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Abstract: Quality of service (QoS)-aware data gathering in static-channel based underwater wireless

sensor networks (UWSNs) is severely limited due to location and time-dependent acoustic channel

communication characteristics. This paper proposes a novel cross-layer QoS-aware multichannel

routing protocol called QoSRP for the internet of UWSNs-based time-critical marine monitoring

applications. The proposed QoSRP scheme considers the unique characteristics of the acoustic

communication in highly dynamic network topology during gathering and relaying events data

towards the sink. The proposed QoSRP scheme during the time-critical events data-gathering process

employs three basic mechanisms, namely underwater channel detection (UWCD), underwater channel

assignment (UWCA) and underwater packets forwarding (UWPF). The UWCD mechanism finds the

vacant channels with a high probability of detection and low probability of missed detection and

false alarms. The UWCA scheme assigns high data rates channels to acoustic sensor nodes (ASNs)

with longer idle probability in a robust manner. Lastly, the UWPF mechanism during conveying

information avoids congestion, data path loops and balances the data traffic load in UWSNs. The

QoSRP scheme is validated through extensive simulations conducted by NS2 and AquaSim 2.0 in

underwater environments (UWEs). The simulation results reveal that the QoSRP protocol performs

better compared to existing routing schemes in UWSNs.

Keywords: Internet of underwater things; channel aware; multichannel; acoustic sensor networks;

underwater wireless sensor network

1. Introduction

The ocean covers more than 70% of the Earth’s surface and it is vital for human life. It helps

in driving weather and regulating Earth’s temperature, provides primary resources for humans and

serves as a medium for commerce and transport. However, more than 95% of the volume of the ocean

Sensors 2019, 19, 4762; doi:10.3390/s19214762 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0003-4628-4486
https://orcid.org/0000-0002-4784-0918
https://orcid.org/0000-0001-6711-2363
https://orcid.org/0000-0001-8445-7742
https://orcid.org/0000-0003-1591-7041
http://dx.doi.org/10.3390/s19214762
http://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/19/21/4762?type=check_update&version=3


Sensors 2019, 19, 4762 2 of 36

remains unexplored and, even more alarming, is unseen by human eyes due to lack of appropriate

acoustic communication technologies for data collection from the ocean. However, the internet of

things (IoT) technology is expected to make possible a new era in the vast ocean exploration with

the aims to connect ubiquitous devices and facilities with different types of underwater networks to

provide efficient and reliable services for all kinds of applications anytime and anywhere [1]. Thus, the

use of Internet of Underwater Technology (IoUT) with underwater wireless sensor networks (UWSNs)

technology can facilitate the discovery of unexplored marine resources. In fact, communication under

water is more challenging due to the harsh nature of underwater environments (UWEs) [2]. Currently,

most current underwater networks rely upon acoustic telemetry to communicate, but current acoustic

modem technology is very limited by the low signal propagation speed in water (around 1.5× 103 m/s

as opposed to radio propagation of around 3× 108 m/s) and no commercial system can exceed a range

× rate product of more than 40 km × 1 kbps [3]. However, the low bandwidth issue is not the only

problem that is faced here but also dealing with many other problems such as high noise, path loss,

multi-path signal propagation, Doppler spreading and high power consumption [4]. Putting this

all together, we can see that acoustic networks have a large propagation latency, low available data

transmission capacity, high bit error rate (BER) and dynamic topology structure in UWEs.

There are a few alternatives to acoustic telemetry, such as radio waves and optical communication

that can be used [5]. The radio waves have been shown to be unviable for use in underwater

networks as radio waves suffer from large signal attenuation and absorption unless extra low frequency

(3–300 Hz) signals are used with long antenna size [6]. However, this comes at the expense of extremely

high transmission power and low data rates depending upon the physical properties of the medium

characteristics on the other hand, the optical modems can be used in conjunction with acoustic telemetry

to achieve higher data rates associated and a lower error rate than acoustic telemetry. However, the

optical signal can only propagate short distances (e.g., 2−8 m with special lenses) [7]. This solution

becomes useful when the acoustic sensor nodes (ASNs) are close to each other and there are no

obstructions in the water, such as oil, fish, rocks, etc. The short range means that optical signals are

not useful due to heavy scattering and are restricted to short-range-line-of-sight issues in acoustic

networks for time-critical events monitoring purposes. Thus, these approaches are expensive, not

scalable and intolerant to faults.

To this end, underwater acoustic communication seems to be the best option and, therefore,

underwater acoustic sensor networks (UASNs) have been attracting increasing attention from scientific

and industrial communities [8]. The ASNs in UASNs have sensing, processing and communication

capabilities, thus they are emerging as a fundamental technology for IoUT. The use of underwater

sensor nodes enabled with wireless communication capabilities have the potentials to realize real-time

underwater monitoring and actuation applications, with an on-line system reconfiguration and failure

detection capabilities [9]. Therefore, this technology is making possible a new era in variety of ocean

monitoring and exploration applications, such as monitoring natural disasters, mine recognition,

navigation assistance, underwater pollution, study of marine life and tactic surveillance applications [10].

These applications will help in filling the gap of our knowledge regarding the ocean and aquatic

environments in general. Nevertheless, deployment of UASNs due to their acoustic modem transceiver

and the appropriate hardware for protecting the circuitry is expensive and limited to experimental

settings. The ASNs deployment missions can take several days since sensors might be attached to

docks, anchored buoys, sea floors, underwater autonomous vehicles (UAVs), low-power gliders, or

underpowered drifters, depending on the desired network architecture [5].

On the other hand, efficient data collection using ASNs is challenging due to the various

aforementioned factors in the UWSNs. Often, underwater ASNs are equipped with acoustic modems

to wirelessly communicate with each other. Underwater communication links are affected due to

location and time-dependent acoustic channel communication characteristics. Moreover, temporary

connectivity loss can occur due to shadow zones. Therefore, the wireless link between neighboring

ASNs may perform poorly or even be down at any given moment, which will increase the packet
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retransmissions as an attempt to deliver data packets result in more packet collisions, delay and

energy consumption in UWSNs. Thus, excessive rerouting due to poor link quality consumes nodes

residual energy, which can disrupt underwater monitoring and exploration missions prematurely [11].

To address these issues, a number of data collection protocols have been proposed in the literature

(see Section 2). The key aim of these routing schemes is to mitigate the impacts of the underwater

environments and enhance the poor quality of underwater acoustic physical links by taking advantage

of the multicast and broadcast nature of the wireless transmission medium. However, each approach

has disadvantages that, when combined, could diminish significantly the performance of UWSNs.

Some of their common drawbacks, e.g., poor data reliability and channel capacity, communication

void region problem, high latency, and redundant data packet transmission are accented in acoustic

communication, which severely diminishes UWSNs performance. Therefore, a highly reliable routing

architecture is essential for UWSNs.

In the rest of the paper, Section 2 discusses the existing routing protocols in UWSNs. In Section 3,

we briefly describe the proposed quality of service routing protocol (QoSRP). In Section 4, we discuss

the acoustic channel and energy consumption models used in the simulation studies. In Section 4,

we also provide simulation results and analyze the performance of QoSRP against existing routing

protocols in UWEs. Finally, in Section 5, we conclude the paper with future work.

2. Existing Studies and Challenges in Underwater Wireless Sensor Networks (UWSNs)

In the past few years, there has been intensive research in designing routing schemes for UWSNs.

In this respect, this section summarizes up to date existing studies on the developments and status of

routing schemes in UWSNs. The authors in [12] propose a depth based routing protocol to minimize the

end-to-end latency and energy consumption in UWSNs. The designed scheme considers an optimal

weight function to compute the speed of receiving signals and transmission loss during relaying data

over shortest paths in low-depth regions. The proposed scheme minimizes the latency and energy

consumption at the expense of low network throughput and packet delivery ratio in UWSNs. Similarly,

a depth-based anycast geographic and opportunistic routing protocol is proposed in [13] for UWSNs.

The designed scheme employs a recovery mode procedure based on the ASNs depth adjustment during

relaying data packets from ASNs in void regions to the sea surface sink. The research in [14] balances

the energy consumption load and avoids the void regions because of considering the normalized depth

variance of the relay ASNs in the network. Also, in [15] an idea of pressure routing is discussed to

provide reliable packets transmission of the events to any surface sonobuoy. The proposed scheme

selects the subset of relay ASNs based on the pressure levels to route data at low interference towards the

surface sonobuoy. The work in [2] proposes a location-free pressure routing protocol that considers three

basic parameters such as depth, residual energy and link quality of the relay ASNs. Both above routing

schemes achieve low latency, energy consumption and high packets delivery with the expense of poor

synchronization and corrupted data packets due to detouring forwarding in void regions in UWSNs.

To solve the issues of above-mentioned depth-based routing schemes, the work in [16] presents

a novel concept of vector-based opportunistic routing in which the smallest hop counts are selected

towards the sink during conveying data packets. The developed scheme due to its highly stable routing

architecture performs well in achieving low latency, energy consumption, and high packet delivery

rates in UWSNs. The work in [17] discusses a packets forwarding mechanism for marine monitoring

applications. The proposed scheme employs various transmitting power levels and the residual energy

of down-stream relay ASNs in the information relaying process. The developed protocol prolonged the

network lifetime due to its low energy consumption, however, it faces the issues of high latency and

low data delivery rates in UWSNs. Similarly, the study in [18] presents a tree-based routing protocol

for reliable data gathering in UWSNs. The entire working mechanism is divided into two phases,

namely, dynamic tree constructions and information gathering using an autonomous underwater

vehicle. Initially, a set of gateway nodes along the shortest path trees is defined to limit the association

count of neighboring ASNs. Then, an autonomous underwater vehicle is used to collect data from
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gateways to prevent data loss in the network. The proposed protocol achieves low latency performance

and increases the packets delivery rates and throughput, but it faces the issues of communication

overheads in UWSNs.

The protocol proposed in [19] exploits the link quality of relay ASNs by considering the cross-layer

design paradigm during forwarding packets around connectivity voids and shadow zones in UWSNs.

Similarly, the research in [20] discusses a cross-layer location-free single-copy protocol for reliable

data gathering in UWSNs. The developed scheme due to its dynamic controls transmit power and

channel frequency mechanisms avoids overhead introduced by redundant packets, balance energy

consumption and increases the packet delivery rate in UWSNs. Also, the study in [21] presents a

cross-layer cooperative routing protocol in which the ASNs selects the forwarding relay ASN based

on their link quality indicators towards the destination. These schemes perform well in terms of low

energy consumption, latency and high packet delivery ratio in UWSNs. However, the first scheme

faces the issue of high congestion near to the sink than others while the main problem of the second

scheme is invalid data packets due to path loops in the network. On the other hand, the third routing

protocol faces excessive overhead issues due to periodically updating the neighboring ASNs in UWSNs.

To solve some of the issues faces by above schemes, the authors in [22] discuss a novel deep Q-network

based idea to make globally optimal routing decisions. The designed scheme to reduce network

overhead employs a hybrid unicast and broadcast communication mechanisms to maintain network

topology changes and making new routing decisions when the current data paths become unavailable.

The protocol in [23] divides entire grid routing architecture into many small cubes indicated as

clusters to maintain the reliability of data transmission. In each cluster, a cluster leader is appointed

based on the location and remaining energy information to maintain the reliability of data transmission.

