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Featured Application: Robotic equipment, humanoid robots, rehabilitation orthotics, industrial

automation and biological system.

Abstract: This paper explores empirical modeling of McKibben muscle in characterizing its

hysteresis behavior and nonlinearities during quasi-static, quasi-rate, and historic dependencies.

The unconventional materials-based actuating system called McKibben muscle has excellent properties

of power-to-weight ratio, which could be used in rehabilitation orthosis application for condition

monitoring, physical enhancement, and rehabilitation therapy. McKibben muscle is known to exhibit

hysteresis behavior and it is rate-dependent (the level of hysteresis depends closely on rate of input

excitation frequency). This behavior is undesirable and it must be considered in realizing high precision

control application. In this paper, the nonlinearities of McKibben muscle is characterized using

empirical modeling with multiple correction functions such as shape irregularity and slenderness.

A particle swarm optimization (PSO) method is used to determine the best parametric values of the

proposed empirical with modified dynamic friction model. The LabVIEW and MATLAB platforms

are used for data analysis, modeling and simulation. The results confirm that this model able to

significantly characterize the nonlinearities of McKibben muscle while considering all dependencies.

Keywords: McKibben muscle; empirical modeling; particle swarm optimization

1. Introduction

McKibben muscle plays an important role in the development of assistive rehabilitation robotics

system. The development of rehabilitation orthosis, which implemented McKibben muscle, is rather

slow when compared to other types of actuated rehabilitation orthosis using ac-motor, dc-motor,

pneumatic cylinder, linear actuator, series elastic actuator (SEA), and brushless servomotor. However,

due to its clear advantages such as low weight, structural flexibility, compactness, and inherent

compliance compared to other types of artificial muscles, the researcher’s interest in this field has

grown exponentially in past decade [1–3]. This growth also due to the challenges it provides in

resolving nonlinearity behaviors and difficulties in controlling such systems. The inherent nonlinearity

behaviors of McKibben muscle present because of nonlinear relationship in between its contracting

force, contracting length and pressure [4–6]. The other factors include nonlinearity behaviors of

pressure build-up and hysteresis due to its geometric construction and frictions. Various approaches

and methods have been introduced to reduce the effect of hysteresis, where a precise control system is

desired. In addition, numerous control strategies were considered to resolve nonlinearity problems in
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both static and dynamic modeling. Throughout the years, a number of physic and phenomenological

approaches had been considered in static modeling such as force generation equation, empirical model,

conservation of energy (virtual work), polynomial-based model, and Hill’s muscle model [1–39].

However, empirical modeling was often used to characterize the behaviors of McKibben muscle

compared to others due to previous achievement [7–27]. This is also similar for the virtual work

theorem which can be related with empirical model [28]. On contrary, dynamic modeling of McKibben

muscle also have been evolved rapidly with implementation of various models such as coulomb

friction and viscous friction [17,18].

In static modeling of McKibben muscle using empirical model, it was first introduced by K.

Inoue in 1988 [7]. After that, B. Tondu, in 1994, imposed similar approach and modified the model

with empirical constant k to account for end deformation of the muscle [8]. These early researches

became the pillar of other researches and major contribution in this research field as DB. Reynolds

in 2003 introduced empirical dynamic force model with parallel arrangement of a spring element,

damping element, and contractile force element [9]. While, A. Hildebrandt, in 2005, improved

the empirical model with force modeling and considered a one-way cylinder that moves against a

spring [10]. The pulling forces of the muscles were approximated by polynomial functions. Meanwhile,

S. Davis, in 2006, improved the empirical model and included braid effects on contractile range [11,12].

Then, analyses its frictional effect to produce a more accurate model and removed the necessity of

correction parameter k. Contrarily, T. Kerscher, in 2006, proposed a combination of empirical-geometric

model with a variable spring and parallel variable damper system [13]. Due to its nonlinearities, the

static characterization of McKibben muscle becomes more complicated with introduction of these

compensation methods. To reduce the complexity, KC. Wickramatunge, in 2009–2010, introduced

empirical modeling using spring system with variable stiffness of parameter K, where the parameter

was taken as 2nd Order of Polynomials (OP) of pressure and length [14,15]. Then, S.V. Krichel, in 2010,

improved the force modeling of McKibben muscle and considered one-way cylinder which moves

against a spring. The pulling forces of the muscles were approximated by polynomial functions [16].

As suggested by B. Tondu in 2000, BS. Kang in 2009 and T. Itto in 2011 also considered implementation

of correction factor q>1 for shape irregularity [17,18]. The correction factor q is a pressure dependent

parameter of exponential function. Afterwards, J. Sarosi, in 2012–2015, improved the existing empirical

model proposed by B. Tondu and T. Kerscher with 5–6 parameters models [19,20]. On contrary, M.

