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Abstract We briefly review recent attempts to relate the concept of Feynman integral
and integrable systems. This constitutes an endeavour on our part in making the
Feynman path integral into a mathematically meaningful entity.
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Abstrak Kami mengimbau secara ringkas kajian-kajian terkini yang mengaitkan kon-
sep kamiran Feynman dan sistem-sistem terkamir. Hal ini merangkumi usaha kami
untuk menjadikan kamiran lintasan Feynman sebagai suatu entiti matematik yang
bermakna.

Katakunci Kamiran Feynman, Sistem Terkamir, Konjektur Virasoro.

1 Introduction

In the previous century, there exist two fundamental theories in theoretical physics –
general relativity theory and quantum field theory. These two grand theories describe
the same world at different scales, which are much related to the celebrated constants of
nature: speed of light c ≈ 3 × 108 ms−1, Plancks constant ~ ≈ 6.63 × 10−34 m2 kgs−1

and gravitational constant G ≈ 6.67 × 10−11 m3 kg−1s−2. The general relativity theory
describes gravitational forces at the astronomical scale, whilst quantum field theory relates
the interaction of fundamental particles, electromagnetic force, the weak and strong forces.
There exists inconsistency between the two theories, i.e., formal quantisation of general
relativity theory would generate infinite formulae. This inconsistency between these two
fundamental theories of theoretical physics consequently becomes a very important problem
that attracts many researchers including Einstein to propose and formulate a grand unified
theory (GUT). Einstein developed general relativity theory in order to resolve the inconsis-
tency between special relativity theory and Newtonian gravity. Quantum field theory was
developed to suit Maxwells electromagnetic theory and the special relativity theory together
with the nonrelativistic quantum mechanics. Intrinsically both theories differ markedly in
their approaches. In Einstein’s discovery of general relativity, the logical framework had
been established by researchers like Lorentz and Poincare, whilst the Riemannian geometry
was found to be the exact mathematical framework. In the development of quantum field
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theory, there does not exist as either a priori basic conceptual or an appropriate exact
mathematical model. The rays of understanding largely came only from the experimental
evidences that play such significant roles. Influential works by Witten [18, 19, 20] via string
theory, Jones [12] with respect to loop theory and Drinfeld [4] via quantum groups have
changed completely this scenario.

Both the classical and quantum mechanics are characterized by two basic concepts:
states and observables. The measurements are operations on the physical systems. In clas-
sical mechanics, the state is a point in the manifold (symplectic) M (phase space) and
observable is the function on M. In quantum mechanics, the state of a system probably cor-
responds to a vector unit in a Hilbert space H while the observable quantity corresponds to
the operator (self-adjoint and noncommutative) on H. Integrating special relativity to both
the above-mentioned theories would direct classical mechanics towards general relativity,
and quantum mechanics to quantum field theory. The path from classical mechanics to
quantum mechanics is known as quantisation. Drinfeld and Witten studied the relationship
between these theories through different perspectives. Following Drinfeld [4], the connec-
tion between classical mechanics and quantum mechanics can be incorporated in terms of
observables. In both cases, the observables form an associative algebra that is commutative
in the classical sense and noncommutative in quantum perspective. Consequently, quanti-
sation illustrates the transformation of commutative algebra to noncommutative algebra.
States are described by Drinfeld [4] in terms of Hopf algebra. This algebraic approach
of Drinfeld would bear the quantum group concept that eventually link to the completely
integrable system in statistical mechanics, Yang-Baxter equation and deformations of Lie
algebra. Witten’s approach is topological. Quantisation is expressed in terms of states,
using the Feynman path integral method. Observables are represented by topological in-
variants. Subsequently, Witten’s approach encompasses the string theory, topological quan-
tum field theory, conformal field theory and Chern-Simons action function. The works by
Jones are related to that of Drinfeld via Jones polynomial and associative representation of
braid groups, their connection with the integrable system in statistical mechanics, and the
combinatorical relationship between Yang-Baxter equation and Jones polynomial for loops.
Similarly, the relationship between Jones’ works with that of Witten’s is exhibited through
an interpretation of Jones polynomial in terms of topological quantum field theory. In ad-
dition, Chern-Simons Lagrangian in the Feynman integral can be used to generate Jones
polynomial, or otherwise can be used to retrace the formal functional integrals as explicit
mathematical quantities. The afore-mentioned scenario has opened up application of meth-
ods of field, string and integrable system theories to important progress, opening entirely
new points of view in the context of Gromov-Witten invariants, Donaldson invariants and
quantum-group invariants for knots and links. These would undoubtedly advance further
our understanding of the bigger picture of string theory, i.e., the remarkable M-theory.