Similarly, the study in [24] provides a bio-inspired distributed spectral clustering routing protocol that

exploits link quality by considering signal to noise ratio (SNR) values between relay ASNs to provide

highly stable clustering and routing architecture in the network. The research in [10,25,26] propose

bio-inspired dynamic cluster-based routing protocols to provide reliable data transmission by considering

the number of hop counts and the confidence level of the relay ASNs in UWSNs. Also, in [27], a hybrid

data-collection routing protocol is proposed in which the entire working mechanism is divided into the

upper layer and lower layer to perform reliable data gathering in UWSNs. The simulation facts show

that the proposed schemes achieve low latency, energy consumption and higher packet delivery rates

in the network. However, the first scheme faces high routing table management cost, and the second

scheme compared to other schemes faces the corrupted data packets due to poor link quality among

cluster heads and cluster heads rotating issues in highly dense UWSNs. The study in [28] presents a

disjoint multipath disruption-tolerant packets forwarding mechanism in which multiple routing paths by

employing the hue, saturation and value colour space that are constructed to greedily convey packets to

the sea surface sink. The developed protocol improves the packets delivery rates and reduces the latency,

but it faces the issue of low throughput and poor loading balancing in UWSNs.

Han et al. [29] propose an asymmetric link-based reverse routing in which a directional beam

width mechanism is used to analyze the link quality between relay ASNs. The proposed protocol

eliminates void issues and improves network performances in terms of latency and packets delivery

rates. However, this faces the issue of high communication overheads and packets collision due to

periodically updating the status of the links in UWSNs. Similarly, the protocol proposed in [30] uses

multi-layered architecture to discover a set of feasible relay ASNs during conveying data towards

the sink. The proposed protocol achieves better performance in low energy consumption and packet

delivery rates with low latency, but it faces the issues of poor synchronization and invalid data packets

in UWSNs. To address some of the issues faced by the above schemes, the protocol in [31] overcomes

packets loss by considering the forwarder ASNs connectivity issues along a route towards the sink.

The performance of the proposed scheme is observed better in low latency, energy consumption and

packets error rates in UWSNs. Table 1 shows the comparison between different routing schemes

in UWSNs.
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Table 1. Comparison of routing schemes in underwater wireless sensor networks (UWSNs).

SrNo.
Routing
Schemes

Multi-
Channel

Static-
Channel

Architecture
Channel
Sensing

Dynamic
Channl
Assign

Channel
Capacity

Packet
Delivery

Ratio
Delay

Energy
Consumption

Throughput Congestion
Packet
Error
Rates

1 MCUW [17] ✔ Flat ✔ ✔

2 DSDBR [12] ✔ Flat ✔ ✔ ✔

3 AEDG [18] ✔ Tree ✔ ✔ ✔

4 CARP [19] ✔ Flat ✔ ✔ ✔

5 EGRCs [23] ✔ Clustering ✔ ✔ ✔

6 GEDAR [13] ✔ Flat ✔ ✔ ✔

7
HydroCast

[15]
✔ Flat ✔ ✔ ✔

8 LRP [24] ✔ Clustering ✔ ✔ ✔ ✔

9 ENMR [28] ✔ Flat ✔ ✔ ✔

10 AREP [29] ✔ Flat ✔ ✔ ✔

11
E-CBCCP

[25]
✔ Clustering ✔ ✔

12 EDOVE [14] ✔ Flat ✔ ✔ ✔

13 QERP [26] ✔ Clustering ✔ ✔ ✔

14 RE-PBR [2] ✔ Flat ✔ ✔ ✔

15 MRP [30] ✔ Flat ✔ ✔ ✔

16 SDCS [27] ✔ Hybrid ✔ ✔ ✔

17 RECRP [20] ✔ Flat ✔ ✔ ✔

18 CACR [21] ✔ Flat ✔ ✔ ✔

19 DVOR [16] ✔ Flat ✔ ✔

20 DQELR [22] ✔ Flat ✔ ✔ ✔ ✔

21 RACAA [31] ✔ Flat ✔ ✔ ✔

22 MERP [10] ✔ Clustering ✔ ✔ ✔ ✔

23 QoSRP ✔ Flat ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔
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The main purpose of the aforementioned routing protocols is to provide reliable data delivery

at a low cost in UWSNs. These static-channel based schemes significantly help in designing

and development of advanced routing solutions for UWSNs. However, they suffer from major

disadvantages. First, most of the schemes employ probabilistic values to estimate the link quality

between ASNs in highly dynamic UWEs. Thus, the poor link quality due to the false estimation of the

channel is facing severe reliability issues lead to excessive rerouting during monitoring time-critical

events in UWSNs. The new routes finding or repairing broken links require a significant amount of

control message overheads, which consumes the sensor’s energy and increases the chance of packets

collision and brings latency issues in the network. On the other hand, the interference issues further

increase the corrupted data packets in UWSNs. Second, during conveying packets these schemes

consider shortest paths routing with excessive hop counts, which may balance the network residual

energy; however, it consumes more ASNs energy and increases the probability of invalid data packets

because of data path loops in UWSNs. In addition, the shortest path routing result in high routing table

management cost and congestion problems because of quickly draining the residual energy frequently

used by ASNs nearer to the sink. Third, most of these routing protocols are stuck in void regions and

instead of finding an alternative route just discards the packets and thus subjected to packet loss in

UWSNs. Fourth, the existing static-channel based routing solutions due to lack of dynamic channel

adaptation cannot mitigate the inference effects in order to provide high packet delivery rates and

network throughput with low latency and corrupted packets in UWSNs.

These facts motivate researchers to propose a novel cross-layer QoS-aware multichannel routing

protocol called QoSRP for the internet of UWSNs to mitigate the effects of the underwater environments

and improve the overall data collection in UWSNs. The entire routing problem has been modelled

using mixed integer linear programming (MILP) in UWSNs. The major contributions of our proposed

protocols are as follows:

• We propose an underwater acoustic channel detection mechanism to find the vacant channels

with a high probability of detection and low probability of missed detection and false alarms.

• An underwater acoustic channel assignment mechanism is proposed to assign high data rates

channels to acoustic sensor nodes with longer idle probability in a robust manner.

• A hybrid underwater routing mechanism is proposed to convey collected data to the sink. The

proposed mechanism while conveying information avoids congestion, data path loops and

balances the energy consumption load of UWSNs.

• The performance of the QoSRP protocol against existing routing schemes is validated through

extensive simulations conducted by NS2 and AquaSim 2.0 in the UWSNs.

The later sections explain the working mechanism of our proposed routing protocol in UWSNs.

3. Proposed Quality of Service Routing Protocol (QoSRP) in UWSNs

The protocol design details are given in the following sections.

3.1. Network Model

The network model used in the design, development, simulating and testing the QoSRP scheme

is illustrated in Figure 1. The proposed architecture consists of a sea surface sink, base station (BS)

and ASNs. The randomly deployed ASNs in a geographic area of interest over the ocean bottom are

equipped with the main functions of sensing, sampling, and acoustic transmitters. These location-aware

ASNs (computed by using self-localization scheme in [32]) deployed for continuous oceanographic

data collection are equipped with omnidirectional acoustic transceivers have identical communication

range and asymmetric communication links. In UWEs, the ASNs due to constraints of limited residual

energy and short communication range transmit packets to the sink in a multiple hops manner. Thus,

the ASNs die once the energy runs out. In addition, the ASNs employing different channels on multiple

paths with different lengths have different propagation period, the angles of arrival (AoA) and the
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angle of departure (AoD) in UWEs. In addition, the ASNs move passively with water currents in

vertical and horizontal directions with a velocity of 0 to 0.8 m/min and 0 to 1 m/min, respectively. This

extremely slow movement in both upward and parallel directions is assumed negligible in the UWEs.

On the other hand, the sink floats on the sea surface and is equipped with both acoustic modem and

radio modem aiming to gather data from ASNs through acoustic signals and forward the gathered

data using radio signals to the offshore BS and then the remote user/s for monitoring purposes. The

sea surface sink is embedded with a global positioning system (GPS) and periodically updates the BS

about its location information by disseminating periodic beaconing in the network. The energy of both

sea surface sink and BS is assumed to be unlimited since they can be charged by suitable green energy

resources, such as solar energy, etc. The technology such as carrier sense multiple access (CSMA)

is assumed to avoid data packets collision during transmission and reception in UWSNs. Finally,

we assume that the remote user/s can configure, control and monitor ASNs by connecting to the BS

through one of the highly stable communication technology, such as satellite or cellular. The following

section explains the working procedure of QoSRP protocol in detail.

 

 

Figure 1. Network model in quality of service routing protocol (QoSRP) protocol.

3.2. Underwater Acoustic Channel Detection (UWCD) Algorithm

Recently, the spectrum shortage problem aggravates in an apparent manner because of increasing

demands for higher data rates at low frequencies for various UWSN-based applications. The principle

of dynamically exploiting the local vacant spectrum bands of the primary users during their silence

periods by secondary users is among the best-proposed solutions for this problem. Therefore, the

multichannel is proposed as a prominent technology to implement spectrum access for its autonomous,

agility, and ability to detect the primary user’s (PU) signal. In multichannel communications, the

spectrum sensing is a key element in the sense that it demonstrates how signals of the PUs are

identified, sampled, and processed for detecting spectrum holes [33]. The main tasks accomplished by

spectrum sensing, such as spectrum monitoring, spectrum analysis, and spectrum decision while the

multichannel cycle consists of four core operations, including the above three and data transmission.

Thus, the key aim of the spectrum sensing is to search spectrum holes for secondary users by detecting

the primary signals in the network. To sense the accessibility of certain portions of the frequency

band, the most effective way is to identify the primary users that are active within the range of a
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secondary user. However, the direct measurement between a transmitter and receiver for a channel

is difficult and brings several new challenges for the secondary users in the UWEs. Generally, there

exist few signal detection techniques like matched filter detection (MaD), wavelet detection (WeD),

cyclostationary detection (CyD) and energy detection (EnD) [34], etc., that can be employed during

sensing the spectrum to enhance the detection probability in the UWEs.

In the MaD technique, the SU have the prior knowledge of the PU signals and a matching filter

is applied, which amplifies the SNR of the received acoustic frequency samples. This mechanism,

due to coherent detection, achieves a high processing gain and thus reduces the channel detection

latency. However, each primary user class requires a dedicated sensing receiver, which is expensive and

consumes significant ASNs battery power in UWSNs. Moreover, the channel detection performance

of the matched filter can be severely limited because the primary user (PU) signals information is

hardly available at the PU′s in UWEs. By contrast, in the WeD approach, the given signal is first

split into various frequency components and later every component by matching the resolutions to

its scales is studied. The wavelet detection basically employs cosines and sines as key functions [35].

The use of irregularly shaped wavelets in the wavelet transforms as basic functions to identify the

local features and sharp changes. This approach offers flexibility in dynamic channel adaptation and

low implementation cost. However, the high sampling rates for characterizing the large bandwidth is

one of the most critical challenges while implementing the wavelet approach. In the CyD technique,

the presence of primary users can be identified even at very low signal-to-noise values by observing

the periodicity of the collected PU′s signals in UWEs. In the cyclostationary detection to obtain the

periodicity of the primary signals, the modulated signals are usually combined with hopping sequences,

spreading code, pulse trains, and cyclic prefixes or sinusoidal carriers. These modulated signals due

to exhibiting the characteristics of periodic statistics and spectral correlation are characterized as

cyclostationary [36].