Tothova in 2013 proposed an advanced geometric muscle model where changes of the pressure and

diameter of the muscle can be varied.In addition, volume of cylinder was expressed as function of

muscle diameter and valve diameter [21]. Similar to this work, Z. Kulesza, in 2014, also considered the

same issues where the effects of the end-cap diameters were based on cone shapes [22]. On the other

hand, T. Nuchkrua in 2014 evaluated the static muscle force based on empirical stiffness to actuate the

muscle actuator via hydrogen absorption/desorption [23]. Inspired by the R.B. Reynold model, B. Yao

in 2016 proposed a synthetically empirical model consisted of hysteresis, viscous damping, rubber

elasticity and contractile elements in parallel [24]. Recently, A.A. Ibadi, in 2016–2018, also considered

an exponential correction factor q to account for shape irregularities of McKibben muscle [25–27].

These researches were focused on quasi-static empirical modeling without quasi-rate and historic

dependencies. Eventhough, S. Davis considered both quasi-static and historic dependencies by

creating minor hysteresis loops. Furthermore, B. Yao contemplated quasi-static, quasi-rate, and historic

dependencies in their model. In addition, T. Kerscher used correction factor µ(ε) to compensate

the asymmetric behavior of McKibben muscle at low and high pressure; while K.C. Wickramatunge

implemented the 2nd OP equations within the region. Similarly, J. Sarosi introduced empirical model

with 5–6 parameters to handle this asymmetric region during low and high input pressure. However,

most of others researchers just implemented intelligent controllers such as PID, Cascaded, Tracking,

Fuzzy Logic, and Fuzzy Adaptive PID to compensate the nonlinearities of McKibben muscle.

On the other hand, dynamic modeling of hysteresis considers the output’s delay which happened

during cyclic contraction and expansion of McKibben muscle. This is due to frictions in between
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thread-to-thread and thread-to-bladder of the McKibben muscle including other unidentified factors.

When compared static and dynamic models of McKibben muscle, asymmetric hysteresis offset can

be observed. To resolve this behavior, K. Inoue, in 1988, proposed a model consisted of frictional

term proportional to the angular velocity of the pulley and spring term proportional to the pulley

angle [7]. Then, CP. Chou, in 1996, implemented static coulomb friction model and create static offset

during both contraction and expansion stages. While, B. Tondu, in 2000, proposed and compared the

implementation of static and dynamic coulomb friction models [28,29]. Afterwards, R.W. Colbrunn, in

2001, resolved the problem by using three elements models of spring, viscous damper and coulomb

friction [30]. On contrary, J. Schroder, in 2003, implemented static offset of force which is practically

similar to the coulomb friction model [31]. On the other hand, S. Balasubramanian in 2006 considered

the dynamic modeling through the FLP graph implementation [32]. Following B. Tondu, S. Davis, in

2006, introduced dynamic coulomb friction model. However the proposed empirical model neglected

the k factor [12]. Furthermore, B.S. Kang, in 2009, implemented both velocity’s dependence coulomb

and viscous friction models [17]. While, V. Jouppila in 2010 applied static coulomb friction model as

proposed by CP. Chou and B. Tondu [33]. Then, T. Itto in 2011 introduced a spring element under no

pressure condition into coulomb and viscous friction models proposed by BS. Kang based on vertical

load system [18]. In addition, R. Tang in 2012 improved the hysteresis modeling using spring, viscous

damper, and dynamic coulomb friction model as proposed by R.W. Colbrunn [34]. Meanwhile, J.

Zhong, in 2014, investigated the effect of strand on strand and bladder on bladder friction models for

the dynamic modeling [35].

The above mentioned approaches without a doubt were the pillar in hysteresis modeling of

McKibben muscle on both static and dynamic modeling. Through some review analysis and simulation

of the existing empirical models, significant research gap has been found to improve dynamic modeling

of McKibben muscle. As suggested by B.S. Kang and T. Itto on dynamic modeling of hysteresis, the

hysteresis behavior is characterized using both velocity’s dependence coulomb and viscous friction

models. However, in vertical load system it is found that friction on the McKibben muscle depends

on both input excitation frequency and vertical load. Thus, additional correction functions γ(F) and

γ( f ) for compensating hysteresis behavior were introduced to improve adaptability of the proposed

empirical model while considering quasi-static, quasi-rate, and historic dependencies. The critical

parameters of the proposed empirical model were optimized using particle swarm optimization

(PSO) method.