The purpose of this article is to trace out briefly recent attempts by researchers in
relating the concept of Feynman integral to the notion of integrable systems. We believe
that this would constitute the current course of action on our part to making the Feynman
path integral into a mathematically meaningful entity (Zainal [21, 22]). Our main source of
motivation is derived from a statement made by the eminent mathematician Prof. Michael
Atiyah [1]: “The Feynman integrals will have been given precise meanings, not by analysis,
but by a mixture of combinatorial and algebraic techniques”.
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2 The Form of the Relationship

Briefly, we think that Witten’s [19] conjecture can be used to formulate the interesting
connection between the two entities, the ‘elusive’ Feynman integral and the ‘predictable’
integrable systems (Zainal [21, 22]), that originally seems disparate in nature. Technically,
this refers to a generator function of intersection numbers on moduli space for stable curves
and the τ -function of the KdV (Korteweg-de Vries) hierarchy. This conjecture is derived
fundamentally from two approaches with respect to two-dimensional quantum gravity. Es-
sentially, the correlator of the two-dimensional quantum gravity is the Feynman integral
with respect to the ‘metric space’ of the two-dimensional topological real space. One of the
methods of evaluation of the path integral involves the topological field theoretic technique
and finally reduces to the integration with respect to the moduli space of curves. Another
method considers an approximation to the metric space with piecewise flat metric and sub-
sequently taking the appropriate continuous limit. In the former approach, the free energy
becomes a function that is defined geometrically as

τ pt (t0, t1, ... ) = exp

[ ∞∑

g=0

~g−1 F pt
g (t0, t1, ... )

]
,

where F pt
g (t) is the generator function of the intersection numbers on the moduli space of

stable curves of genus g with n marked points, M̄g,n, or the genus g descendent potential
of a compact symplectic manifold of X ≡ pt :

Fg (t0, t1, ...) :=
∑

n

1
n !

∫

M̄g,n

n∏

i=1

(∑

k

tk ψ
k
i

)
,

where ψk
i are formal variables (summation convention on k).

In the latter approach, the generator function in the double scaling limit would result
in a τ -function of the KdV hierarchy. We observe the statement of Witten’s hypothesis
that τpt is the τ -function (Virasoro’s invariant solution) of the KdV hierarchy is justified
on the fact that, there must necessarily exist only one quantum gravity. In addition, with
reference to the moduli space geometry, we can deduce that τpt satifies the following string
equation (summation convention on ν)

∂F0 (t)
∂ t11

=
1
2

(t0, t0) +
∞∑

n=0

∑

υ

tυn+1

∂F0 (t)
∂ tυn

It is a basic fact in KdV hierarchy theory (or generally Kamdotsev-Patviashvili (KP))
that uniquely the string theory would determine one of the τ -functions of the KdV hierarchy
from all the τ -functions that are being parametrized by Sato grassmanian (Date et al [3]).
Finally Witten [20] formulated a generalised conjecture: analogously the generator function
τ r−spin of the intersection numbers on the moduli space of r-spin curves should be identified
as the τ -function of the Gelfand-Dikii hierarchy (r-hierarchy or generalized KdV). When
r = 2, the conjecture is reduced to the original conjecture, i.e., 2-KdV or KdV equation.
This special case has been proven by Kontsevich [13] and recently there is a new proof
proposed by Okounkov and Pandharipande [17]. Nevertheless, we are of the opinion that
up to now, the generalised conjecture is still an open problem. In the following section, we
briefly discuss recent attempts in bringing to light certain aspects of this open problem.
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3 Form of the Generalized Conjecture