Typically, these features in the signal format are introduced intentionally, which enables a receiver

to exploit parameter estimation like the direction of arrival, pulse timing, or carrier phase. This

detection technique can improve the sensing detection, however, it requires prior knowledge of the

primary signal characteristics. In addition, the high computational complexity and significantly

extensive sensing delays are the other shortcomings of this approach. The EnD is the widely used

channel detection method, which does not require any previous knowledge of the PU signals. This

method identifies the primary user’s signals based on the sensed energy, where the received signal

strength indicator or acoustic-frequency energy is computed to find whether the channel is free or not.

Initially, an input signal to obtain the required bandwidth is filtered through a band pass filter and then

the obtained signal is squared and combined over the observation interval. Lastly, to find the presence

of a primary user signal a predetermined threshold is compared with the output of the integrator.

Generally, fast Fourier transform-based techniques are used to analyze the spectral in the digital

domain. In particular, in a specific time window, the received signal is sampled and passes through

fast Fourier transform equipment to obtain the power spectrum. Then, the power spectrum peak after

windowing is detected in the frequency domain. This technique provides better channel detection in

underwater since it does not need any previous information about the PU′s signals. However, the

high noise, interference, fading, and multipath effects increase the probability of sensing errors in terms

of false alarms (FAs) or miss-detection (MiD), which leads to poor channel detection performance

in UWSNs. Hence, it is highly desired to reduce the sensing errors during channel detection to enhance

the usage level of the vacant channel and to minimize the collision probability with PU transmissions.

In this respect, the detection threshold that precisely detects the presence of primary signals plays

an important role in the multichannel acoustic sensor networks (MCASNs). The less error in computing

the SNR value decreases the probability of FAs in UWEs. However, there exists a limit for the noise

level. The increase in noise level above this limit increases the probability of FAs while it reduces

with the decrease in noise below this threshold level. In the proposed scheme, the channel detection

threshold level is determined by considering the various underwater environment parameters and set
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to a minimum level of the transmitted signal power value in the underwater. This detection sensitivity

identifies the received SNR ratio at the secondary user (SU) with a satisfied probability of detection

conditions in MCASNs. Thus, the optimal channel detection threshold significantly reduces the sensing

errors, enhance spectrum utilization and provides enough protection to PU transmissions in the

MCASNs. In the designed scheme, a simple and effective energy detection mechanism appropriately

detects the existence of the PU signal based on its received energy by comparing it to a detection

threshold. Herein, we employ an energy-based signal detection (E) method revealed in [37] to identify

idle spectrums in UWSNs. The key objective function of the EnD mechanism
(

φUWCD(1)

)

of the

proposed algorithm is numerically indicated as:

∀ i = {1, 2, . . . ,n};∀ j = {1, 2, . . . ,m};∀ k = {1, 2, . . . , ℓ};

φUWCD(1) =

|n|
∑

i=1

max
i
ρDℯT + min

i
ρFAs + min

i
ρMiD (1)

The key aims of the objective function is to maximize the probability of detection (ρDℯT ) and

minimize the probability of FAs (ρFAs) and missed-detection (ρMiD) in UWSNs. Consequently, the

test statics of energy detection (TED) of the received signal at the SUi can be numerically written as:

TEnD =

Ls
∑

n=1

∣

∣

∣ESL[n]
∣

∣

∣

2
(2)

subject to:

SL[n] ≤ τς ; (2a)

0 <Msg(i) ≤Msgsg( j) ≤ 1; (2b)

n > 1 ≤ k; (2c)

ESL[n] ≥ Eς; (2d)

ρℯ ≤ ρℯ(ǫ) < 1; (2e)

τς > 0 1 ≤ ς ≤ T ∀n ∈ PUj ; (2f)

Eς ≥ 0 1 ≤ ς ≤ E ∀E[n] ∈ PUj ; (2g)

ρℯ ≥ 0 1 ≤ e ≤ E; (2h)

In Equation (2), ESL and SL[n] are, the received signal energy and the n-sample of the SL while

Ls is the sum of the length of n samples over an interval which helps to obtain a level of performance

under certain SNR conditions in the network. The number of samples collected by individual SU

depends upon the sensing time and the longer sensing delay within in predefined time intervals leads

to better detection performance of the primary signals. However, the longer sensing time results in less

available time for packets transmission, which minimizes the throughput of the SUs is constrained by

Equation (2a). Moreover, due to additional sensing time the cooperation overhead with the increasing

number of cooperating users’ increases, which lead to a huge volume of information that need to

process by the requested SU to make a local decision is constrained by Equation (2b). Therefore,

the number of samples of the received signal energy of Ls(n) such that n > 1 using the central limit

theorem over an interval are considered to obtain some level of performances under certain SNR

conditions is constrained by Equations (2c) and (2b) in the network. Therefore, it is indicated as one of

the basic functions of the SNR in the UWEs. The transmission of PU signals is a random process,

which follows an independent identically distributed pattern with mean zero and variance σ2
s. In the

underwater, the noise (noise) is a real-valued Gaussian variable that considers various underwater

environment parameters with zero mean and variance σ2
v is constrained by Equation (2e) within a
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certain error probability. Constraints in Equations (2f, h) satisfy the limits in the network. To this end,

the SNR in the underwater at the ith secondary user SUi is computed as SNR(SUi) =
∣

∣

∣Cℊ
∣

∣

∣

2
σ2
s/σ2

v.

The primary user signal and noise are assumed to be independent and therefore a binary hypothesis

testing problem of received energy signals at the SU can be formulated as:

TEnD(SUi)SL =
m
∑

i=1

∣

∣

∣no(i)

∣

∣

∣

2
∈ H0 (3)

TEnD(SUi)SL =
m
∑

i=1

∣

∣

∣Cℊ(i)SL(i) +no(i)

∣

∣

∣

2
∈ H1 (4)

in which m, Cℊ(i), noise(i) are the time-bandwidth product, the channel gain between PU and SU,

and noise in the ith time slot, respectively. The received energy at each SUi is compared to the

predefined detection threshold (σ) to reach a decision about the presence or absence of PUj . In locally

sensing mechanism each SU decides whether the ith channel is available (τoff) or occupied (τon) by

using a predefined threshold in the network. Thus, the hypothesis at each secondary user is saying

that the PU is active only if the received signal energy is greater than the defined limit and idle when

it is less than the defined threshold value, which can be numerically indicated as:

TEnD(SUi)SL =
[

H0 ∈ ESL > σ
∣

∣

∣H1 ∈ ESL < σ
]

∈ τs (5)

subject to:

TEnD(SUi)SL = τon|τoff ∈ Ci ⊆ Cn (5a)

H1(Ci) ∈ Cn = 1(τon) (5b)

H0(Ci) ∈ Cn = 0(τoff) (5c)

PUj(Ci) ∈ Cn , τon (5d)

Ci ∈ H1

∣

∣

∣H0 ≤ 1 (5e)

SUi(Ci) ∈ Cn(Ri) = τ− τs (5f)

SUi < Ci(Ri) = τ (5g)

SUi(Ci)busy ∈ Cn(Ri) , τs (5h)

in which σ is the threshold value of energy is used to compare is the local spectrum sensing decision of

a SUi ,H1 denotes the ith channel is not available because of the PUi activity with probability ρ(PUi)

in the sensing time τs is constraint by Equation (5a). Equations (5b) and (5c) constraints guarantee that

the PU is active and inactive for a particular channel Ci in a time interval in the network. Equation

(5d) constraints state that a channel belongs to the PUj is available to SUi for the time τs, while the

constaints in Equation (5e) satisfy the satement specified in Equation (5d). Constraints in Equation (5f)

verify that the SUi senses a channel Ci in the region Ri and holds the channel for a specific time once

it is found free in the network. Constraints in Equation (5f) explain that the SUi must not hold the

channel for the entire time since the PUj can reclaim the channel any time in the network. Constraints

in Equation (5h) state that the SUi senses a channel Ci in a region Ri and will not be sensed the same

channel immediately once it is found busy in the network. On the other hand, H0 illustrates that

the ith spectrum is available with probability ρidℯaℓ, i.e., ρ(PUi) + ρidℯaℓ = 1 in the sensing time

τs. The performance of locally detecting spectrum by each SU is computed by the probability of

detection when a PUi is idle and the probability of FAs when a PUi is active and can be numerically

expressed as

ρDℯT = ρ(H1

∣

∣

∣H1) ∈ ρ
(

ESL > σ
∣

∣

∣H1

)

(6)
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ρMiD = 1− ρDℯT

(

ESL < σ
∣

∣

∣H1

)

(7)

ρFAs = ρ(H1

∣

∣

∣H0) ∈ ρ
(

ESL > σ
∣

∣

∣H0

)

(8)

Equations (6), (7) and (8) show theDℯT probability when SU determinesH1 whenH1 exits,

theMiD probability when SU decidesH0 butH1 exists, and the FAs probability when SU decides

H1 butH0 exists, respectively. In addition, Equations (7) and (8) clearly indicate that SU provides

reliable protection to PU when the detection probability is high while the SU loses spectrum access

opportunities when the false alarm probability is high in the network. Some common numeric terms

used throughout the paper are given in Table 2.

Table 2. Notations used in QoSRP.

Notation Description

Cu is the utilization of a channel Ci in UWSNs
Tp is the transmission power of a channel Ci in UWSNs
Intf is the interference in UWSNs
Pℯr is the packet error rate in UWSNs
Ct is the channel management cost

Tp(max)(Ci) is the maximum transmission power for a channel Ci in UWSNs

Tp(min)(Ci) is the minimum transmission power for a channel Ci in UWSNs

Tp(thrℯshoℓd) is the threshold value for transmission powerin UWSNs

G(SUj , PSj) is the gain for a channel Ci from SUj to PSj in the network

RInt f

(

SUj

)

Is the interference range of a secondary user SUj in the network

Pℓℴss(dmax)
is the path loss over a maximum distance between a transmitter and receiver (i.e.,
coverage radius)

Pℓℴss(d)
is the total path loss at a distance d from the transmitter measured using log-normal
shadowing model

BIntf p((max))( Ci)
is the maximum background interference power at the receiver over a channel Ci in
the network

Intf(cℴns) is the interference constraint in the UWSNs
Thp(Ci) is the throughput of a channel i in the network
σ is the constant factors with a value less than 1 and greater than 0
Ut is the utility function with maximum value 1
No is the noise factor with maximum value 1 and minimum value 0

PS
h(k)
j

is the number of channels stored by a PUi or SUj in time τi with decreasing priority
in the channel table

ρCi
available

(

SUj

)

is the probability of a secondary user j for the channel Ci in the network

ρCiτℴn→o f f
(PUi) is on and off the probability of a primary user i on a channel Ci in the network

ρ SUj(Ci) is the collision probability ρ of a secondary user j for the channel Ci in the network
ρ PUi(Ci) is the collision probability ρ of a primary user i for the channel Ci in the network

3.2.1. Decision Rules for the Fused Information in Distributed Cooperative Sensing (DCoS)

Distributed cooperative spectrum sensing consists of main two types of data fusion, namely hard

decision and soft decision mechanisms in the MCASNs. The soft decision mechanism due to heavily

sharing test statistics faces excessive cooperation overheads compared to the hard decision mechanism,

which consumes the sensor’s energy and increases the probability of channel assignment delay in

MCASNs. On the other hand, the hard decision mechanism performs best when the channel state

information between the PUs and SUs varies in time and location in UWEs. The hard decision

mechanism after considering the individual SUs local decisions conveniently applies the linear fusion

rules such as AND, OR, and K-out-of-M to obtain a reliable cooperative decision. In the AND fusion

rule, the fusion center declaresH1 only if all independent SUs decide onH1 and declaresH1 for the

OR rule only if any of independent SUs decides onH1 in the cooperative decision. On the contrary,

the fusion center in K-out-of-M rule declares the ultimate decision that there is a PU′s transmission

only if at least K secondary users out of M selected local detectors decide about the presence of a PU′s
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signal. In the proposed scheme, the probability of FAs,MiD andDℯT using K-out-of-M rule can be

written as:

ρDℯT =

|n|
∑

ℓ=k=1

|m|
∑

j=1

ρDℯT

(

SUj

)ℓ (

1− ρDℯT (SUj)

)|m−ℓ|
(9)

ρMiD = 1−

|m|
∑

j=1

[

ρDℯT (1− ρℯ) +
(

1− ρℯ(SUj)

)

+ ρℯ(SUj)

]

(10)

ρFAs = 1−

|m|
∑

j=1

[

(1− ρFAs)(1− ρℯ)SUj + ρFAs(SUj),ρℯ(SUj)

]

(11)

Equations (9), (10) and (11) illustrate the probability ofDℯT when all m secondary users sensed

the existence of a PUi such that SUj > SUi determine H1 when H1 exits, the MiD probability

when the secondary users SUj > SUi decidesH0 butH1 exists, and the FAs probability when the

secondary users SUj > SUi decideH0 butH1 exists, respectively.