2. Materials and Methods

Two McKibben muscles with initial lengths of 300 mm and 530 mm were prepared for data

collection. The data was used for characterizing nonlinearities and hysteresis phenomena of McKibben

muscle. The McKibben muscle consists of a rubber tube, braided mesh sleeve, and connectors.

Experimental tests were performed using a vertical load system as shown in Figure 1. It consists of

McKibben muscle, displacement sensor, load sensor, accelerometer, static load, regulator, compressor,

processor, and data acquisition. A graphical user interface (GUI) for operating vertical load system was

prepared using LabVIEW software (Academic Software-Spring 2015, National Instruments Corporation,

Ireland). The input pressure of McKibben muscle was generated using random wave signal to create

cyclic motion of contraction and expansion. This random wave was used for both quasi-static and

quasi-rate dependency tests. In addition, this random wave also historic dependence where it creates

minor hysteresis loops with nonlocal memory behaviors. The approach implemented in this research

paper emphasized empirical modeling based on law of physic and geometrical analysis of McKibben

muscle. To compensate the quasi-static behavior of McKibben muscle, shape irregularities q(P),

and slenderness µ(ε) correction functions were used for static modeling. To develop a model while

considering multiple dependencies, it will require for another empirical modification. Therefore,

additional correction functions were proposed to compensate dynamic irregularities of McKibben

muscle. Where, the modification was made to generate dynamic friction model. The analysis and
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characterization of the hysteresis data were programmed with MATLAB language (MATLAB R2017a,

MathWorks Inc., academic use); while the MATLAB Simulink was used to simulate existing and

proposed empirical models. In addition, Particle swarm optimization (PSO) method was implemented

to obtain best parametric values of the empirical model. Finally, model testing and correlation test

were performed to analyze the performance of the proposed model.

Figure 1. Vertical load system.

3. Hysteresis Phenomena

The research on hysteresis phenomenon has been recorded for decades. Early study on this

phenomenon is first observed in 1881 by James A. Ewing within the field of ferromagnetism [36]. It is

historic dependence, where it can be considered as a system that has memory function. The effects

produce from the input to the system are reflected with a certain delay in time. According to research

conducted by Oh and Bernstein in 2005, hysteresis is a quasi-static phenomenon in which a sequence

of periodic inputs produces a nontrivial input–output loop as the period of input increases without

bound [37]. This phenomenon arises in diverse fields ranging from physics to biology, from material

science to mechanics, and from electronics to economics [38,39]. The focus in this paper is on the

inherent hysteresis phenomena in McKibben muscle. The hysteresis phenomena in McKibben muscle

have more asymmetry and can be difficult to model when compared to other fields such as smart

actuators, material, ferromagnetism, etc. This is especially at low and high input pressure region where

the contraction length behavior is highly nonlinear.

Hysteresis Data Characterization

The structural materials of McKibben muscle inherently lead to hysteresis phenomena during

cyclic contraction and extension. This nonlinearity is addressed as a difficult error source that needs

to be handled, especially in a precise control system. The major and minor hysteresis loops can be

visibly seen by conducting either an isometric or isotonic tests using vertical load system. As describe

in Section 2, the experimental tests were conducted for both quasi-static and quasi-rate dependencies.

For quasi-static test, McKibben muscle was vertically attached with different static loads (0–300 N).

The change in static load produces different set of hysteresis data. Where, the maximum contracting

length reduced with increased of static load. For quasi-rate test, the McKibben muscle was induced

with random wave signal (input pressure) and its frequency was varied in between 0.5 and 2.0 Hz.

This test was performed because level of hysteresis depends closely on the rate of input excitation.

In addition, the change in velocity also causes the friction between the rubber tube and braided mesh

sleeve to significantly change, and thus produce a different set of hysteresis data. The desired output

from the vertical load system was the contracting length of McKibben muscle. Therefore, a laser

displacement sensor was used to measure the contracting length of McKibben muscle during cyclic

contraction–expansion. Figure 2 shows two set of hysteresis data obtained from vertical load test.

The hysteresis data reflects quasi-static, quasi-rate, and historic behaviors of the McKibben muscle.
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In addition, both major and minor hysteresis loops can be visibly seen from the Figure 2. The major

hysteresis loop can be seen as an outer layer of the hysteresis data; while the minor hysteresis loop

shows the nonlocal memory behavior of McKibben muscle. This behavior has historic dependence,

where the hysteresis behavior depends on the previous values of force, length, and pressure. The two

sets of McKibben muscle also produce similar hysteresis data, which clarified the consistency of

identical McKibben muscle’s nonlinear behaviors.

 
(a) 

 
(b) 

Figure 2. Hysteresis data at all dependencies: (a) McKibben muscle of 300 mm and (b) McKibben

muscle of 530 mm.

