

 Vol 7 No 1 (2019)

Open International Journal of Informatics (OIJI)

Experiences in Software Development Model

Selection and MVC Design Pattern

Implementation for Kuala Lumpur City Hall

Traffic Offence Management System

Abstract

Traffic Offence Management system is a crucial system in facilitating information about

traffic offenders. As highlighted by Kuala Lumpur City Hall (DBKL), repeated traffic

offenders are exist due to semi-auto and manual management of information. Moreover

the data is decentralised and scattered, resulting difficult for cross referencing and data

retrieval on traffic offenders record. The existing system is less transparent and plausible

to breed unfortunate circumstances such as mismanagement at both ends between officers

and offenders. Towards a new development of Traffic Offence Management System, this

paper findings focus on selecting software development model as the Software

Development Life-Cycle (SDLC) and implementation of Model-View Controller (MVC)

design pattern for a new enhanced system which will be highlighted through comparative

study.

Othman Mohd Yusop, Md Nafees Mahbub,

Saiful Adli Ismail , Azri Azmi , Nazri Kama ,

Haslina Md Sarkan

Razak Faculty of Technology and

Informatics,

Universiti Teknologi Malaysia, Jalan Sultan

Yahya Petra, 54100 Kuala Lumpur, Malaysia.

Article history

Received:

2 July 2019

Received in revised form:

25 August 2019

Accepted:

30 September 2019

Published online:

3 October 2019

Othman Mohd Yusop

othmanyusop@utm.my

 Open International Journal of Informatics (OIJI) Vol 7 No 1 (2019)

 27

Keywords: Software Development Lifecycle, Software Development Model, Model View

Controller Pattern, Traffic Offence Management System.

1. Introduction

Problems such as excessive time consumption in accessing decentralised records,

repeated traffic offenders, mismanaged information and semi-auto in managing traffic

offenders record are the weaknesses in the current DBKL Traffic Management system.

These problems pose a challenge to surmount for the enforcers in maintaining laws and

preventing traffic crimes. Decentralised and scattered data escalate the current issues

further in retrieving and cross referencing traffic offender record. Existing semiautomated

monitoring and traffic offence system has low deterrent mechanism application to

restraint repeated traffic offenders, hence the traffic offenders are able to evade the higher

penalty or compound as should be imposed on these errant drivers. Moreover, low

transparency within the current system is plausible to breed some unlawful circumstances

between the officers and offenders.

* Corresponding author. E-mail address: othmanyusop@utm.my

 26

Developing a new enhanced system to combat the shortcomings of the current

semiautomated traffic offence system seems crucial and inevitable. This study requires

collaboration of multiple departments under KL City Hall to curb mismanagement and

other weaknesses of the existing system. Several meetings with the authorities were

conducted and some features were identified as mandatory to be implemented into the new

enhanced system:

i. Should be in a web-based system that allows admin to search notices at optimum

level.

ii. Should be able to create notices from several different departments. iii. Should

be able to list down all notices based on their status. iv. Should be able to do

audit trail through audit log files. v. Should be able to generate report.

Realising the above-mentioned requirements into a full-fledged software requires a

proper study on existing software development model as the selected SDLC. A systematic

software development model should deliver software products within a stipulated deadline

and have acceptable quality [1]. Harshad S. M.(2017) states, the process works by lowering

 Open International Journal of Informatics (OIJI) Vol 7 No 1 (2019)

 28

the cost of development whereas at the same time improving quality and shortening

production time through evaluating deficiencies exist in the current existing system.

In this paper, we will conduct a comparative study on several software development

models and determine one of the models as the SDLC for the new development of an

enhanced Traffic Offence Management system, elaborate the necessity of design pattern

usage in implementation phase of the model.

2. Background Study of Several Methodologies

Sommerville I (2007) states the SDLC is a framework and comprises of phases. The

process is initiated by a formal request from client to a developer team. The initial stage

includes a comprehensive discussion between the client and developers on requirements

or software needs and the workable software products. Kay (2002) elaborates on the

development stages can be characterised and divided in different ways namely system

initiation or planning, requirement analysis and specification, design, implementation,

integration and testing, and maintenance and evidently most phases in software

development process are either fully composed or partially consisted of these phases.