3.2.2. Distributed Cooperative Sensing (DCoS)

In the UWCD scheme, the local channel detection made by the individual SU for the desired

capacity-aware channel is preferred. However, the high underwater noise, fading, and interferences

have destructive effects caused by imperfect reporting channels on the wireless link quality leading to

poor cooperative spectrum sensing in the network. This problem becomes more severe between the

sender and the receiver secondary users due to an increasing probability of errors over the reporting

channels of the transmitted signal in the network. Therefore, finding a channel with high data rates

become more difficult in local spectrum sensing in UWEs. To this end, the distributed cooperative

sensing (DCoS) provides better results in highly dynamic UWEs. The SUs in the proposed DCoS

architecture performs the channel sensing tasks on demand only if the required capacity-aware channel

is not found locally by the SU. To do so, the SU that requires the channel information sends multicast

request messages to its neighboring ASNs. The request message includes the required channel

information, identity, and location information in the network. Upon receiving the request message,

the neighboring SUs start to sense the required channels and share their channel detection statistics

by exploiting the spatial diversity in the observations. Thus, each SU based on its local sensing

observation exchanges decision on the existence or non-existence of the primary signals in the UWSNs.

The receiver SU combines the received sensing information with its own information and

after some necessary calculations makes an ultimate decision whether the PU is active or not in

the network. This decision information is disseminated to each sender SUs in the network. This

combined decision mechanism significantly improves the performance of channel detection and

relaxed sensitivity requirements for the SU in the network. Thus, each receiver SU acts as a fusion

center as shown in Figure 2. In Figure 2, a SUi that requires a specific channel/s information sends

a request message to its neighboring nodes. The neighboring SUs after successfully receiving the

request message start to observe the channel activity in the network. Then each SU based on local

observation decides the presence or absence of the primary signal and forwards its final decision to

the request SU by considering the CSMA mechanism in the MCASNs. The selected SUs perform

channel detection in a group manner in a way such that if required then more than one channel are

sensed in parallel in every sensing interval as shown in Figure 2. During the information exchange

process, an acknowledgment message is forwarded by the receiving node, which guarantees that the

information has been received successfully.
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Figure 3. The parallel sensing mechanism.

3.2.3. User Selection in Cooperative Mechanism

In UWSNs, the fusion center cooperating with all users does not essentially attain the optimal

performance since the channel fluctuates over time and location due to the harsh nature of the UWEs.

This might lead to assigning a poor-quality channel to the SU which degrades the performance of the

network. Therefore, the selection of SUs for obtaining the decisions for specific primary signals plays

an important role since it can be used to increase the sensing performance at the fusion center. Thus,
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the most appropriate SUs among the others which have better DℯT probability by considering a

given FAs probability in a region must be given the opportunity to participate in the DCoS. In the

UWCD scheme, the appropriate cooperating SUs raise the probability ofDℯT and minimize the total

error probability for the SU, and thus improve the total throughput of the network. In addition, it

provides sufficient protection to the PUs in terms of interference in the network. A set of secondary

users selected Se(SUi) from the rest of the secondary users SUj in the decision-making procedure

can be numerically shown as:

Se(SUi) =
n
∑

i=1

k
∑

j=1

SUj −SUi (12)

subject to:

SUi ⊆ SUj ∈ Ri(Ci) < Rn (12a)

SUi ∈ Iℯst
(

H1

∣

∣

∣H0

)

� 1 (12b)

ρℯSUi(Ci) < δ (12c)

SUk ∈ Ipr

(

H1

∣

∣

∣H0

)

= 0 (12d)

SUi

(

H1

∣

∣

∣H0

)

≤ τs < τ (12e)

Constraints in (12a) state that the selected secondary users are less than the total number of

secondary users involved in the sensing process for the distinct channels in a region in the network.

Constraints in (12b) guarantee that the selected secondary users perform the best (I
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ℯst) in terms of

channel detections with low error probability (δ) is satisfied by Equation (12c). Constraints in (12d)

state that the secondary users with poor detection probability (Ipℴℴr) are removed from the channel

detection group in the network. Constraints in (12e) make it sure that the selected secondary users

detect the channel in predefined time intervals (τs).

3.2.4. Sensing Overhead at the Fusion Center

The local sensing and data reporting to the fusion center spend a notable amount ofSUs energy in

the MCASNs. In this respect, the limited sensing information by following certain criteria or constraints,

which avoids unnecessary or uninformative data reporting can significantly improve energy efficiency

in cooperative detection in the MCASNs. Realizing the facts, the proposed scheme employs a few

sensing bits from each neighboring so that SU is reported to the requested SU in the MCASNs. This

notably reduces the average number of sensing bits reported by the selected neighboring SUs to

the fusion center in the MCASNs. In the proposed scheme, each SU after capturing the primary

signal sample computes its energy and detects the presence or absence by comparing with the defined

threshold value. Then, a one-bit decision 0 for idle and 1 for active with the channel information is

sent to the fusion center. However, if no decision is made by the neighboring SU then it simply drops

the request without reporting the fusion center. The excessive number of SUs with no reply may

degrade the false alarm probability but the reported local decisions are significantly reduced in the

proposed scheme, which saves energy, latency, and processing time consumed in the decision-making

process. However, after predefined iterations, if there is no reply for these SUs in the specific time

intervals then they are removed from the channel detection and reporting group list by the fusion

center. Consequently, the fusion center combined the neighboring SUs information and computes

the combined likelihood ratio like in a Neyman-Pearson test (T ) to make the final decision on the

presence or absence of the primary signals which can be numerically indicated as
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T (y) =

SUn
∏

i=1

ρ
(

xi

∣

∣

∣H1

)

ρ
(

xi

∣

∣

∣H0

)

H1

R

H0

ℵ (13)

in which SUn shows that there are n number of SUs and the observations at each SU are indicated

by xi such that i = {1, 2, 3, . . .SUn} at the fusion center y such that y = {y1,y2,y3, . . .SUn−k} and

ℵ is the defined threshold value. This mechanism guarantees the target probability of false alarm while

maximizing the probability of detection when making a global decision for the presence or absence of

the PU on a channel in the MCASNs. To further enhance the probability of detection, the fusion center

adds only those SUs in a group whose detection probability are higher than others above the defined

threshold. The fusion center periodically computes the detection probability of each SU based on its

measurements in different rounds and updates its table. Thus, a fewer SUs with the highest detection

probability sense and provide the most accurate results with reduced sensing overhead in UWSNs.

3.3. Underwater Acoustic Channel Assignment Algorithm (UWCA)

The SUs for a channel Ci sense the temporal non-existence of the PUi and find this channel busy

if occupied. The SUs must leave the detected channel Ci and immediately switch to an alternative

channel Cj by identifying the spectrum holes for transferring packets in UWSNs. The spectrum

detecting approaches to find vacant spectrum bands can be categorized into a cooperative (CoS)

and non-cooperative (NCoS) in UWSNs. In the CoS approach, the secondary users sense the vacant

channels and cooperate closely with the neighboring secondary users to make the decision for the

vacant channels in the network. In the NCoS, a secondary user makes the local decision for the vacant

channels based on its own spectrum measurement in the UWSNS. The cooperative sensing can be

individual (ICoS) or group-based (GCoS) sensing. In the ICoS mechanism, some randomly selected

ASNs monitor the data transmission activities of a specific channel independently. By contrast, in the

GCoS approach, a set of predefined ASNs is assigned to monitor the activities of a channel in a group.

Consequently, the cooperative sensing based on the architecture can be divided into two types, namely

centralized cooperative sensing (CCoS) and decentralized cooperative sensing (DCoS) [38]. In the

CCoS approach, SUs for a channel Ci sense the temporal nonexistence of the PUi and send their

local observation data to a specialized fusion center, which combines the received channel results and

decides the use of the channel Ci for packets transmission. The specialized fusion centers periodically

forward the local decision updates to neighboring specialized devices since they are aware of the

existing vacant channels at any given time.

Thus, the key aim of the specialized devices is to allocate vacant channels efficiently to SUs with

least information message-sharing in the UWSNs. On the contrary, in the DCoS approach, secondary

users sense the vacant channels and cooperate closely with the neighboring secondary users and make

the decision without using the centralized device for the vacant channels in the network. The CCoS can

considerably intensify the systems aptitude in identifying and evading the PU signals in the network.

However, it faces several issues such as high information exchange overheads and particular region

cut off issues due to a single expert device failure, and overall network deployment cost due to the

high price of these controllers. Thus, it could not be the best choice for the UWSNs. In this respect,

the DCoS approach due to its flexibility in deployment for autonomous decision making seems to

be the best choice for UWSNs. In DCoS, a set of SUs without the coordination of the centralized

expert devices locally detects the PU signals and maintains the spectrum information to make the

decision by itself. In the proposed scheme, the DCoS overcomes the drawbacks of CCoS, but the

sensing capabilities of SUs in DCoS are usually limited due to software-defined hardware limitations

such as low computation, signal processing, memory, etc. The DCoS is further divided into restricted

spectrum sensing (DRS) and whole spectrum sensing (DWS) [39].

The DRS allows secondary users to sense for the vacant channels in a specific region. Although,

secondary users sequentially sense the specific region for available channels might raise the probability
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of detecting an available channel more quickly. However, the possibility of finding a poor capacity-aware

channel with high interference also arises that affects the neighboring ASNs leading to low link qualities

in the network. This results in packets loss, significant delay and degrades secondary users’ throughput

in the network. On the contrary, the DWS allows secondary users to allow to sense the whole region

for the desired channel instead of sensing the specific region. Compared to DRS, the DWS in the

proposed scheme increases the chance of finding high data rates channels at low interference, sensing

overheads and latency due to allowing variousSUs to sense different channels concurrently in UWSNs.

Consequently, there are three types of channel assignment mechanism for multichannel schemes,

namely static channel assignment (SCA), dynamic channel assignment (DCA) and semi-dynamic

channel assignment (SDA) in UWSNs. In SCA, the acoustic environments such as interferences, data

traffic pattern, etc., are generally known [40]. The protocols based on SCA mechanism usually assign

channels for long durations relative to the channel switching time or permanently relative to the

acoustic interfaces in the network. The static channel assignment is easiest to implement and beneficial

to delay-sensitive applications since it avoids additional switching delay during data communication

in the network. This type of channel assignment offers several advantages such as low complexity and

overhead in the network. However, it is not suitable for the applications whose links are varied and

data traffic is unknown due to highly dynamic UWEs.