Another generalization of Witten’s conjecture [19] was proposed by Eguchi et al. [8]. In
generalizing Witten’s conjecture to a compact symplectic manifold of X, in particular, to
any projective smooth variety X, it is obvious that τpt should be replaced by

τX (t) = exp

( ∞∑

g=0

~g−1 FX
g (t)

)
,

where FX
g (t) is the generating function of genus g Gromov-Witten invariants with de-

scendents for X. Furthermore, the corresponding string equation LX
−1 τ

X on X is basically
induced from the equation from a point. Based on that Eguchi et al. [8] managed to define{
LX

n

}
for n ≥ −1, satisfying the Virasoro relations. They conjectured that

LX
n τX (t) = 0, n ≥ −1.

This conjecture is normally referred to as the Virasoro conjecture. They were also able to
give strong evidences for their conjecture in genus zero and a proof of LX

0 τX = 0. Later Liu
and Tian [16] proved the genus case in general. Using a different method, Dubrovin and
Zhang [6] established the genus one case of Virasoro conjecture for conformal semisimple
Frobenius manifolds.

The two recent major developments in Virasoro conjecture are Okounkov and Pandhari-
pande’s [17] proof for algebraic curves and that of Givental’s [11] for toric Fano manifolds.
In terms of formula, given a semisimple Frobenius manifold H of dimension N, he defines
an operator ÔH = exp (ôH) and a generating function

τH
G = exp

( ∞∑

g=0

~g−1GH
g

(
t1, ... , tN

)
)

= ÔH

N∏

i=1

τpt
(
ti, ~

)

The essential part of ôH is a quadratic differential operator of the form

~
2

∑
Eµυ

kl

∂

∂tµk

∂

∂tυl
,

with E determined by the semisimple Frobenius manifold H. The Feynman rules then dic-
tate a formula for Gg . When the Frobenius manifold comes from geometry, i.e.,
H = QH∗ (X) (or on cohomology space H∗ (X,Q {{q}}) over a suitable Novikov ring
Q {{q}}), Givental conjectures that his combinatorial model is the same as the geometric
model, i.e., GH

g = FX
g when H = QH∗ (X) . Some of the cases include toric Fano manifolds.

In order to prove the Virasoro conjecture, one defines the Virasoro operators for semi-
simple Frobenius manifold H by

LH
n (t) = ÔH

∏

i

Lpt
n (ti) Ô−1

H .

It is obvious that LH
n also satisfy Virasoro relations. It can be shown that this definition

coincides with the definition of Eguchi et al [8] in the geometric case H = QH∗ (X) and
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coincides with Dubrovin and Zhang [6] in the conformal setting. The above Virasoro rela-
tions for H follow from Virasoro for a point (Kontsevich’s theorem). It is also obvious that,
when H = QH∗ (X) , the proof of the Virasoro conjecture results in the identification of
FX

g and GH
g .

Giventals [11] model works for any semisimple Frobenius manifolds and thus also for the
Frobenius manifolds HAr−1 of the miniversal deformation space of Ar−1 singularity. It turns
out that this Frobenius manifold is isomorphic to the Frobenius manifold defined by the
genus zero potential of r-spin curves and this leads to the fact that τ

HAr−1
G is a τ -function of

r-KdV hierarchy. As in the case of the KdV, it can be shown that both τ
HAr−1
G and τr−spin

satisfy the same string equation. Therefore, in order to prove Witten’s conjecture, we have
to show G

HAr−1
g = F r−spin

g .
In order to resolve many pertinent questions relating to the afore-mentioned open prob-

lem, Lee [14] proposed the following question: Is Gg = Fg? That is, does the combinatorial
construction coincide with the geometric one when both are available? His approach is to
show that Gg satisfies enough geometric properties so that they have to be equal by some
“uniqueness theorems”. More specifically, the geometric properties are the tautological re-
lations due to some functorial properties built in the Gromov-Witten theory. For simplicity,
we can categorize the tautological relations as follows:

(a) genus zero tautological equations as the following genus zero equations

∂F0 (t)
∂t11

=
∞∑

n=0

∑

υ

tυn
∂F0 (t)
∂tυn

− 2F0 (t) , the Dilaton Equation

∂F0 (t)
∂t10

=
1
2

(t0, t0) +
∞∑

n=0

∑

υ

tυn+1

∂F0 (t)
∂tυn

, the String Equation

∂3F0 (t)

∂tαk+1∂t
β
l ∂t

γ
m

=
∑

µ

∂2F0 (t)
∂tαk∂t

µ
0

∂3F0 (t)

∂tµ0∂t
β
l ∂t

γ
m

, the Topological Recursion Relations (TRR),

for all α, β, γ and all k, l,m ≥ 0 and F0 (t) is the genus zero descendent potential
which satisfies many properties due to the geometry of the moduli spaces.