Many software development models are designed and used to improve their SDLC

process. The models adhere to SDLC phases as a warrant for successful achievement in

developing a software [4]. Numerous software development models have been created

and claimed to be more efficient and better than other models [5]. Finding a software

development model to resolve issues in current Traffic Offence Management system,

requires the authors to conduct a comparative study in the existing software development

models as explained in the next subsection.

2.1 Waterfall Model

Waterfall model consists of a sequence of software lifecycle phases and activities.

Developing software based on this model will gradually evolve from one phase to another

in downwards manner henceforth known as the waterfall model. Waterfall model phases

are analysis, design, implementation, testing, and maintenance as shown in figure 1 below.

 Open International Journal of Informatics (OIJI) Vol 7 No 1 (2019)

 29

Figure 1: The Watefall Model of Software Development Life-Cycle [6]

All requirements are gathered during feasibility and requirement phases. These

requirements are modelled using either structured or object oriented approach. The output

from requirement phase will be the input to the design phase. Design model will be

derived from the requirement model before the former is set as the input for the

implementation phase. At this stage, the source codes have to conform to the design

model. The developed source codes must be testing at several stages. These stages are

unit testing, integration, system and user acceptance test. Once the software delivered,

any amendment or requirement change, will be fallen under maintenance phase.

The model proceeds from one phase to another after the current phase is completed.

However, there are different adapted waterfall models that might involve minor or major

differences such as Modified Waterfall Model [7].

2.2 Agile Methodology

According to [8], there are distinguish dissimilarities among established software

development models and Agile methodology. Agile emphasises people’s influence in

which both software developers and domain experts are playing significant roles during

software development. Dated software development models i.e. [7][6] focus on domain

 Open International Journal of Informatics (OIJI) Vol 7 No 1 (2019)

 30

expert contributions in descriptive form at earlier phases and missed out other software

development activities [9]. In Agile method, the domain experts work in tandem with

developers in small team throughout the entire software development to ensure the

efficiency and effectiveness of the collaboration. Agile makes used of iteration process.

Each iteration comprises of high risk requirements which are ratified by domain experts

and the developers as shown in figure 2 below.

Figure 2: The Agile Methodology [8]

2.3 Spiral Model

The spiral model is also known as the spiral life cycle model. The spiral model

combines prototyping feature and waterfall model. Larger companies adopted this model

for expensive and complicated projects [6]. Figure 3 below shows the illustration of the

spiral model.

 Open International Journal of Informatics (OIJI) Vol 7 No 1 (2019)

 31

Figure 3: Spiral Model [6]

The project progress spans into four quadrants namely objectives, risks, development

and test, and iteration. The cycle is repeated to completion, and validation and

verification took place during a review the next cycle begins. Each cycle yields

corresponding prototype and the more cycles are required, the higher cost will incurred

by an organisation.

2.4 Discussion on the Software Development Models

Despite the claims being archaic and demise models, these models are the rudimentary

SDLC of the modern development models. Through five years periods with 200

practitioners and several thousand projects [10] study shows the traditional software

development model especially the waterfall model is still preferable over modern software

development model. Some advantages and disadvantages were highlighted by several

researchers [11][12] are shown in table 1 below.

Table 1: Advantages and Disadvantages of Several Software Development Models

 Advantages Disadvantages

 Waterfall Model [12]

1. Simple and easy to use like Waterfall

Model.
The biggest disadvantage of V-
model is that it is the least flexible

when comes to requirement

changes
2. In V-Model Tester role will be

involved in the requirement phase

itself.

If any changes happen mid-way,

not only the requirements

documents but also the test

documentation needs to be updated.

 Open International Journal of Informatics (OIJI) Vol 7 No 1 (2019)

 32

3. Test activities and planning are

done before coding, which saves

time.

Development is dine only during

the implementation phase so, not

early prototype is made.