In UWSNs, the data traffic passing over an ASN differs based on its location along a data path.

Generally, the ASNs closer to the sink convey more packets compared to the sensors that are far

away. Therefore, data reliability is one of the main requirements for various underwater monitoring

and control applications. The static channel assignment mechanisms in underwater suffer from link

burstiness due to high interferences and channel variation in the network. This result in packet loss

between a sender and receiver for long time intervals, resulting instability and severe communication

delays in the scheme. This issue becomes more severe when routing topology varies dynamically.

Thus, the SCA limits channel utilization and cannot provide data reliability in the underwater. To this

end, the DCA is introduced to mitigate the impact of the interference on the link dynamics due to

acoustic channel variations and channel traffic changes in the underwater. The DCA allows the channel

assignment schemes to allocate channels with more accurate decisions to secondary users. The DCA

provides high throughput in harsh nature dynamic underwater environments. However, it is with

the expense of freshness of the data delivery and overhead due to very frequent channel assignment,

typically before each transmission. The SDA approach takes the advantages of both static and dynamic

channel assignments and provides better trade-off between low overheads and traffic changes with

high adaptation to channel variety in the proposed scheme. In this mechanism, the channels are

assigned periodically or based on events in the network. Generally, high capacity links with low

interferences are allocated statically to the sensors closer to the sink that have the heaviest traffic loads

in the network.

The rest of the available channels are allocated for other sensors to pursue a dynamic channel

assignment. The semi-dynamic mechanism due to its adaptability to links dynamics, data traffic

variations, and interferences while managing the long switching latencies provides a high throughput

for delay-sensitive underwater events monitoring applications. To this end, the key objective function

of UWCA algorithm can be numerically indicated as

φUWCA(2) =

|n|
∑

i=1

max
i

(Cu + Tp) + min
i

(

Intf +Pℯr + Ct
)

(14)

In the proposed scheme, the PU activity information can provide an opportunity to SUs for

their reliable data transmission in the network. Therefore, the statistical model of the PUs behavior

must be simple enough that describes precisely how the PUs are envisioned to operate in the network.

The widely considered model that accurately describes the behavior of the PU in an ON–OFF model.

In this model, there exist two states, namely ON state and OFF state are used to describe the activity of
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each channel, indicating the channel is occupied by a PU and the channel is idle, respectively. The

SU can use the oFF period of the PU channel to transmit its own data in the network. However, if the

OFF period of the PU channel is too small then the spectrum state may not change for the SUs due to

not utilizing the channel in case the primary user is absent. Generally, the exponential model provides

a good approximation to measure the duration of the PU states. In this model, the durations of both

ON and OFF periods is considered as exponentially distributed and independent with means 1/Idℓℯ
and 1/Busy, respectively. The PDF function for both ON and OFF states is numerically computed as:

FBusy
(t) = aℯ−a(t), t ≥ 0, (15)

FIdℓℯ(t) =
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in which a and
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represent the behavior of the PU transition rate from ON state to OFF state and

from OFF state to ON state, respectively. The channel steady state probability for both the busy and

idle can be numerically computed as:

ρ(Busy) =
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ρ(Idℓℯ) =
a

a+
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in which ρ(Busy) and ρ(Idℓℯ) indicate the busy probability and idle probability, respectively. In the

channel-modeling problem of the designed scheme, a suitable channel Ci from the available channel

list Cn is occupied by each secondary user SUj opportunistically when a PUi goes silent for τoff

seconds in order to maximize the total channel utility in UWSNs. In the designed mechanism, the

impact of the noise factor (No) on the channel selection in a specific time τi interval in the underwater

environments is computed as:

No =
n
∑

i=1

(ANo +MNo +TNo +NNo)
τi (19)

in which TNo,ANo, +NNo andMNo are, the thermal noise, the acoustic channel noise factors due

to signal internal interferences, nature noise contains factors like seismic, rain, wind and marine

animals, and man-made noise like shipping and a motor on a boat in the UWEs. All these factors

affect the acoustic signal, which results in reducing the signal quality in UWSNs. In the underwater

environment, the signal strength of association between each secondary user SUj and, primary or

secondary user
(

PSj
)

is highly correlated to the capacity of data transmission of a channel (Ci) in

the network. However, occasionally it leads to power spectral density
(

Spd

)

issue in the network.

Therefore, the effect of Spd during a channel assignment process is considered as interference for

neighboring secondary users in the network. Consequently, a SUj during the channel assignment

process finds a free channel can only transmit events related information by following the transmission

power consist of a feasible range Tp(n) =
{

Tp1,Tp2, . . . ,Tp(i)

}

numerically shown as:

Tp(n) =
n
∑

i=1

Tp(Ci), Tp(Ci) ≤ Tp(thrℯshoℓd); (20)

subject to:

0 ≤ Tp(min) ≤ X·Tp(Ci)l ≤ Tp(max) ≤ 1 X ∈ {0, 1} , l ∈ L (20a)

Tp(rec)(Ci) =
Tp(tra)

Tp(A)N f (Ci)

∣

∣

∣G(Ci)

∣

∣

∣

2
(20b)
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0 ≤
∑

l∈Lout
i

Tp(l) ≤ Tp(max), l ∈ L (20c)

Tp(ECS)
=





















∑

l∈Lout
i

Tp(l) +
∑

l∈LIn
i

Xl·Tp(rec)





















.τs, l ∈ L (20d)

Btry(τs + 1) = min
{

Bmax, max[Bout,Bi(τs) +Ri(τs) − Ei(τs)]
}

τs ∈ τ (20e)

τs ≥ 0 1 < τs < τ (20f)

Tp ≥ 0 1 < Bout ≤ Bmax (20g)

X ∈ {0, 1} (20h)

Constraints in (20a) show that the transmission power for each ASN cannot exceed Tp(max) in the

network. Constraints in (20b) indicate the received power
(

Tp(rec)

)

for a particular channel Ci with

single radio power transmitting antenna Tp(A) in the network. In which Tp(tra),N f (Ci) and G(Ci) are,

the transmission power, the number of frequency channels and channel gain in the UWEs. Constraints

in (20c) satisfy the transmission power constraint due to several potential outgoing links at acoustic

sensor node i in the network. Constraints in (20d) are the energy consumption (ECS) constraints during

a time slot at acoustic sensor node i in the network. Constraints (20e) verify the residual energy of

each ASN at the end of time slot τs is since the energy level is constrained between battery outage

(Bout) and maximum battery power (Bmax) in the network. Where the Bi(τs), Btry(τs + 1), Ri(τs) and

Ei(τs) are, the remaining energy of each ASN at the beginning, the remaining energy of each ASN at

the end of time slot τs, the rate of energy replenishment that changes dynamically and initial battery

power. Constraints in (20f) to (20h) support constraints from Equations (20a) to (20e). Thus, the high

transmission power above the defined low transmission level notably minimizes the effect of Spd for

MCASNs in the UWSNs. Note that the Tp(max)(Ci) = Tp(thrℯshoℓd)(Ci) is the condition when a

secondary user may forward the events information over an allocated channel by using the maximum

transmission power when all neighboring nodes go silent in the network. Consequently, by considering

the defined transmission power level the SNRmust be greater than the defined threshold level (Tsnr)

in order to decode received signal correctly can be numerically indicated as:

SNR(PSj) =
Tp(tra),(PUi , PSj)G(Ci)

l

No +
∑

k,m,i, j Tp(PUk, PSm)
≥ Tsnr (21)

In which G
(Ci)

l is the channel gain of a link ℓ between PUi and PSj in the network. In addition,

the capacity of carrying events data (Dc) of a channel Ci , i.e., Ci ∈
∑

{C1,C2, . . . ,Cn } is one of the

main criteria to satisfy the constraints of the events monitoring in UWSNs. Therefore, the constraints

on data transmission with different rates (Dr) depends on the transmission power and frequency

channel selection of a SUj in the network. This can be computed numerically by using Equations (22)

and (23) as:

Dr(Ci) = Bℓlog2















1 +
G
(Ci)

l Tp(Ci)

No















l ∈ SUj , PSj ; Bℓ ∈ N f (Ci) (22)

Accordingly, when Tp(max) is used, the corresponding maximum data rate is:

Dr(max)(Ci) = Bℓlog2















1 +
G
(Ci)

l Tp(max),(Ci)

No















l ∈ SUj , PSj ;Bℓ ∈ N f (Ci) (23)
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in which theBℓ is the bandwidth of a link ℓ betweenSUj andPSj in the network. Thus, by considering

the above data transmission rates with high transmission power, the average throughput
(

Thp

)

of the

ith channel Thp(Ci) during sensing time τi from the total sensing time slot τ is computed as:

Thp(Ci) = ρ(H0,Ci)

(

1− ρ( fa, Ci)
(τi , σ)

)

+ ρ(H1,Ci)

(

1− ρ(d, Ci)
(τi , σ)

)

(24)

However, this high transmission power significantly improves the data transmission rate to a

faraway distance in the network. However, it brings severe interference to neighboring sensors in the

UWSNS. This interference
(

Intf

)

constraint due to high transmission power in the underwater can be

computed by using the follow Equation (25) as:

Intf(cℴns) =
n
∑

i=1

m
∑

j=1













Tp(SUj) ·
∑

Tp((PSj))·G(SUj , PSj)













Ci

(25)

and the interference range of a secondary user RInt f

(

SUj

)

numerically written as:

RIntf

(

SUj

)

=
n
∑

i=1

m
∑

j=1

PUi, Pℓℴss(dmax)

SUj,Pℓℴss(d) +BIntf p(max)( Ci)
(26)

The SU by using signal level measurements must estimate the interference level, it creates at

the PU receivers during continuous transmission in UWSNs. The SU and PU could transmit data

simultaneously only if they are far from each other and have low interference effect computed by

the signal-to-interference ratio (Sir) in the UWSNS. The interference range based on the minimum

distance (D) information between the SU transmitter and PU receiver away from each other can be

computed as:

Sir(D ) =
P
′

PUi
·G

(Ci)
l

(

d
′

1

)

P
′

SUj
G
(Ci)

l

(

d
′

2

)

+P
′
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(27)

in which d
′

is the distance between transmitter and receiver acoustic nodes, P
′
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at the primary receiver

P
′

PUi
and P

′

SUj
is the power of background interference, d

′

1
is the distance information of a PU

located away to thePU transmitter and d
′

2
is the distance information of a secondary user located away

to the primary user receiver in the network. The SU must be capable of detecting the PU transmitter

signals within the range of d
′

1
+ d

′

2
, which translates to a sensitivity constraint for the secondary

user detector to prevent harsh interference from the primary user receiver in the network. Thus, to

protect the active PUs for their reliable events data transmissions to neighboring SUs over a channel

Ci , the interference constraint from all opportunistic transmissions must not exceed a predefined

tolerable threshold in the network. It is assumed that each SUj selects an appropriate data capacity

channel from the existing channel list i.e., SUj(Ci) ∩ PSj(Ci) = ∅, i.e., f
(

SUj

)

+ f
(

PSj
)

≤ 1

in which f
(

PSj
)

= 1/
∑

{Cn } and f
(

PSj
)