(b) genus one tautological equations as the following genus one equations; genus one Get-
zler’s [9] equation and genus one TRR.

(c) genus two tautological equations as the three set equations in genus two by Getzler
[9], Belorousski and Pandharipande [2] and by Mumford of the form (with summation
convention)

−〈∂x
2 〉2 + 〈∂x

1∂
µ〉 〈∂µ〉2 + 〈∂x∂µ〉 〈∂µ

1 〉2 − 〈∂x∂µ〉 〈∂µ∂υ〉 〈∂υ〉2 + 7
10 〈∂

x∂µ∂υ〉 〈∂µ〉1 〈∂υ〉1
+ 1

10 〈∂x∂µ∂υ〉 〈∂µ∂υ〉1 −
1

240 〈∂µ∂ν∂υ〉 〈∂x∂µ〉1 + 13
240 〈∂x∂µ∂µ∂υ〉 〈∂υ〉1

+ 1
960 〈∂x∂µ∂µ∂υ∂υ〉 = 0

In genus one, the uniqueness was first shown by Dubrovin and Zhang [5], in other words,
the genus one potential for a conformal Frobenius manifold is uniquely determined by genus
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one tautological equations. Similarly, the genus uniqueness theorem is formulated by Liu
[15], which stated that the genus two descendent potentials for any conformal semisimple
Frobenius manifolds are uniquely determined by genus two tautological equations. It is
worth noting that whether this uniqueness theorem, or any weaker version, holds for non-
conformal semisimple Frobenius manifolds remains unknown.

Another way of looking at the uniqueness theorem is given by Dubrovin and Zhang [7],
by proving that the Virasoro conjecture plus (3g − 2)−jet property uniquely determines
τ -function for any semisimple analytic Frobenius manifold. The (3g − 2)−jet property in
the geometric Gromov-Witten theory is proved by Getzler [10] and by Givental [11] in the
context of semisimple Frobenius manifolds. It is also expected to hold for the τr−spin and
therefore a proof of the Virasoro conjecture for τX should also answer positively the open
problem. Lee [14] was able to show that G2 satisfied genus two tautological equations by
Mumford abovementioned, Getzler [9] and Belorousski and Pandharipande [2]. Actually,
similar statement in genus one, that is G1 satisfies genus one TRR and Getzler’s case, is
shown in the conformal case by Dubrovin and Zhang [9]. The above results, combined
together are expected to imply that Witten’s generalized conjecture and Virasoro conjec-
ture for manifolds with conformal semisimple quantum cohomology hold up to genus two.
Further investigations are needed to ensure the validity of this conclusion (see, e.g., Zhou
[23]).

4 Concluding Remarks

The discussion above relates one of the surprises of modern mathematics, that is the ap-
pearance of the phenomenal KdV equation in the organization of new invariants of quantum
cohomology X (or simply the symplectic manifolds X), and in the process becomes tie up
with the ‘elusive’ Feynman integral. In other words, certain special differential equations (a
subset of those known as integrable) have surprisingly appeared predominantly in topolog-
ical conformal field theory. The appearance of these equations in quantum cohomology is
further reflected in the well-known “Virasoro Conjecture”, which asserts that the quantum
cohomological invariants are fixed points of symmetries consisting of half a Virasoro alge-
bra. These algebras are known to act on many mathematical structures, in particular on
the solutions sets of most integrable equations. As our concluding remarks, lo and behold,
there is little speculation or conjecture as to the reason for this truly amazing and unlikely
mating of two entirely different subjects of integrable systems and topological invariants in
terms of the Feynman integral.
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