4. Easy to keep track of progress. Client can only see final product,

not intermediate modules.

5. Suitable for small and medium Not suitable for big and complex

sized projects. projects.

 Agile Methodology [12]

6. The most important If the projects are smaller projects, of the

advantages of then using the agile model is agile model is the ability to

respond certainly profitable, but if it is a to the changing requirements of

the large project, then it becomes project. difficult to judge the efforts

and the
time required for the project in the

software development life cycle.

7. There is no guesswork between

the development team and the

customer, as there is face to face

communication and continuous

inputs from the client.

For the project to become a success

all the stake holders should

maintain a constant communication

with each other, which may be not

possible in certain situations.

8. Possible to develop workable

prototypes.
Difficult to measure progress

compared to waterfall because

progress happens across several

cycles.

9. Developers can improve their

coding skills based on QA

feedback.

In agile short sprints does not leave

time for design process as a result,

designers have to redevelop over

and over due to negative feedback.

 Spiral Model [11]

10. High amount of risk analysis. Can be a costly model to use.

11. Good for large and missioncritical Risk analysis requires highly projects.
specific expertise.

12. Software is produced early in the Project’s success is highly software life

cycle. dependent on the risk analysis
phase.

13. It is suitable for high risk projects, It is not suitable for low risk

where business needs may be projects unstable

14. Project estimates in terms of May be hard to define objective, schedule,

cost etc become more verifiable milestones.
and more realistic as the project

moves forward and loops in spiral

get completed

The developer for the Traffic Offence Management system is a XYZ Malaysian

company. The company was awarded a tender to develop the enhanced version of Traffic

Management System for Kuala Lumpur City Hall. As the client, DBKL requires a proper

 Open International Journal of Informatics (OIJI) Vol 7 No 1 (2019)

 33

documentation for all software artefacts. The company opted for the traditional software

development model which is the Waterfall Model. The model provides better

documentation for each of its phases and the documentation standards would be based

on IEEE documentation standards. Nasution, M. F. F., & Weistroffer, H. R. (2009)

describe the Waterfall Model helps keeping track development activities through software

document and further stated, a well-planned and documented systems development

project is more likely to result in a system that meets the expectations of both; the software

engineers and the domain experts/ intended users.

Taya, S. (2011) further listed down characteristics of different software development

model as shown in table 2 below:

Table 2: Software Development Models Characteristics [11]

Characteristics Waterfall Spiral Agile

Activities Workflow Progressive movement Risk Driven flow. Simple Iteration.
from on phase to

another with back step.

Simplicity Simply understanding of

the process.
 Hard to understand due

enormous process.
 Easier to understand &

dealing with

teamwork.

Documentation Each phase must be

documented.
Each phase has one or

more specific

documentation.

Documentation is not
important

Flexibility Less flexible if

requirements change

too much.

Flexible with the Supporting fast

iteration and progressive development.
process.

Spiral and Agile methodologies are lacked of documentation work. As Spiral, the

documentation is required at specific phase and almost no documentation in Agile

methodology. The Waterfall Model emphasises on documentation for each of SDLC

phases which is more practical and suitable for development of the new enhanced Traffic

Offence Management system.

2.5 Discussion on the Model-View Controller (MVC) Design Pattern

The MVC is an architecture for software which is used frequently for web application

development [14]. The architecture is designed to ensure efficiency and consistency

throughout the development stage. In tradition programming approaches, where UI

coding, business logic and application data was written in a single file, may create

difficulty in terms of maintainability, testability as well as scalability of the application.

MVC provides a loose coupling among the elements as shown in figure 4 below. The

MVC is a suitable pattern for web applications as it combines several technologies usually

 Open International Journal of Informatics (OIJI) Vol 7 No 1 (2019)

 34

split into a set of layers. The separation of layers in MVC sends specific views to different

types of user-agents [15].

The MVC design pattern provides separation of concern. Kalelkar, M., Churi, P., &

Kalelkar, D. (2014) stated the separation of concern is regarded to separating application

modules into individual Model, View and Controller, thus resulting each developer to

work on their respective modules without worrisome over confliction. Moreover, MVC

separates the business logic for the view and any changes applied at the front end interface

will not affect the other part of application under development.