= 1/
∑

{Cn−1 } for
{

f ∈ Cn
}

is the normalized frequency

bands allocated to a set of distinct acoustic sensors in the network. Thus, for each secondary user,

the constraint is to limit all neighboring acoustic sensor nodes of a secondary user for using different

spectrum channels for avoiding the interference effect in the UWSNs, which are satisfied by the

constraints in Equation (28) can be numerically written as:

Intf =
n
∑

i=1

m
∑

j=1

G
(PUi , PSj)

Ci ≤ TIntf(PSj )
≤ 1 , ∀ PUi ∈ Cn (28)

subject to:

Int

(

PSj(Ci)
)

∈ Ri ≤ Intf(τs) < 1 (28a)
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Etn

(

PSj
(

Cj
))

∈ Rj ≤ Intf(τs) < 1 (28b)

Int

(

PSj(Ci)
)

∈ Ri
∣

∣

∣Rj ≤ Intf(τs) ≤ 1 (28c)

Etn

(

PSj(Ci)
)

∈ Rj |Ri ≤ Intf(τs) ≤ 1 (28d)

Int

(

PSj(Ci)
)

∈ Rj ∪Rj ≤ Intf(τs) ≤ 1 (28e)

PUi ∩PSj(Ci) ∈ Ri ∪Rj , Ci (28f)

PUi ∩PSj(Ci) ∈ Ri ∪Rj = Ck, Ck ⊆ Cmax (28g)

∀ℓj(Ci) ≤ Ck ≤ 1; ∀ PSj ∈
(

Ri ,Rj
)

, ∀ℓj ∈ L (28h)

ℓj(Ci) > 0; Ri ∪Rj ≥ 0; Intf ≥ 0 (28i)

τs ≥ 0 ; 1 < τs < τ (28j)

Constraints in (28a) and (28b) ensure that the internal ( Int) and external (Etn) interferences

of the primary or secondary users belong to a different regions Ri and Rj using different frequency

channels Ci and Cj at time τs is less than the defined threshold level. Constraints in (28c) and (28d)

guarantees that the Int and Etn of the primary or secondary users belong to the different regions

Ri or Rj using the same frequency channels Ci at time τs must be less than the defined threshold

level. Constraints in (28e) state that the Intf for the primary or secondary users belong to a region

Ri or Rj using the same frequency channel at time τs must not be greater than the defined threshold

value. Constraints (28f) is the supporting constraints for (28e) guarantees that at the same time τs

primary and secondary users in a region Ri or Rj cannot use the same channel Ci to avoid harmful

interference while the constraints in (28g) confirm that different channels are assigned to each primary

and secondary users in the network. Constraints from (28h) to (28j) are the supporting constraints for

Equation (28a) to (28g). Further, to maximize the channel utilization with minimum interference effect

during channel selection in a region Ri in UWSNs. Considering the interference issues, the maximum

utility for each user’s channel selected for the information transmission is computed numerically in

Equation (29) as

Ut = max
Ut(SUj)·(Ci)

n
∑

i=1

φSUj
·µ
(

ϕ
SUj

Ci

(

Ut(SUj)

)

)

(29)

This maximum utility function, i.e., φSUj

(

ϕ
SUj

Ci

)

= φSUj
log
(

1 + ϕ
SUj

Ci

)

is assumed to be

proportional to the Shannon capacity biased by priority parameter φSUj
of the secondary user SUj

by using channel Ci in the network. As stated above, to achieve a longer idle probability for SUs, the

desired channels are assigned by considering the previous channels history values saved in the channel

table. The proposed scheme to achieve high throughput and data rates for longer time, arranges the

channel information in the table in a systematic manner. In fact, it sorts channels in a way that a

channel with high achievable throughput and data rate available for a longer time has high priority in

the channel table. The priority of the channels periodically monitors and changes in each round of the

data transmission in the network. Consequently, the primary users channel history PC(h) based on the

sensing results is maintained by each secondary user node SUj with a predefined priority (pi) in the

underwater, which can be estimated as:

PC(h)

(

SUj

)

=
n
∑

i=1

ℓ
∑

k=1

pCi (PUi)
h(k) (30)

On the other hand, during the time τi the channels stored with decreasing priority in a PSj
sensor’s channel table is numerically estimated by using the following Equation (31):
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PS
h(k)
j

=
n
∑

i=1

ℓ
∑

k=1

(PUi)
h(k) (31)

The volume of channel history data stored (Ds) in the channel table of a secondary user at a given

time τi is numerically indicated as:

Ds

(

SUj

)

=

τ0
∑

i=0

Ds

(

SUj

)Ci
(τ)dτ (32)

In the proposed scheme, a primary or the secondary user sensor may share information to its

single hop neighboring sensors and sense the entire region only in a case where the desired capacity

channel is currently occupied or does not have desired capacity channel information stored in the CIT.

Consequently, at each iteration of the negotiation procedure, the sensor’s CIT is periodically updated

in the MCASNs. In the proposed scheme, we employ First in First Out (FILO) policy to avoid the

management complexity of the events data in a channel information table (CIT). Thus, a channel that

is not used in a predefined time is substituted with the new one in the channel table of a primary

or secondary user as shown in Figure 4. In addition, a PU channel with poor data transmission

performance is blocked by the SU for a defined time interval to provide the opportunity of data

transmission for other SUs as revealed in Figure 4. It dipicts that the PU9 channel is blocked for

a predefined time and assigned a lower priority in the CIT since it performs poorly in transmission

performance in the UWSNs. Consequently, the probability of ideal channel availability for a secondary

user based on the previous channel history between the time τi and τj for τk time can be computed as:

ρCi
available

(

SUj

)

= 1− ρCiτℴn→o f f
(PUi) (33)

Thus, the designed scheme saves a notable amount of spectrum re-sensing energy by avoiding the

data packet collision due to assigning a longer idle channel between the PUs and SUs in the UWSNs.
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Figure 4. Channel information updating process.

3.4. Packets Forwarding Scheme (UWPF)

Recently, the designed packets forwarding schemes during packets forwarding prefers to select

the shortest forwarder node along a routing path (see Section 2 for details). However, the shorter

distance routing mechanism cannot perform well since it increases the number of switching channels

in MCASNs. This increases the residual energy consumption and the probability of packet loss at
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each hop due to high packets collision caused by message overheads in the channel assignment

process in the network [24]. In addition, shortest path routing increases the probability of congestion

occurrences when the offered data traffic load rises above the node’s current buffer capacity in

UWSNs. Therefore, the buffer occupancy frequently needs to be monitored in order to detect incipient

congestion in the network. In addition, the number of hops the packets travel also must be reduced

to minimize routing delay and improve the data delivery ratio in the network [26]. To this end, the

designed packets forwarding scheme consists of four main phases, namely (i) neighboring discovery,

(ii) route construction with optimal forwarders, (iii) reliable packets forwarding process and (iv) routes

reconstruction procedure in UWSNs. In the proposed mechanism, if an ASN has packets to forward

via multi-hop communication to the sea surface sink, it appoints the next-hop forwarder ASNs based

on its local knowledge which depends on various parameters of the neighboring relay ASN in the

network. The key aims during the packet forwarding procedure, including maximizing the packet

delivery ratio (Pdr), minimize the congestion
(

Cℴnℊ

)

, latency (Dℯℓ) and load balancing (L
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UWSNs. In this respect, the key objective function of the packets forwarding
(

φUWPF(3)

)

algorithm is

numerically indicated as:

φUWPF(3) =

|n|
∑

i=1

max
i
Pdr + max

i
L
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+ min
i
Cℴnℊ + min

i
Dℯℓ (34)

3.4.1. Efficient Neighboring Discovery Process

In this phase, initial neighboring information tables are constructed, which are used in the

routing phase where different data paths are selected in the final routing tables based on the priority

of data-forwarding nodes. The neighboring discovery process finds and maintains the updated

neighboring ASNs information for each ASN in UWSNs. Initially, a remote user initiates the

neighbors finding process by forwarding a network initialization (ini_msℊ) message to the sea

surface sink. Upon receiving the ini_msℊ message, the sea surface sink broadcasts neighboring

discovery (nℯℊ_msℊ) message to randomly deploy acoustic nodes in its communication range with

the following values: the sink identity, level number and location information with the angle of packet

departure in UWSNs. An acoustic node closest to the sink receives the nℯℊ_msℊ message successfully,

sets the layer number to maximum n, which infers that it has a direct contact with the sea surface sink.

Then, each ASN creates a new record entry for neighboring sink and computes the distance to the

sea surface sink of itself and stores this information in the neighboring information table. The ASNs

directly received the nℯℊ_msℊ messages from the sea surface sink are marked as level n. This level

is periodically decreasing in the downward direction for the nodes located in the lower layers such as

n− 1, n− 2, etc., and reaches to 0 as shown in Figure 5a. After updating the sink record, these ASNs

rebroadcasts the nℯℊ_msℊ message to their neighbors within their transmission radius with the

following values: the sender identity, current channel, remaining energy, level number, position, angle

of departure and distance to the sink. Upon receiving the nℯℊ_msℊ message correctly, each ASN

creates a record entry for new neighboring ASNs then computes the distance to the sender of itself,

angle of packets arrival, level number, and stores the entire received information in the neighboring

information table. This procedure is repeated until each ASN has its neighbors information stored

in the routing table. During each message exchange process, the receiver acoustic node sends an

acknowledgment message to the sender using the CSMA mechanism to ensure the guaranteed delivery.

Thus, the communication links between acoustic nodes are bidirectional tested in UWSNs. At this

stage, each acoustic node is aware of its neighbors deployed for events monitoring in UWSNs.

3.4.2. Routes Construction with Optimal Forwarders

The route construction process starts from the source node have packets to convey to the sea

surface sink. To do so, the source node by considering the local records sends the route discovery
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(rdis_msℊ) message to its neighbors with the following values: the sender identity, current channel,

remaining energy, level number, position with the angle of message departure and distance to the sink.

Upon receiving the rdis_msℊ message successfully, each ASN computes and updates the distance

to the sender of itself, angle of packet arrival, level number in the routing table. The receiver node

compares its own distance and the sender distance to the sink. Then, it sends its own information of

sender identity, current channel, remaining energy, level number, position with the angle of message

received with value 1 only if its distance to the sink is lower than the sender, otherwise it is 0. The

receiver node also computes the priority of the sender node and updates in the routing table with

decreasing priority. In fact, this priority is important for sender since it will be used during reverse

routes finding towards the data source. Upon receiving the reply (rℯp_msℊ )message correctly, the

source node computes the angle of packets arrivals and updates the sender’s received information

with a priority in the routing table. Usually, a candidate with high residual energy, lower distance to

the source node and sink is given high priority in the routing table. Consequently, the priority of each

neighboring acoustic node in both upwards and downwards direction is updated in the routing table.

In addition, the forwarding candidates with the same level n and being equal to the sink have the

intermediate priority in the routing table. The forwarding candidates with the lowest level (n−k)

such that k ∈ {1, 2, . . . ,n} and long distance has the lowest priority in the routing table since they are

far away to the sea surface sink.