4. Parametric Identification of the McKibben Muscle Model

The parametric estimation can be considered in two different points of views. Firstly, an identifier

can be designed and substituted into the model of the system. It will imitate the behavior of the real

system as nearly as possible with a minimum error produce. This identification technique is known as

nonparametric identification. Secondly, parameters of the proposed model can be estimated through

an optimization tool. This identification technique is known as parametric identification. In this

technique, the system parameters can be estimated using several methods such as least mean square,

recursive least square, genetic algorithm and particle swarm optimization [38,39]. Recently, particle

swarm optimization method has become major contributions within the control application because of

its powerful application. The purpose of the system identification is to locate best parametric solution

of dynamic system based on the provided input and output data. Previous studies have applied

various techniques to solve the problem related to system identification [40–42].

Particle Swarm Optimization

Recently, research area that has been receiving an increase attention by the research community,

as well as the industry is the optimization algorithm [40]. It is a procedure or numerical method used

to find the maximum or the minimum of a function operating with certain constraints [41]. One of

the most reliable optimization methods is particle swarm optimization (PSO). It is a computational

algorithm technique based on swarm intelligence. This method is inspired based on the observation

of social interaction and animal behaviors (i.e., fish schooling and bird flocking). It imitates the

way they search for food by emphasizing cooperation and the competition among the entire group

population [42]. A swarm consists of individuals, which is called particles and it is initialized with a

population of random solutions; where each of these particles represents a different possible set of the

unknown parameters to be optimized. The particles will fly around in a multidimensional search space,

and then adjust their position according to its own experience and the experience of its neighboring

particle [43]. It is designed to efficiently search the solution space by swarming the particles towards
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the best fitting solution encountered in previous iterations. This, eventually, will be approaching better

solutions through the course of the process; then finally converging on a single minimum or maximum

solution [44]. The performance of each particle is determined based on a predefined fitness function of

the problem. Actually, the implementation of PSO has been reported in many research works in this

field. Besides, PSO has been regarded as a promising optimization algorithm due to its simplicity, low

computational cost, and good performance [45,46].

To describe the PSO algorithm, it is initialized with a population of random solutions.

These random solutions are called particles, and each of the potential solutions is also assigned

with a randomized velocity function [47]. The PSO relies on the information exchange in between

particles of the population called swarm. The particles will adjust their trajectories towards their current

best solution (fitness), Pbest. In addition, each particle modifies its trajectory towards the previous

best position, Gbest, attained by any member of its neighborhood as shown in Figure 3. Furthermore,

each particle also moves in the search space with an adaptive velocity function. The measurement of

fitness evaluates the performance of each particle to determine if the best fitting solution is achieved.

During the process, the fitness of the best individual will improve over time and eventually tends

to stagnate towards the end of the process; where the stagnation of the process coincides with the

successful discovery of the global optimum.

 

𝑃𝐺

𝑁 𝐺𝑣𝑣

Figure 3. Particle swarm optimization (PSO) block diagram.

Several parameters such as velocity constant, population size, and number of iterations need

to be defined before the process. These parameters will decide to a great extent the ability of global

minimization. Where, the maximum velocity affects the ability of escaping from local optimization

and refining global optimization. Then, the size of swarm stabilizes the requirement of computational

cost and global optimization. Table 1 shows the initialized values for the selected parameters.

The optimization parameter is realized either when the maximum number of iterations increased or

with an attainment of satisfactory fitness value. The fitness value is a reciprocal of the magnitude

of the objective function where minimization of objective function was considered. In this paper,

the termination criteria considered with the attainment of satisfactory fitness value, which occurred

with the maximum number of 10 generations. For each generation, the best among the 50 particles is

considered as a potential solution.

Table 1. Initialized value for selected parameters.

Population size, N 50
Number of generations, G 10
Velocity constant, v1 1.5
Velocity constant, v2 1.5
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5. Empirical Modeling of the McKibben Muscle

Generally, there is no fundamental theory that allows for a general mathematical framework

for modeling the hysteresis effects because the origins of these phenomena are often unclear and

complicated [48,49]. It can be observed from literature that most of existing hysteresis models are initially

developed to describe a particular type of hysteretic system. However, its mathematical form could

be implemented for multidisciplinary extension. Most of the approaches used in characterizing the

hysteresis behavior are either by the law of physics or the phenomenological method [50]. For example,

empirical model is established based on the principle of physics, such as the relationships of energy,

displacement, and geometric configuration [39]. However, it is not easy to describe a model by this

principle because the physical feature of a hysteretic system is usually very complicated. In addition,

the empirical model developed for one McKibben muscle may not be used for another kind of natural

compliant or soft actuator, and thus no model generalization is possible. With the availability of various

physic based models, a complete model analysis was carried out to determine unsettled problem which

remains in the hysteresis characterization on both static and dynamic modeling of McKibben muscle

using empirical model.

