MATEMATIKA, 2005, Jilid 21, Bil. 2, hlm. 101-112
(©Jabatan Matematik, UTM.

Comparing Least-Squares and Goal Programming Estimates
of Linear Regression Parameters

!Maizah Hura Ahmad, !Robiah Adnan, 'Lau Chik Kong & ?Zalina Mohd Daud

1Department of Mathematics, Faculty of Science, Universiti Teknologi Malaysia
4130 UTM, Skudai, Johor, Malaysia
2ATMA, Kuala Lumpur, Malaysia

Abstract A regression model is a mathematical equation that describes the relation-
ship between two or more variables. In regression analysis, the basic idea is to use
past data to fit a prediction equation that relates a dependent variable to independent
variable(s). This prediction equation is then used to estimate future values of the
dependent variable. The least-squares method is the most frequently used procedure
for estimating the regression model parameters. However, the method of least-squares
is biased when outliers exist. This paper proposes goal programming as a method to
estimate regression model parameters when outliers must be included in the analysis.
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1 Introduction

Predicting future values of a variable is a crucial management activity. The statistical
method most widely used in making predictions is regression analysis. In the regression
approach past data on the relevant variables are used to develop and evaluate a prediction
equation. For prediction to make much sense, there must be some connection between
the variable one is predicting (the dependent variable) and the variables one is using to
make the prediction (the independent variable). Prediction requires a unit of association.
This means that there should be an entity that relates the two variables. With time-series
data, the unit of association may simply be time. For cross-sectional data, an economic or
physical entity should connect the variables.

A regression model is a mathematical equation that describes the relationship between
two or more variables. In linear regression analysis, the basic idea is to use data to fit a
prediction equation that relates a dependent variable y to independent variable(s) z, with
an assumption that the relation is, in fact, linear. In simple linear regression analysis, the
estimated model is ¥ = By + B12 (¥ denotes the estimate value of y for any value of z). In

n

the first-order multiple regression, the estimated model is § = Bo + Z B,:cz
i=1
The least-squares method is the most frequently used procedure for estimating the re-
gression coefficients, 4’s. Although this method is one of the best known and probably most
widely used, it is sensitive to outliers [1]. If an outlier must be kept in the data, a method
other than least squares should be used [2].
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The current study attempts to use linear goal programming to estimate linear regression
coefficients when outlier(s) must be included in the estimation of the model parameters. In
this paper, the methods (least-squares and goal programming) will be described first. These
methods will be used to estimate regression model parameters. The resulting prediction
equations will then be used to predict future values of y.

2 Least-Squares Method

The least squares method is a computational technique for determining the ‘best’ equation
describing a set of points where best is defined geometrically [3]. In the study of the
relationship between two variables, the polynomial, p(z) that can describe n data points
(z1,y1), (22,Y2),- - -, (Tn,yn), where z is the independent variable and y is the dependent

can be written as
m
=" Bzt
k=0

where (o, B1, - --,Bm are to be determined. The least squares method will choose as ‘solu-
tions’ those (;’s that minimize the sum of squares of the vertical distances from the data
points to the presumed polynomial. Let the residual from each data point be denoted by
e, i.e., e; = y;p(x;). The ‘best’ polynomial p(z) is the one whose coefficients minimize the
function L, where

n n
L=e>+e+ i=2f=2yz—pwz

If p(z) is a linear polynomial, the least-squares estimates of the regression coefficients
are the values By and 8, obtained by minimizing

L= Z[yi —p(z Z[yz (Bo + Brz)]*. O

By differentiating (1) partially with respect to 30 and 31; equating the partial derivatives
to zero; and then solving the system of equations by using determinants or the method of
elimination [3], it can be shown that the estimated slope is

fi=—= =L e

n(3e) - (L)’

i=1 =1

and the estimated y-intercept is
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In the study of the relationship between one dependent variable y and two independent
variables £1 and x3, the model is y = By + B1x1 + P22 + € for a given data set

(y1,Z11,%21), (Y2, 12, 222), - - - s (Yn, T1n, T2n), where n > 3.