The intermediate and lowest priority forwarding candidates are selected as forwarding candidates

only if a suitable forwarding node is not found in the transmission range of the source node in the

network. Both the intermediate and lowest priority candidates are usually called helpers or guide

nodes in the network. Thus, a node with the highest priority in the routing table is selected as a potential

forwarder to relay information of the source node towards the sink. The higher the priority, the shorter

is the time for data to reach the sea surface sink. In the packet forwarding process (see Section 3.4 for

details) it is also possible that a huge volume of events data is moved over a particular forwarder result

in packets overflow problem due to the limited buffer size. Therefore, after a predefined iteration, a

new parameter called buffer overflow time is included in the priority list of each potential forwarder

to avoid congestion in UWSNs. To prevent congestion occurrence, each forwarder node monitors its

buffer occupancy level periodically since it is gradually filling up. The congestion is detected once

the buffer occupancy exceeds a predefined threshold value in the network. Then, the congestion

avoidance procedure begins, which is based on diverting the incoming data traffic to the other available

forwarding candidates towards the sea surface sink. This reduces packets loss rate and thus help to

maximize the overall packet delivery ratio in the network. During each message exchange process,

the receiver acoustic node sends an acknowledgment message to the sender to ensure the guaranteed

delivery. Subsequently, the route discovery process at each hop follows the same previous procedure

until the forwarding candidate closer to the sea surface sink is found to convey packets. In the worst

case, if a suitable packets forwarder is not found in the sender’s communication range in upward

direction then it sends rdis_msℊ to the same or lower levels neighboring candidates. Upon receiving

the rdis_msℊ, each receiving acoustic node located on the same or lower levels marks itself as a

helper node. The more potential helpers in the same or low level increases the opportunity to find a

relay node with the highest priority on the network. The receiving node repeats the same aforesaid

procedure to find the most appropriate forwarder towards the sea surface sink.

Finally, the route discovery message is delivered to the sea surface sink, which sends anack_msℊ

message to the downstream senders, including the identity of each forwarding relay node which is

delivered to the source node. An acoustic relay node that receives an ack_msℊ message from the

sea surface sink first it checks and decides either it was the selected next-hop forward along a distinct

routing path in the upstream direction. If this is the case, the relay node confirms that it is on the

reverse path to the source node and marks itself as a reverse forwarder candidate in the network. Then,

the forwarder candidate updates its records and after setting the priority in the routing table forwards

the received message to its downstream link candidates located on the lower levels. In this way, the
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reverse route construction information is propagated by each relay node until it reaches the data source

node in the network. Finally, this process finds reverse paths with guaranteed upward routing paths

from the source to the destination. In this entire process, if a receiver candidate receives the same

request messages multiple times from the same sender node, the destination node shall only reply

to the first received request message and neglect others. In addition, each forwarder maintains two

tables of best forwarding candidates upwards with high priority and downwards with low priority,

respectively. This entire mechanism ensures that the packets will travel over a set of optimal forwarders

with the appropriate distances before getting to the sea surface sink. The packets forwarding along a

restricted narrow pipe like routing path by considering the acoustic nodes minimum angle information

significantly minimize the average routing path length as shown in Figure 5a,b. Thus, a set of high

quality routes from source to the destination are constructed in both upward and downward directions

for reliable data transmission in the network. Thus, the chance of data path loops and congestion

occurrences are reduced notably in the network.
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3.4.3. Reliable Packets Forwarding Process

At this stage, each source node has the multiple constructed data paths information towards the

sea surface sink. The source node selects the best path among the available and sends a ready data

(rℯ_data) to neighbors and the potential forwarder, so that it can tune its channel to the requested

one for receiving data packets. The rℯ_data message includes the sender identity and channel

information. This mechanism avoids excessive acknowledgment message sharing to the individuals

and thus minimize energy consumption, but also provides information to neighbors about the usage of

an occupied channel in the network. The packets transmission begins as soon as the acknowledgment

message is received from the receiver in the network. This procedure repeats at each hop until the data

packets are successfully delivered to the sea surface sink. After receiving the packets, the sink sends a

confirmation message to the senders in the reverse routing path to notify the source node that its data

has been received for further processing and sent to a remote user in the network.

In addition, the similar procedure is repeated in the reverse packets forwarding from the sink

towards the source node in UWSNs. Thus, the entire data packets are greedily forwarded to the

neighbors’ relay candidates closest to the destination in a multi-hop manner. Finally, the entire gathered

data is upload from the source to the destination over the best upstream and downstream multi-hop

links over a set of best forwarding nodes, which numerically can be expressed as:

Di→j = D(i,Sink) −D
(

(j)rℯℓay,Sink

)

≤ 1 ∀ i,jrℯℓay ∈ Sink (34a)

Dj→Sink
= D

(

Frℯℓay{((j,k)⊆n)}

)

> Dmin && ≤ Dmax ∀krℯℓay ∈ Sink (34b)

Dj→Sink
= D·Frℯℓay(n) ∈ Upstrℯam ∀Frℯℓay(n) ∈ Sink (34c)

DSink→i = D·RFrℯℓay(n) ∈ Dℴwnstrℯam (1q) ∀ BFrℯℓay(n) ∈ i (34d)

Dsum =
∑

j∈Frℯℓay>1

Dj→Sink

(

Frℯℓay(j)

)

≤ Frℯℓay(max) ∀jrℯℓay ∈ Sink (34e)
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Constraints in (12b) guarantee that the selected secondary users perform the best (ℐ�ℯ��) in terms of 
channel detections with low error probability (�) is satisfied by Equation (12c). Constraints in (12d) 
state that the secondary users with poor detection probability �ℐ����� are removed from the channel 
detection group in the network. Constraints in (12e) make it sure that the selected secondary users 
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ackℴff +Frℯℓay + tack ≤ 1 ∀LASN(i,j) ∈ Sink (34k)

Constraints in (34a) state that in single-hop packet progress, the Euclidian distance (D) of next-hop

forwarder j receiving data packets from an acoustic node i must be less than the sender to the sink.

The constraints in (34b) states that the forwarding node distance must be greater than the minimum

(Dmin) and less than maximum Euclidian distance (Dmax) in the network. Constraints in (34c) show

that the maximum and minimum distance information of the forwarders during data transmission is

bounded to the upward directionUpstrℯam towards the sink. Similarly, the constraints in (34d) verify

that the message forwarding from the sink towards the source node i in the reverse forwarding nodes

RFrℯℓay(n) is bounded to downward direction (Dℴwnstrℯam). Constraints in (34e) guarantees that

the number of forwarding nodes cannot be higher than the defined maximum forwarding nodes
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Frℯℓay(max) along a routing path towards the sink. Equation (34f) indicates the probability of a packet

drop ρb(pd(i)) in the ith queue of a forwarding candidate along the selected routing path RPi in

the network. In Equation (34f), the ρb(pi(i)ini) and Qvi are, the initial packet loss probability and

the level of variation in the length of the ith virtual queue can be determined using Equation (34g)

and Equation (34h), respectively. The expression
∑n

j=1 j
(

Qj

)

/Qℓ indicates the used queue space of a

forwarding candidate in the network. The β1, β2, Qj , Qℓ are, the constant depends on the variation in

the length of the ith queue, the queue capacity constant defined by the user, the number of packets in

the jhe queue and maximum queue length ℓ of a forwarding node in the network. TheN(j)2 and

iQi in Equation (34g) are, the number of node’s neighbors and queue length of ihe forwarding node

in the network. In Equation (4a), the Qnℯw
i

and Qoℓd
i

is the ihe queue length in the ihe flow in the

present and previous calculation in the network. The Equation (34f) is basically used as a congestion

indicator at each hop along a routing path from the source towards the destination in the network. The

congestion indicator values vary between 0 and 1 for each node in the network. The constraints in (34h)

and (34i) indicate that the congestion indicator values always must be less than 1, which means that

the queue length is suitably managed when the senders sending the packets. On the contrary, if the

congestion indicator value is equal to 1 it means that the queue length of a forwarder is not suitably

managed and continue receiving packets from the neighbors will lead to packet loss due to buffer

overflow. Thus, before reaching the defined threshold, the priority value of the congestion is decreasing

at each forwarding node, which prevents the packets from being dropped. Constraints in (34j) indicate

the expected delay from relay node j towards the Sink is computed by the average remaining hop

countsAvℊ()rℯℓay along a routing path in the network. All above constraints guaranteed that the

data path loop does exist along a routing path during the packets transmission in both upward and

downward directions in the network. Constraints in (34k) show that the back off time to acquire the

channel
(

t
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ackℴff

)

for finding an appropriate forwarding relay node
(

Frℯℓay

)

and acknowledgement

time (tack) for sending a data packet must be less than the defined threshold.

3.4.4. Routes Reconstruction Procedure

Generally, the forwarders switch to sleep mode if they do not have more data to transmit to the

sink. On the other hand, continue data transmission for a long time can drain relay nodes energy,

particularly for those who are nearer to the sink. Moreover, in most cases these relay nodes are facing

congestion issues because they are forwarding a huge amount of data coming from the rest of the

network. In addition, the possibility of transmission failures cannot be ignored since the wireless links

are unreliable in the harsh UWEs. In the first and last cases, if the receiver relay node did not reply to

the sender in a predefined amount of time and then it sends the request again to the sender and wait

for a predefined amount of time longer than the previous waiting time. The receiver node is declared

as an inactive forwarder if the sender did not receive any reply from the destination node. In the

second case, the congested node first set up the time and then sends a buffer overflow (Bℴf_msℊ) to

its neighbors nodes. The nodes correctly received the Bℴf_msℊ messages set the sender node buffer

overflow priority to zero and update the entries in their routing table. This means that the forwarding

node currently is not available for packets transmissions in the network. Then, the source node based

on its local information launches another route-discovery process in the affected region in the network.

In that case, the sender sends a route discovery message to the second highest priority node in the

routing table in the upward direction and waits for the predefined time.

The packets transmission begins as soon as the acknowledgment message is received from the

receiver in the network. The buffer overflow priority of the selected destination relay node is set

to one in the routing table since it is ready to receive packets. Finally, the data with the new relay

nodes information is delivered to the sea surface sink, which sends an ack_msℊ message to the

downstream senders to inform them about this new route, including the identity of each forwarding

and new selected relay node, and delivers it to the source node. Then each new acoustic relay node

which receives an ack_msℊ message from the sea surface sink first checks and decides either it was
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the selected next-hop forwarder along a distinct routing path in the upstream direction. If this is the

case, the relay node confirms that it is on the newly constructed reverse path to the source node and

marks itself as a reverse forwarder candidate in the network. Then, the forwarder candidate updates

its records and after setting the priority in the routing table and forwards the received message to

its downstream link candidates located on the lower levels. The designed mechanism by diverting

the incoming traffic to another suitable routing path provides load balancing when the offered data

traffic load exceeds the available node’s buffer capacity in UWSNs. This avoids the data packets loss in

UWSNs. During a new route discovery process, each iteration in the routing table is confirmed with

their priorities so that no lower priority candidate is selected as the next hop relay node in the network.

This entire mechanism guarantees transmission reliability even when a certain percentage of acoustic

sensor nodes die in the network.

4. Performance Analysis

The following section discusses the channels models, simulation settings and results obtained

during simulation studies.