5.1. Contracting Force Model

The static modeling of hysteresis was used to configure the contracting force of the McKibben

muscle with various pressures and contracting lengths. Several modifications on empirical modeling

have been suggested after it was first introduced by K. Inoue in 1988 [7]. The first modification model

included an empirical constant k to account for end deformation of the muscle as suggested by B.

Tondu in 1994, as shown in Equations (1) and (2) [8].

Fs(P, ε) =
πDo

2P

4













3(1− kε)2

tan2αo
−

1

sin2
αo













(1)

k = c1 (2)

The second modification model included a shape irregularity correction function q which tunes

the slope of the considered static contracting force model as suggested by B. Tondu in 2000, B.S. Kang

in 2009, and T. Itto in 2011 [17,18,25]. The shape irregularity was defined as an exponential function of

input pressure as shown in Equations (3) and (4).

Fs(P, ε) =
πDo

2P

4













3(1− q(P)ε)2

tan2αo
−

1

sin2
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(3)

q(P) = c1 + c2ec3P (4)

The third modification model included both correction functions of shape irregularity q and

slenderness µ as suggested by T. Kerscher in 2006 [13]. The slenderness was defined as an exponential

function of contracting length as shown in Equations (5)–(7). Its implementation also considers the

various length of McKibben muscle; where the contracting force value will significantly increase with

increment in McKibben muscle’s initial length.

Fs(P, ε) = µ(ε)
πDo

2P

4













3(1− q(P)ε)2

tan2αo
−

1

sin2
αo













(5)

q(P) = 1 + c1ec2P (6)

µ(ε) = c3ec4ε + c5 (7)
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5.2. Extracted Hysteresis Model

Two rules can be distinguished in dry friction between two contacting surfaces which are presliding

and sliding. The extracted hysteresis can be noticed to exhibit similar behavior when compared with

presliding or sliding regimes of mechanical friction. In the presliding rule, the adhesive forces are more

dominant at asperity contacts with rate independency; where the friction force becomes dependent to

function of displacement rather than the velocity. Meanwhile, the sliding regime happens when the

displacement increases until the asperity contacts are broken away [51]. In this paper, both coulomb

and viscous frictions are considered as the hysteresis phenomena source. The dry coulomb friction

term involves the hysteresis behavior due to the thread-on-thread and thread-on-bladder friction of the

McKibben muscle. This coulomb friction is a static friction which switches during cyclic contraction

and expansion process [17]. Its mathematical form is shown in Equation (8). The mathematical form

helps to predict the direction and magnitude of the friction force in between two bodies with dry

surfaces in contact.

Fcc

( .
ε
)

= ccsign
( .
ε
)

(8)

The viscous friction term describes a viscosity of the compressed air and the friction between the

air and the tube’s inner surface as shown in equation (9). There are two parts of viscous friction. The

first part contributes from the viscosity of the compressed air itself. In other words, it is the frictional

effects between gas particles. While the second part of viscous friction contributes from the friction

between the compressed air and the inner wall of the McKibben muscle’s rubber tube [17,18].

Fvc

( .
ε
)

= cv
.
ε (9)

Modification was required to improve the adaptability of the model while considering quasi-static,

quasi-rate, and historic dependencies. This modification requests additional correction parameters

for load-dependent γ(F) and rate-dependent γ( f ) in developing empirical modeling with dynamic

friction model. The mathematical formulation of the dynamic friction model is shown in Equations (10)

and (11). Both correction functions were designed as a first-order equation of static load (γ(F) = aF)

and excitation frequency (γ( f ) = b f ).

cv = γFγ f (10)

Fhys

( .
ε
)

= ccsign
( .
ε
)

+ γFγ f
.
ε, ε , 0 (11)

5.3. Elasticity Model

The McKibben muscle behaves asymmetrically at low pressure especially when the muscle was

further stretched, even after reaching its maximum expansion; where the mechanism of McKibben

muscle only consisted of braided thread and a rubber tube [18]. Thus, in this state, the McKibben

muscle is considered to be an elastic body as the expansion reached zero internal pressure, as shown in

Equation (12). This condition was implemented to modify the dynamic force of McKibben muscle;

where there is no contraction force generated which caused no force to balance the vertical load.