The best fitting curve p(z) has the least squares error

n

L= lyi = p(@1i, 22)]> = Y _[yi — (Bo + Pr1i + Bawai)]”
i=1

i=1
Solving the following,
2 = (DTl — (Bo+ fuasi + Baai)] = 0,
0

OL _ (—2) " wiilyi — (Bo + Brwvi + Bawai)] = 0,
0h,

OL — (—2) ", wuilyi — (Bo + Brwvi + Bawai)] = 0,
0p

and expanding the above equations, we have

Zyi=3021+,§12$1i+32zx2i (4)
i=1 i=1 i=1 i=1

n n n n
Yo wiyi=PBoY wi+ by ati+ B2y wrimai (5)
i=1 i=1 i=1 i=1

n N n . n . n
D yimai =PBo Y @i+ P Y muimai + B2 Y w5 (6)
i=1 i=1 i=1 i=1

These least squares estimates of the coefficients Bo, Bl and Bg can be obtained by solving
(4), (5) and (6) simultaneously.

3 Linear Goal Programming (GP)

Linear GP problems are GP problems where each objective function is linear. GP was first
developed and introduced by A. Charnes and W.W. Cooper in 1961 and further refined by
Y. Tjiri in 1965. According to Charnes and Cooper [4], GP extends the linear programming
formulation to accommodate mathematical programming with multiple objectives.

GP’s objective function is always minimized and must be composed of deviational vari-
ables only. It minimizes the deviations of the compromise solution from target goals,
weighted and prioritized.

In the formulation, two types of variables are used: decision variables and deviational
variables. There are two categories of constraints: structural/system constraints and goal
constraints, which are expressions of the original functions with target goals set a priori and
positive and negative deviational variables.
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The general GP model can be expressed as follows:

m
Minimize Z =Y (dj + d)
i=1
Subject to the linear constraints:

n
Goal constraints: (Zaija:j) +d; — d;L =b;,1=1,2,...,m | (7)
i=1
n <
System constraintszz ai;;z; | = |byi=m+1,....m+p
i=1 Z

with z;,d; ,df >0, fori=1,2,...,mand j =1,2,...,n. )

k3 (3

In (3.1) there are m goals, p system constraints and n decision variables, where

Z : objective function

a;; : the coeflicient associated with variable j in the ith goal

x; : the jth decision variable

b; : the associated right hand side value

d; :negative deviational variable from the ith goal (underachievement)
d; : positive deviational variable from the ith goal (overachievement)

df xd7 =0, df,d; >0

K3 K3
Before solving a GP problem, the goals need to be ranked. In priority GP, the objectives
can be divided into different priority classes. Here it is assumed that no two goals have equal
priority. The goals are given ordinal rankings and are called preemptive priority factors.
These preemptive priority factors have the relationship

P >>> P >>> - >>> P, >>> Py

where >>> means “very much greater than”. This priority ranking is absolute. Therefore,
the P, goal is so much more important than the P, goal and P, goal will never be attempted
until the P; goal is achieved to the greatest extent possible.

The priority relationship implies that multiplication by n, however large it may be,
cannot make the lower-level goal as important as the higher goal (that is,P; > nPjy1).
In formulating a GP model having prioritized goals, those preemptive priority factors are
incorporated into the objective function as weights for the deviational variables.

Using equation (7), the preemptive GP model can be presented as:

m

Minimize Z = ZP’“ (d; +d)
i=1

Subject to the linear constraints:

n
Goal constraints: Zaijl']‘ +d; — d;r =b;,1=1,2,....m | ®)
i=1
n <
System constraints: Z aijz; | = | b,i=m+1,...,m+p
i=1 >

with z;,d; ,df >0, fori=1,2,...,mand j=1,2,...,n. |

(et
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where there are m goals, p system constraints, k£ priority levels and n decision variables
with Py, = the priority factor of the kth goal

GP problems can be solved using the graphical (involving only two decision variables)
and the modified simplex method.

