 −√
1 − 8γ

8γ

= lim
γ→0

1

8γ
{1 − (1 − 4γ + O(γ2))}

=
1

2
.

In other words, as γ → 0 and Charlie’s method ‘approaches’ the underlying numerical
technique so the stability analysis recovers the correct restriction on r. Other significant
limiting values, particularly at γ = 1/8 (critical value separating the stability region), are

lim
γ→(1/8)−

r = 1, lim
γ→(1/8)+

r = 2, lim
γ→(1/2)

r = 1/2.

Note that for γ = 1/2, the time step used in Charlie’s method is the same as that used in
the underlying explicit method.

Figure 2 shows the stability region in the γ − r plane. It appears that Charlie’s method
can increase the typical maximum ∆t used in the explicit FD scheme by a factor of 4 from
r = 0.5 to r = 2 as stated by previous authors [1, 3]. Note that for a fixed value of r = 0.5
(the basic method), the stability region in Figure 2 clearly shows that only values of γ in
the range [0, 0.5] can be used. Beyond that, the numerical solutions would be invalid as the
fixed time step ∆t = h2/2 would lie outside the stability region. However, the whole range
of 0 ≤ γ ≤ 1 is applicable for a variable r (∆t variable). Values γ > 1/2 are less practical
since the computational effort begins to increase since the time step is reduced below the
basic value.

4 Conclusions

Stability region for a one-dimensional heat conduction equation using Charlie’s method was
explored. The range of γ that can be used for a fixed r implementation is [0, 1/2] while all
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values of 0 ≤ γ ≤ 1 are applicable for a variable r implementation. Employing γ = 0 or
γ = 1/2 gives the same time step with γ = 1/2 requires more effort as one more computation
(the corrector) is required. The maximum time step that Charlie’s method can offer is by
utilising γ = 1/8 when the time step obtained from the explicit scheme is improved by a
factor of 4 from ∆t = h2/2 to ∆t = 2h2.
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