Felastic = K(Lo − L(1− ε)3), ε ≤
L− Lo

L
(12)

5.4. Dynamic Equation for Vertical Load System

Most of the applications based on McKibben muscle involve direct load to the system, which is

required for lifting and sustaining a solid body. Therefore, in this paper, the dynamic behavior of the

vertical load system was considered within the mathematical formulation. When the static load is

pulled up due to contracting force generated from the McKibben muscle, it causes friction between

the thread and bladder of the McKibben muscle. As suggested in previous section, the dynamic

friction model was affected with changes in static load and input excitation’s frequency. The equation
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generated for the force dynamic of the vertical load system was properly described and shown in

Equations (13)–(15). The implementation of these equations were illustrated as block diagram shown

in Figure 4. Meanwhile, the description of model parameters and parameters optimized by PSO

algorithm were shown in Table 2.

Fdyn = Fs(P, ε) −Mg− Fhys

(

F,
.
ε
)

(13)

Fdyn = ML
..
ε (14)

Fdyn = Fnet(P, ε) − Fhys

(

F,
.
ε
)

, ε >
L− Lo

L
(15)

Fdyn = Fnet(P, ε) − Felastic − Fhys

(

F,
.
ε
)

, ε ≤
L− Lo

L
(16)

𝐹 = 𝐹 (𝑃, 𝜀) − 𝑀𝑔 − 𝐹 (𝐹, 𝜀)𝐹 = 𝑀𝐿𝜀
𝐹 = 𝐹 (𝑃, 𝜀) − 𝐹 (𝐹, 𝜀), ε > 𝐿 − 𝐿𝐿𝐹 = 𝐹 (𝑃, 𝜀) − 𝐹 − 𝐹 (𝐹, 𝜀), ε ≤ 𝐿 − 𝐿𝐿

𝑃 𝛾𝜀, 𝜀, 𝜀 𝐹𝛼 𝐹𝑀 𝐹𝑔 𝐹𝐷 𝐹𝐿 , 𝐿 𝐹𝐾 𝐹𝑐 , 𝑐 , 𝑐 , 𝑐 , 𝑐 , 𝑐 𝑁𝑐 , 𝑐 𝐺𝑞 𝑣 , 𝑣𝜇 𝑃𝛾 𝐺

Figure 4. Block diagram of empirical modeling.

Table 2. Model parameters.

Variable Description Variable Description

P Input pressure γ f
Rate dependency
correction function

ε,
.
ε,

..
ε

Contracting length, velocity and
acceleration

Fdyn Dynamic force

αo Initial braid angle Fs Static force

M Mass of the weight Fhys Hysteretic force
g Gravitational acceleration Fcc Coulomb friction

Do Initial diameter Fcv Viscous friction
Lo, L Initial length and length Fnet Net force

K Coefficient of elasticity (PSO) Felastic Elastic force
c1, c2, c3, c4, c5, c6 Constant coefficients (PSO) N Number of population

cc, cv Coulomb and viscous friction coefficients G Number of generation
q Shape irregularity correction function v1, v2 Velocity constants
µ Slenderness correction function Pbest Local optimum
γF Load dependency correction function Gbest Global optimum

6. Results

The results were divided into subsections to properly describe the flow of the modeling progress

from data collection until model verification. The subsections include force dynamic characteristics,

empirical model simulation, and empirical model testing, while considering quasi-static, quasi-rate,

and historic dependencies. While the results consisted of experimental hysteresis data, empirical

modeling, model simulation, parametric optimization, and model testing.

6.1. Force Dynamic Characteristics

Figure 5 shows the force dynamic characteristics of the proposed empirical modeling at various

static loads and input pressures. Experimental contacting force data (Fexp) was obtained through
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actual testing of McKibben muscles using the vertical load system. While a static contracting force (Fs)

illustrates the graphical solution from the empirical modeling. This static force remains unchanged,

which indicates the actual force characteristic of the McKibben muscle with zero load implementation.

Net contracting force (Fnet) and dynamic contracting force (Fdyn) show the dynamic behavior of the

vertical load system. Where the static contracting force was affected by the static load and frictional

effects of the contacting surface in between rubber tube and braided mesh sleeve, thus yielding to the

hysteresis phenomena during cyclic contraction and expansion.

𝐹𝐹 𝐹 𝐹

(a) (b) 

(c) (d) 

Figure 5. Force dynamics characteristics at various static load and input pressure.

6.2. Empirical Model Simulation

The parametric identification of the empirical model was optimized using a PSO algorithm as

discussed in Section 4. The input for the model simulation was based on the actual input–output

data obtained from vertical load system tests. The input data consisted of random wave of input

pressure excitation for both quasi-static and quasi-rate dependency tests. All geometrical values of the

McKibben muscle was carefully identified and measured. These values include initial length, diameter,

braid angle, etc. The output data was the contracting length of the McKibben muscle with different

dependency tests. This actual data was compared with model data obtained from the simulation.