4 Data Sets

The data used in this study were taken from [3] and [5] (see Appendix I). [3] and [5] used
the data to determine least-squares prediction equations and to predict values of y with
given values of z’s. There were outlier(s) in the data and they were retained in the analysis.
Outliers are data points that lie apart from the rest of the other points. They are unusually
small or large data values, presumed to come from a different distribution for the majority
of the data set, and can have profound influence on statistical analysis that finally leads to
erroneous conclusions [6].

In the current study, outliers were detected using the box plot technique (see Appendix
IT). The box of the plot was determined by locating the median, the lower (()1) and upper
quartiles (Q3). A box was drawn around the median with the lower and upper quartiles as
the box endpoints. The interquartile range (igr), given by

iqr = upper quartile — lower quartile

was then calculated. An observation was a mild outlier if it is more than 1.5igr away from
the closest end of the box (the closest quartile). An outlier is extreme if it is more than
3iqr from the closest end of the box.

5 Estimating Model Parameters Using the Least-Squares Method

Only the first 20 observations were used to determine the least-squares prediction equations.

Data Set 1
Zwi =2731.8, Zyi = 2654, me = 484531.16, inyi = 444011.2.
i=1 i=1 =1 =1
Using equations (2) and (3), we have
n
n Ty — T
- Z:ZI it (ZZZI ’)(z:zl ) 20(444011.2) — 2731.8(2654) 0.7316
L= o N T 20(484531.16) — (2731.8)2 T
(540) - (50)
i=1 i=1
and
n n
2 yi=b) w 2654 — 0.7316(2731.8

Thus, the least-squares prediction equation is

7: = 32.765 + 0.7316;. 9)
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Data Set 2
20 20 20 20
D @ =193.7, > i, =248157, > my =194, > a3, = 2206,
=1 =1 =1 =1
20 20 20 20
D yi=665 > muy=T127.2, > zime =21115, Y may; = 6959.
=1 =1 i=1 i=1
Using equations (4), (5) and (6) we have
N N n N n n
Bon+B1 Y w1+ B2 mai =Y yi, implying
=1 i=1 =1
208, + 193.75; + 19453, = 665; (10)
N n N n . n n
Bo Z z1; + B Z z3; + B Z T1i%2i = Z T1;Y;, implying
=1 i=1 i=1 i=1
93.7By + 2481.57B, + 2111.553; = 7127.2; (11)
N n . n N n n
Bo Z T2 + 1 Z T1iT2i + P2 Z x5 = Z *2:yi, implying
=1 i=1 i=1 =1
194530 + 2111.55; + 22063, = 6959. (12)

Solving equations (10), (11) and (12) simultaneously, we obtain Bo=1222, By =11and
B2 = 0.0167. Thus, the least-squares prediction equation is

i = 22.2 4 1.121; + 0.01672;. (13)

6 Converting a Least-Squares Problem Into a GP Problem

From the least-squares method,
bi = Bo + Pr; (14)
and the residual is
Yi—Yi=e Or Y=y —e; (15)

Therefore equation (14) equals to equation (15). Thus,

yi — €i = Bo + Pra; implying y; = Bo + Przi + €i. (16)
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The general GP model is as follows:

m
Minimize Z = > (d} + d;)
=1

Subject to the linear constraints:

n
Goal constraints: (Zaijwj) +d; —df =b;,i=1,2,....,m (17)
i=1

n
System constraints: Z ai;T; bi,i=m+1,...,m+p

i=1

with z;,d; ,df >0, fori=1,2,...,mand j =1,2,...,n.

(3 k3

IV A

From (16) and (17), let e; = d; —d; ,y; = b. In GP, Bi_1 is treated as the decision variable.
Thus, the value of z; in GP equals the value of 8;_1.

7 Estimating Model Parameters Using GP

Formulation of GP models were based on the first 20 observations in the data set. In this
study, the GP solutions were obtained by using Windows-based software package known as
QM (Quantitative Methods) for Windows.