Figure 4: MVC Diagram [14]

The XYZ company decided to implement MVC design pattern due to its characteristic

for the developer team to facilitate the segregated development modules and its

deployment without putting halt on the online Traffic Offence Management system, and

besides combating issues of decentralised and scattered traffic offenders record.

3 Limitation

There are number of limitations in this study. Due to non-disclosure agreement between

the XYZ company and the authors, some of the outcomes of the study have no permission

to be highlighted due to DBKL proprietary on the software artefacts under development.

Therefore the experience is revolved around the selection of software development

processes and the implementation or justification of MVC design pattern.

 Open International Journal of Informatics (OIJI) Vol 7 No 1 (2019)

 35

4 Conclusion

Our experiences on SDLC selection and design pattern implementation were presented

in this paper, emphasises on the importance of SDLC selection based on the problem

domain and client’s (DBKL) needs, i.e. proper documentation standard and conform to a

IEEE documentation standard.

Despite the fact that the archaic and dated software development models were selected,

these models are the underlying fundamental of modern software development models

and in this study it proves through existing research study, that the traditional software

development models are still relevant to current software engineering practices.

References

[1] Harshad S. Modi, Nikhil Kumar Singh, Harsha Pradeepbhai Chauhan, "
Comprehensive Analysis of Software Development Life Cycle Models" in International

Research Journal of Engineering and Technology, 2017, vol 4(iss 6) pp. 117-122.

[2] Sommerville, I. (2007). Software engineering (pp. I-XXIII). Addison-wesley.

[3] Kay, R. (2002). QuickStudy: system development life cycle. Computerworld, May,

14

[4] Ron Burback, " Software Engineering Methodology: The WaterSluice," Thesis

Stanford University, 1998.

[5] M.Sundararajan & S. Balaji, " Succeeding with Agile Software Development"

IEEEInternational Conference On Advances In Engineering, Science And Management,

pp. 162- 165, 2012.

[6] Barry W Boehm, " A spiral model of software development and enhancement,"

Computer, IEEE, pp. 61-72, 1998. [7] Royce, W. W. (1987, March). “Managing the

development of large software systems: concepts and techniques”. In Proceedings of the

9th international conference on Software Engineering (pp. 328-338). IEEE Computer

Society Press.

[8] Beck, K., Beedle, M., Van Bennekum, A., Cockburn, A., Cunningham, W., Fowler,

M., Kern, J. (2001). Manifesto for agile software development.

[9] Nerur, S., Mahapatra, R., & Mangalaraj, G. (2005). Challenges of migrating to agile

methodologies. Communications of the ACM, 48(5), 72-78.

[10] Laplante, P. A., & Neill, C. J. (2004). The demise of the waterfall model is imminent

and other urban myths. ACM Queue, 1(10), 10-15.

[11] Taya, S. (2011). Comparative Analysis of Software Development Life

[12] Balaji, S., & Murugaiyan, M. S. (2012). Waterfall vs. V-Model vs. Agile: A

comparative study on SDLC. International Journal of Information Technology and

Business Management, 2(1), 26-30.

 Open International Journal of Informatics (OIJI) Vol 7 No 1 (2019)

 36

[13] Nasution, M. F. F., & Weistroffer, H. R. (2009, January). Documentation in systems

development: A significant criterion for project success. In System Sciences, 2009.

HICSS'09. 42nd Hawaii International Conference on (pp. 1-9). IEEE.

[14] Kayla. K. (2012). A Detailed Overview of the Model-View-Controller (MVC)

Coding Structure

[15] Pop, D. P., & Altar, A. (2014). Designing an MVC model for rapid web application

development. Procedia Engineering, 69, 1172-1179.

[16] Kalelkar, M., Churi, P., & Kalelkar, D. (2014). Implementation of

ModelViewController Architecture Pattern for Business Intelligence Architecture.

International Journal of Computer Applications, 102(12).