The comparison of these two data provides a fitness data (i.e., objective function or error data), which

were used for parametric identification and optimization.
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Figure 6a shows existing empirical model simulation. The model simulation was carried out

while considering quasi-static dependency at 0.5 Hz without parameter optimization. As suggested

from the literature, constant coulomb and viscous friction models were implemented to compensate

the hysteresis behavior of McKibben muscle. It was observed from the result that the hysteresis

phenomena cannot be completely captured. This because, the friction at the contacting surface between

the rubber tube and braided mesh sleeve increased with static load. Therefore, the friction model

became dependent to change in static load. This behavior was similarly observed when excitation

frequency of the input pressure changed (rate dependency). Figure 6b shows the output of the proposed

empirical model simulation. The empirical model was revised based on dynamic friction modification

while considering quasi-static dependency at 0.5 Hz. The model parameters were optimized using

PSO method. It was observed from the simulation that the hysteresis phenomena behave accordingly

while retaining the level of hysteresis throughout quasi-static dependency. The model verification with

actual hysteresis data in Figure 2, while considering all dependencies, is shown in Figure 7.

(a) (b) 

Figure 6. Model simulation: (a) existing model and (b) proposed model.

6.3. Empirical Model Testing

Empirical model testing was carried out to evaluate the proposed model adaptability while

considering quasi-static, quasi-rate, and historic dependencies. The model performance was measured

based on the correlation test evaluation. The quasi-static model testing was performed by introducing

static load disturbance into the model. This generates isotonic relation of the McKibben muscle model.

Contrarily, the quasi-rate model testing was performed by introducing different excitation frequency to

generate the input pressure signal. This caused the contraction length, velocity, and acceleration of the

McKibben muscle to change significantly. This phenomenon affects frictional behavior as described in

sliding regime. Meanwhile, the historic dependence model testing was performed by generating input

pressure with random wave signals. The random signals created different pattern of minor hysteresis

loops with nonlocal memory behavior effect. Figure 7 shows the superimposed of proposed model

with hysteresis data while considering quasi-static, quasi-rate, and historic dependencies. This result

shown that the empirical modeling with modified dynamic friction model was able to perform at all

dependencies. This performance also can be verified based on the model output comparison with

experimental data as shown in Figure 8. It shows that the proposed model adapted with changes in

quasi-static and quasi-rate dependencies; thus being able to accurately simulate the contracting length

of the McKibben muscle. Furthermore, the proposed model was able to correct its path even though

there were sudden changes in input pressure. The changes occurred due to the random wave signal,

which produces minor hysteresis loops. Table 3 shows the correlation test of the desired trajectories

and model outputs from empirical modeling. The result shown significantly high correlation values

produced at lower frequencies with (0.944 ± 0.009) at 0.5 Hz and (0.897 ± 0.007) at 1 Hz. Even though
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the correlation values were slightly decreased at higher frequencies with (0.843 ± 0.016) at 1.5 Hz and

(0.752 ± 0.027) at 2 Hz, the result was still significant. This indicated that the proposed empirical

modeling was able to compensate all source of dependencies. However, there was still some error

produced by the proposed model. This error cannot be avoided due to the nonlinearities inherited by

the McKibben muscle were varied and complicated. These results were still not the best solution that

can be produced by the proposed empirical model because the model parameters can still be improved

by the PSO method.

(a) (b) 

(c) (d) 

Figure 7. Hysteresis based on empirical model and experimental tests at all dependencies.

Table 3. Correlation test at all dependencies.

Quasi-Static\Rate 0.5 Hz 1 Hz 1.5 Hz 2 Hz

5 kg 0.929 0.894 0.815 0.732
10 kg 0.937 0.903 0.825 0.739
15 kg 0.952 0.883 0.847 0.763
20 kg 0.955 0.898 0.839 0.741
25 kg 0.941 0.895 0.853 0.797
30 kg 0.948 0.904 0.861 0.799
x± σ 0.944 ± 0.009 0.897 ± 0.007 0.843 ± 0.016 0.752 ± 0.027
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(a) (b) 

(c) (d) 

(e) (f) 

(g) (h) 

(i) (j) 

(k) (l) 

Figure 8. Empirical model testing at all dependencies (0.5–2.0 Hz).
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7. Discussion

The performance of dynamic modeling of McKibben muscle was evaluated based on comparison

test of empirical modeling and hysteresis data. The hysteresis data was obtained through the

experimental study, while the empirical model was modified based on the existing model presented

in literature. Empirical modeling consists of two parts: the first part is the stating modeling of the

contracting force model, while the second part is the dynamic modeling of the inherent hysteresis.