Data Set 1

The GP model for data set 1 is as follows:
20
Minimize Z =Py Y (df +d;)
i=1
Subject to  164.2z1 + z2 +d; —df =181

156.921 + 29 + d; —df = 156
109.8z1 + x5 + d3 —di =115
11142y + 22 + dy —df =132
871 + T2 +dy —di =96
161.821 + z2 + dg — df = 170
230921 + x> +d; —df =193
106.5z1 + z2 + dg — df = 110
97.6x1 + 2 + dy —df = 94
79.7x1 + 29 + dl_O — dii_o =77
118.7zy + x5 + dp; — df; = 106
248.871 + z2 + dy, — df, = 204
102431 + 72 + di3 — df; = 98
64.2x1 + o + d1_4 — diti =76
89.471 + x5 + diy — df; = 89
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78.971 + Ty + dig — dfy = 86
387.87) + m2 + dy; — df; = 310
13521 + z2 + dig — dfy = 141
82.9z1 + 3 + dy — dfy = 90
117.921 + 2 + dyy — dfy = 130
with zi,d; ,df >0,i=1,2,...,20.

i

There is only one goal, P; for data set 1. The goal is to predict elemental carbon based on

carbon aerosols. The GP results are 21 = 0.7215 and z» = 30.1839. Thus, the prediction
equation is

¥; = 30.1839 + 0.7215z;. (18)

Data Set 2

The GP model for data set 2 is as follows:
20
Minimize Z =P, Z(d;" +d;)

i=1
Subject to 6.5z1 + 3z2 + x3 +d] —df =27

6.571 + 2z9 + x3 + dy —df =29
13.0z1 + 1525 + 33 +dy — df =41
81z1 + 1370 + 23 +d; — df =36
4.021 + 622 + dy —df =22
11.521 + 1322 + 23 + dg — dgr =40
18.0z1 + 17z2 + 23 +d7 — d}’_ =52
10.0z1 + 1225 + 73 +dg —df =39
7.1z, + 422 + 33 +dy —dg =27
6.571 + 1025 + 23 + dyy — dyf; = 28
7.0z1 + 5z + 3 + di; — df; = 24
7.371 + 11lz2 + 23 + dp, — df, = 29
7.571 + 1232 + 23 + dz — df; = 33
7.521 4+ 1209 + x3 +dj, — df, = 35
4.9z, 4 922 + x5 + dyy — dfy = 27
3.7x1 4 622 + x5 + djg — dfg =19
9.1z1 + 1225 + z3 + di; — dyf, = 36
23.0z1 + 13z + 23 + djg — dfy = 43
23.5x1 + 1023 + 23 + d;y — dfy = 40
9.0z1 + 922 + 3 + doy — diy = 38
with zi,d; ,df >0,i=1,2,...,20.

(3 (3

There is also only one goal, P, for data set 2. The goal is to predict the seminar
enrollment. The GP results are x; = 0.5055, 22 = 1.2615 and x3 = 15.5055.



Comparing Least-Squares and Goal Programming Estimates 109

From these results, we can write the predicted equation as

i = 15.5055 + 0.5055z1; + 1.261522;. (19)

8 Comparison Between the Least-Squares Prediction Equation and
Goal Programming Prediction Equation

Equations (9), (13), (18) and (19) were used to predict the last five observations in each data
set. To compare the prediction values obtained using least-squares and goal programming,
mean absolute percentage errors (MAPE) were calculated.

When choosing between competing models or when evaluating an existing model, mea-
sures that summarize the overall accuracy provided by the model(s) should be used [7].
Generally, the closer the predicted 7; are to the actual y; of the series, the more accurate
the model is. Thus, the quality of a model can be evaluated by examining the series of pre-
diction errors (y; — ¥;). Since MAPE is measured as a percentage, it is particularly useful
for comparing the performance of a model in different units.