4.1. Channel Model and Simulation Settings

In this study, we employ the widely used acoustic channel model explained in [41–43] to simulate

the dynamics of acoustic communication in UWSNs. In this model, the path loss is mainly caused by

the geometrical spreading and signal attenuation associated with frequency dependent absorption is

calculated as:

10 log A (d, f )/AO = k× 10 log d + d× 10 log a( f )d (35)

The absorption coefficient a( f ) using the Thorp’s formula [44] is given as:

10 log a( f ) =
0.11× f 2

1 + f 2
+

44× f 2

4100 + f 2
+ 2.75× 10−4 f 2 + 0.003 (36)

in which, the factors transmission loss A(d, f ) and noise level N( f ) are functions of the distance (d)

and frequency. It is worth mentioning that noise decreases with frequency and turbulence, shipping

activities, breaking waves and thermals are the primary sources of ambient noise. Therefore, the

noise that affects the underwater acoustic channel is originated from ambient and site-specific sources

which is modelled using four sources, including waves, shipping, thermal noise and turbulence,

respectively. In addition, the widely used general energy consumption model discussed in [45–47] is

employed in the proposed scheme. In fact, we evaluate the performance of QoSRP against well-known

LRP [24], QERP [26] and MERP [10] routing protocols developed for UWSNs-based events monitoring

applications in UWEs. The network simulation tools, namely NS2 and AquaSim 2.0 are used to

implement the schemes in random network topologies. During simulations, a set of 250 ASNs in a

region of size length (m) ×width (m) × depth (m) is randomly deployed to simulate the continuous

events monitoring using acoustic sensor network in UWEs. The sea surface buoys is deployed in the

middle of the UASNs. The initial energy of each ASN and sea surface sink were set to 100 J and 100 kJ

with average ocean depth is 1 mile (≈1.6 km). The beam widths of each ASN is varied between 0 and

360 degrees in each set of experiments while the acoustic communication range of the sink was 200

m. The results of the simulations correspond to an average value of 53 runs. The settings of different

parameters is given in Table 3.
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Table 3. Values of parameters used in QoSRP.

Parameters Value (s)

Channel Underwater channel
Network topology Random

Deployment area 1000 × 1000 × 500 m3

Initial node energy 100 J
Initial sink energy 100 kJ
Number of nodes 250

Cost of high transmission 1.5 W
Cost of low transmission 1 W

Cost of reception 0.75 W
Idle power 0.01 W

Data aggregation power 0.35 W
Communication range of ASN 150 m

Acoustic transmission range of sink 200 m
Spreading values 1.5

Frequency 30.5 kHz

Number of Channels
11 (30.511, 30.518, 30.525, 30.532, 30.539, 30.546, 30.560,

30.553, 30.567, 30.574, 30.581) kHz
Maximum Bandwidth 30 kbps

Packet size 50 bytes
Control packet size 5 bytes

Packet generation rate 0.01∼ 0.1 packets/s
Memory size 10 MB

Maximum sink and ASN 1 km
Antenna Omni-directional

Simulation time per epoch 150 s
Number of runs 53

4.2. Results and Discussion

In this section, the results obtained from the single channel protocols with interference are

compared with the multichannel protocol with the same interference rate of 15% (low), 35% (moderate)

and 55% (high) in UWSNs. During simulation studies, it is noticed that the packets delivery ratio is

found high in all routing protocols when the interference rate level is 15%. The interference does not

heavily affect the transmissions in a single channel protocol at the beginning as the interference is not

frequent enough, showing the average 87%, 90%, 92% reception rates in LRP, QERP and MERP in

the first 30 s as shown in Figure 6. This is because the nodes in these routing schemes have enough

time to recover from the interference through retransmissions. However, the packets delivery ratio

decreases rapidly over time when the interference level is linearly increasing from 15% to 55%. From

low to high, the packet loss increases over time and always goes up until 16%, 14% and 11% in MERP,

QERP and LRP routing protocols. This rate is found to be extremely low around 1% in QoSRP nearly

throughout the simulation period, compared to all other routing protocols in UWSNs. However, the

overall packets delivery ratio is recorded high around 89% in MERP compared to 86% and 84% in

the QERP and LRP routing protocols in UWSNs. During simulations, it is observed that due to the

presence of interference, the single-channel protocol shows deteriorate reception rate in UWSNs. The

reason for these losses is because the network is being congested with retransmission packets. The

congestion management profile of each routing protocol is shown in Figure 7. It indicates that the

congestion management efficiency of QERP is higher around 90% compared to the MERP and LRP

routing protocols. On the other hand, the congestion management profile of MERP and LRP are

overlapping each other and is around 83% and 82%, respectively.
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This low packet delivery ratio is due to the method utilizing low priority channels which cannot

effectively mitigate the interference and noise effects for packets transmission in UWSNs. This level

rapidly increases up to 96% when the ASNs keeps the record around 9 vacant channels in UWSNs.

As soon as the packets reception rate is increasing, the ASN starts to block the channels that are facing

high interference and noise issues for a predefined amount of time by assigning a low priority level

in the routing table. By doing this, it ensures that the rest of the node’s listening channels are good

channels. This enables the use of all other available channels without blacklisting any channel until it is

sure that it is a bad channel through the negotiation process. Therefore, the QoSRP periodically orders

the channel based on their priority each time before making a decision on the new channel in order to

avoid the interference channel. Thus, it enhances the ability of an acoustic node to find a vacant channel

in a robust manner with higher data rates at low interference, which effectively increase the network

throughput in QoSRP around 96% compared to other routing protocols as shown in Figure 8. This is

because as there are fewer channels stored in the routing table with high priority and no interference,

some of the nodes are using the channels with extremely low interference in the same or different

regions in UWSNs. The nodes could recover from low interference and retransmit packets as the other

nodes are on the other channels, thus the nodes do not compete for transmissions on the channel.

Therefore, there is a variation of the packet reception rate, which increased over time in UWSNs.

Finally, the packets delivery ratio (PDR) rate is recorded around 99% when the maximum vacant

channels record up to 11 at each ASN in UWSNs. The key reason for this high PDR is, the secondary

users’ activities is higher during packets forwarding compared to the primary user activities for a long

time in UWSNs. On the other hand, this high PDR is also due to utilizing the most appropriate channel

to mitigate the interference and noise effects during packets transmission in UWSNs. In addition, the

other main reason for high PDR and throughput is the efficient performance of the channel detection

algorithm in UWSNs. The channel detecting probability is noticed to be high with low FAs and MeD

probabilities as shown in Figure 9; Figure 10, respectively. Thus, in all low, intermediate and high

interference cases, the channel detection probability is high for QoSRP at around 87% to 91% in both

individual and group sensing cases, even though there is interference in the network. In case of high

interferences, the QoSRP selects certain channels to change into after checking the channels’ condition

and hops to another channel quickly by efficiently detecting the primary user signals to keep the error

and loss rates to a minimum as shown in Figure 11. This indicates that the packet error rate in all

routing schemes increases with the increasing node density. The average packet error rate of LPR is

observed to be high around 10% compared to QERP and MERP recorded up to 7% and 8% in UWSNs.

Usually, QERP and MERP are overlapping each other’s and try to achieve a minimum packet error

rate in UWSNs. On the contrary, the packet error rate is noticed to be around 2%–3% in the QoSRP

routing protocol in UWSNs.

Consequently, each node has different listening and transmitting channels. When the node is

awake, it waits for the incoming packets on its listening channel. If the node has a packet to send, it will

switch to the desired capacity-aware channel based on the channel information from the neighboring

table. The channel quality table is built over time at each hop helps to learn good and bad channels

based on the previous history information of message exchange processes. The channel switching

takes at most a few milliseconds to switch to the transmission channel. The QoSRP uses a transmission

phase-lock that is based on the previous history wake up or sleep activity information of the primary

users and, therefore, the transmission node knows the receiver wake up phase. The node starts

transmitting just before the receiver is expected to be awake. The channel switching happens shortly

before the receiver is ready to receive the packets, thus the time taken in channel switching does not

affect the packet reception in the network. The node goes back to sleep once the transmission has

succeeded or reached the maximum number of retransmissions. In the next iteration, the node is reset

and wakes up on its listening channel. The channel reset is done in these cases: (i) the queue buffer is

empty, (ii) before sending the next packet from the queue buffer, and (iii) the last packet in the queue

buffer has been sent. This reset is done to avoid any delay in packet reception that could happen



Sensors 2019, 19, 4762 31 of 36

when the node is awake. In load-balanced routing, the workload is evenly distributed in the network,

which as a result, distributes the energy consumption across the nodes. The static channel-based

studies, however, do not consider the appropriate energy or the battery level as the performance metric

but instead use the node’s workload value. Therefore, they perform poorly in load balancing in the

network. This rate is found more in MERP and LRP compared to the QERP routing protocol. On the

other hand, the QoSRP uses routing through the good neighborhood, which provides alternative routes

instead of concentrating on a single good path to ensure that the workload is widely spread and no

specific nodes are being used excessively.

 

 
 Figure 8. Throughput vs. number of acoustic nodes.

 

 
 

Figure 9. Probability of missed detection vs. false alarms.
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Figure 10. Probability of false alarms vs. detection.

 

 
Figure 11. Packets error rate vs. number of acoustic nodes.

The neighborhood metric uses the information regarding the quality of the surrounding

neighborhood, which are the forwarding path value and the neighborhood influence on the node

in making a decision based on the priority. If the current path becomes congested or unavailable,

it switches to the alternative route, which is through a node closer to the destination to improve the

overall throughput and data rates in the network. Thus, the next hop neighbor that is not selected

as the forwarder becomes the alternative route if the current path is unavailable. The neighborhood

metrics allow a set of forwarding routes to be used to enable network load distribution, which as a

result, helps to improve the network load balancing and reduces the energy consumption, and latency.

All the above factors lead to low latency in QoSRP compared to QERP, MERP and LRP routing schemes

as shown in Figure 12. The overall delay performance in QoSRP routing protocol with 95% confidence

intervals is recorded up to 700 ms. By contrast, the latency performance of QERP is observed well
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around 800 ms compared to MERP and LRP recorded around 890 and 1000 ms in UWSNs. The low

latency of QERP is due to it finding alternative routes in a robust manner. On the contrary, the latency

performance of MERP is better due to it spending less time handling congestion issues in the packets

forwarding process. The LRP scheme performs insignificant than all routing schemes due to spending

a prominent time during routes finding process in the network. In sum, the proposed scheme is

extremely for the underwater monitoring applications that requires high data rates, throughput with

low latency, packet error rate and network energy-consumption performance.

 
Figure 12. Delay vs. number of acoustic nodes.

5. Conclusions

The design of a QoS-aware routing protocol for time-critical events data gathering is the major

concern in UWSNs. Therefore, this paper proposed a new cross-layer QoS-aware multichannel

data-gathering protocol for UWSNs-based time-critical marine monitoring applications. The proposed

scheme takes into account the time and location-dependent acoustic channel communication

characteristics during time-critical events data gathering and relaying towards the sink. In the

proposed QoSRP scheme, the UWCD mechanism successfully detects vacant channels for ASNs with a

high probability of detection and low probability of missed-detection and FAs in the highly dynamic

network topology. On the other hand, the UWCA mechanism successfully assigns high data rates

channels with longer idle probability in a robust manner for SASNs in UWEs. Finally, the UWPF

mechanism exploits the relay ASNs by employing hybrid angle-based and greedy routing mechanisms

to their NASNs to route packets around connectivity voids and shadow zones in UWSNs. Thus,

the packets forwarding by employing simple topology information (hop count), angle information,

residual energy and previous history of successful transmissions in a greedy manner towards the sink

greatly reduce the congestion, data path loops, and balances the energy consumption load of UWSNs.

Our results revealed that the proposed QoSRP scheme performs better compared to existing routing

schemes in terms of data delivery rates, packet error rates, throughput, latency, congestion, and data

traffic load balancing with the expense of communication overheads in UWSNs. As future work, the

researchers aim to focus on the ASNs’ mobility and energy consumption issues with different QoS

requirements in order to achieve a more realistic approach for time-critical applications of UWSNs.
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