Before performing the empirical modeling, all the initial parameters were identified and measured.

Then, the simulation model was performed with parametric identification using PSO algorithm. Based

on simulation analysis, the contracting force of static empirical modeling was able to characterize the

quasi-static behavior within the linear region of McKibben muscle’s model. The nonlinear region of

the McKibben muscle which is at zero pressure condition was represented by using elasticity model.

When the McKibben muscle was stretched beyond its nominal length with zero pressure intake, the

McKibben consisted only of a braided mesh sleeve and the rubber tube mechanism. The force dynamic

of the proposed empirical model for quasi-static dependency can be seen in Figure 5. The result

shown that the proposed model was able to generate an appropriate force dynamic comparable

with the one obtained through experimental study. The experimental data was obtained from the

experimental test at minimum load condition. Furthermore, the model also demonstrated comparable

hysteresis behavior during cyclic compression and expansion as shown in Figure 7. The model was

compared with hysteresis data in Figure 2. As describe in the literature, the extracted hysteresis data

was dependent on the contraction velocity of the McKibben muscle. The modified dynamic friction

model was proven to be able to capture the quasi-rate behavior of McKibben muscle which follows the

sliding regime.

The random wave of input pressure was used to test the effect of the nonlocal memory or historic

dependency on the proposed empirical model. This random input data consisted of various contraction

patterns during cyclic contraction and expansion of the McKibben muscle. By employing random input

data, the ability of the model to redefine its path towards required value can be clarified. In addition,

the reliability and adaptability of the dynamic model of hysteresis also can be verified. The ability to

convert the present path into the desired path is what defines the history dependency. The influence of

the nonlocal memory causes the dynamic modeling of McKibben muscle complicated and difficult

to be achieved. The proposed model testing while considering quasi-static, quasi-rate and historic

dependencies were shown in Figure 8. These tests were accomplished by generating the random

wave of input pressure with different excitation frequencies (0.5–2 Hz), and were then performed with

various static loading (0–300 N). Based on the result, the proposed model was able to simulate the

desired contracting length precisely with all sources of dependencies. The performance of the proposed

empirical model was evaluated using a correlation test. Table 3 shows the correlation test of the

proposed empirical model at all dependencies. The correlation test indicated the model performance

with high mean correlation value and low standard deviation. The model was performed very well

at lower frequencies with correlation values of (0.944 ± 0.009) at 0.5 Hz and (0.897 ± 0.007) at 1 Hz.

For higher frequencies, the result was still significant with slightly decreasing correlation values of

(0.843 ± 0.016) at 1.5 Hz and (0.752 ± 0.027) 2 Hz. Although the modification model and correction

function were presented, there were some errors remaining due to the high nonlinearities of McKibben

muscle that cannot be captured. These remaining errors could easily be eliminated with intelligent

control strategies.

8. Conclusions

In conclusion, empirical modeling of the McKibben with quasi-static, quasi-rate, and historic

dependencies was presented. A modification was made on the existing empirical model in literature to

accurately capture the inherent hysteresis of McKibben muscle. Additional correction functions were

proposed to increase the adaptability of the dynamic friction model when tested with all dependencies.

The initial and boundary conditions specifying nonlinearities of the McKibben muscle during the cyclic
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contraction and expansion were identified and measured. These values were essential to enhance the

parametric identification using the PSO algorithm. Based on the obtained results, the implemented

static modeling was able to capture the quasi-static behavior of McKibben muscle. The approximate

static contracting force was comparable within the linear region; while the nonlinear region was

compensated by implementation of elasticity model at zero pressure condition. The modification

on dynamic friction model was able to capture the quasi-rate behavior of the McKibben muscle.

When induced with different excitation frequencies, the proposed model was able to precisely follow

the desired path of the contracting length similar with actual data. The final results show that model

outputs were comparable to the hysteresis data. The correlation test was used to clarify the model

testing at all dependencies with scientific justification. In addition, the McKibben muscle also exhibits

a nonlocal memory behavior and it is historic dependence. If the contraction or expansion of the

McKibben muscle failed to reach its final value its path changes depending on the past values of

contracting length, force, and pressure. Therefore, in the dynamic modeling of hysteresis, the nonlocal

memory plays a major role in determining the adaptability of the proposed model. There will be a

sudden increase in the contracting force and pressure during cyclic contraction–expansion process

without considering this dependency. This research finding will be important in improving lots of

control system areas which implement McKibben muscle and equivalent actuators in the field of

rehabilitation orthosis, robotics, biomedical etc.
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