The formula for MAPE is as follows:

5 o)
MAPE = ﬁT (20)
where n is number of predictions. A large value of MAPE means that the value of the error

is large. Tables 1 and 2 show the calculated MAPEs for the data sets.
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9 Concluding Remarks

In both data sets, MAPE values using GP prediction equations were lower than those
obtained using the least-squares prediction equations. Based on these results, it can be
concluded that in the presence of outliers, the prediction equations obtained using the GP
approach were more accurate than those obtained using the method of least-squares. This
is because, using the GP approach, the problem can be restated as to minimize the sum of
absolute residuals |e;| rather than the sum of the squares of the residuals e? as in the case
of the least squares technique.
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Appendix I

Data Set 1

Carbon aerosols have been identified as a contributing factor in a number of air quality
problems. In this set, mass (z) is an independent variable while elemental carbon (y) is a
dependent variable.
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Data Set 2

This set examines the relationship between seminar enrollments (y), the number of mailings
(21)[*x1000], and the lead time of mailings (z2)[weeks] of seminar announcements.

Appendix II

Detecting Outliers
Data Set 1

The values (independent variable) were arranged from the smallest value to the largest value
or vice versa as follows:

z;: 64.2,76.4,78.9, 79.7, 82.9, 87.0, 89.4, 89.4, 97.6, 100.8, 102.4, 106.5, 108.1,
109.8, 111.4, 117.9, 118.7, 131.7, 135.0, 156.9, 161.8, 164.2, 230.9, 248.8, 387.8

The quantities needed for constructing the modified box plot are as follows:
Median = 108.1, Lower quartile = 88.2, Upper quartile = 145.95
iqr = upper quartilelower quartile
= 145.9588.2 = 57.75
1.5-igr =1.5-57.75 = 86.625
3-igr =3-57.75=173.25

Thus,

Upper edge of box (upper quartile) + 1.5 - igr = 145.95 + 86.625 = 232.575
Lower edge of box (lower quartile) — 1.5 - igr = 88.286.625 = 1.575
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So 248.8 and 387.8 are both outliers at the upper end, and there are no outliers at the
lower end.

Since, Upper edge of box +3-igr = 145.95+ 173.25 = 319.2, 387.8 is an extreme outlier
and 248.8 is only a mild outlier.

The MINITAB box plot is as follows:

Data Set 2
For the number of mailings ()

Tt 3.7,4.0,4.9, 5.0, 6.5, 6.5, 6.5, 6.8, 7.0, 7.0, 7.1, 7.2, 7.3, 7.5, 7.5, 8.1, 9.0, 9.1,
10.0, 11.5, 12.5, 13.0, 18.0, 23.0, 23.5

The quantities needed for constructing the modified box plot are as follows:
Median = 7.3, Lower quartile = 6.5, Upper quartile = 10.75
igr = 10.756.5 = 4.25
1.5-igr =1.5-4.25 =6.375
3-iqr =3-4.25 =12.75
Thus,

Upper edge of box + 1.5 - igr = 10.75 + 6.375 = 17.125
Lower edge of box — 1.5 - igr = 6.56.375 = 0.125

So, 18.0,23.0 and 23.5 are both outliers at the upper end.

Since, Upper edge of box +3-igr = 10.75+ 12.75 = 23.5 there are no an extreme outlier
for this data set.

The MINITAB box plot is as follows:

For independent variable lead time of mailings (z-),
z2;:2,3,4,5,6,6,6,9,9, 10, 10, 11, 12, 12, 12, 12, 12, 12, 13, 13, 13, 14, 15, 16, 17
The quantities needed for constructing the modified box plot are as follows:
Median = 12, Lower quartile = 6, Upper quartile = 13
iqr =136 =7
1.5-igr =1.5-7=10.5
3-igr=3-7=21
Thus,

Upper edge of box + 1.5 - igr = 13 + 10.5 = 23.5
Lower edge of box — 1.5 - igr = 610.5 = —4.5

So, there are not outliers for lead time of mailings, za.



