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Abstract

This paper proposes a perturbation-based heuristic for the capacitated multisource Weber problem. This procedure is
based on an effective use of borderline customers. Several implementations are considered and the two most appropriate
are then computationally enhanced by using a reduced neighbourhood when solving the transportation problem. Compu-
tational results are presented using data sets from the literature, originally used for the uncapacitated case, with encour-
aging results.
� 2006 Elsevier B.V. All rights reserved.

Keywords: Capacitated; Location–allocation; Continuous space; Heuristics
1. Introduction

The continuous capacitated location–allocation
problem with a fixed number of open facilities each
with a constant capacity, which is also known as the
capacitated multisource Weber problem, may be
stated as follows: given the location of each fixed
point (customer point), the demand at each fixed
point, the transportation cost for the area of inter-
est, the number of facilities to open, and the capac-
ity of each of these facilities, the aim is to determine
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the location of each facility, and the allocation of
customers to these open facilities (if more than
one facilities are to be opened). Given

Parameters

n the number of fixed points (or customer
points)

wj demand or weight of customer j (j =
1, . . . ,n)

aj ¼ ða1
j ; a

2
j Þ location of customer j where aj 2 R2,

(j = 1, . . . ,n)
M the number of facilities to be located
b fixed capacity of a facility where b 2 N

Decision variables

X i ¼ ðX 1
i ;X

2
i Þ coordinates of facility i where

X i 2 R2
.
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xij quantity assigned from facility i to cus-
tomer j, i = 1, . . . ,M, j = 1, . . . ,n

The problem can be formulated as follows:

Minimise
XM

i¼1

Xn

j¼1

xijdðX i; ajÞ ð1Þ

subject to

Xn

j¼1

xij 6 b 8i ¼ 1; . . . ;M ; ð2Þ

XM

i¼1

xij ¼ wj 8j ¼ 1; . . . ; n; ð3Þ

xij P 0 8i ¼ 1; . . . ;M ; j ¼ 1; . . . ; n; ð4Þ

where d(Xi,aj) represents the Euclidean distance be-
tween facility i and customer j.

(1) denotes the objective function which is the
total transportation cost, (2) ensures that capacity
constraints of the facilities are not violated, (3) guar-
antees that the demand of every customer is satisfied
and (4) refers to non-negativity of the decision vari-
ables xij.

It can be noted that once the set of open facilities
has been decided upon (e.g., if we fix the open facil-
ities in the formulation), the resulting problem
reduces to the usual Transportation Problem (TP)
which can be solved optimally in polynomial time.
In short, the problem is to find the best facility
configuration.

In this study the value of b is set to

Pn

j¼1
wj

M

� �

where dxe is the smallest integer larger than or equal

to x. Note that if b >

Pn

j¼1
wj

M we introduce a dummy
customer with a 0 transportation cost and a demand

equals to the remaining demand, e.g., b�
Pn

j¼1
wj

M .
This customer is used only when solving the TP,
but not at the location and the allocation stages.

Most of the work in the literature on the capaci-
tated facility location concentrates on the discrete
problem and the methods mainly used include dual-
ascent based [11], cross decomposition method [13],
constructive-type heuristic [10,7] and Lagrangian
relaxation heuristics [2,1].

Other related work on the continuous location
problem include Eben-Chaine et al. [8] who studied
the case of capacitated facility location on a line,
and Brimberg and Mladenovic [4], Brimberg et al.
[3] and recently by Salhi and Gamal [12] who inves-
tigated the multisource Weber problem. To our
knowledge, it is only Cooper [6] in the 1970s who
attempted the capacitated continuous case. He pre-
sented exact and approximate methods for solving
the transportation-location problem. The heuristic
method described in this work is a modification of
the alternating transportation-location method
introduced in [6]. Here, the location method and
the usual TP are alternately applied until there is
no epsilon improvement in cost. We shall describe
Cooper’s method [6] as this will be used as the foun-
dation for our perturbation-based heuristic.

1.1. Cooper’s alternating transportation-location
heuristic (ATL)

Firstly, M facilities are randomly chosen from
the fixed points. Then, the TP using these M open
facilities is solved to find the allocation for the
capacitated problem. For each of the M indepen-
dent set of allocations, containing ni fixed points
where i = 1, . . . ,M and

PM
i¼1ni P n, the new loca-

tion of the facilities is found using the iterative pro-
cedure based on the Weiszfeld Equation which is
given below:

X 1ðkÞ

i ¼

Pni
ji¼1

wji a1
ji

d X ðk�1Þ
i ;ajið ÞPni

ji¼1

wji

d X ðk�1Þ
i ;ajið Þ

and

X 2ðkÞ

i ¼

Pni
ji¼1

wji a2
ji

d X ðk�1Þ
i ;ajið ÞPni

ji¼1

wji

d X ðk�1Þ
i ;ajið Þ

; ð5Þ

where the superscript k denotes the iteration num-
ber and wji

represents all or a fraction of the jth cus-
tomer demand that is assigned to facility i.
Obviously wji

6 wj as some customers may have
their demand split because of the solution of the
TP and hence some customers can be used more
than once in Eq. (5) with their appropriate demand
adjusted accordingly.

The location problem and the TP are alternately
solved until there is no epsilon improvement in cost.

According to [6], ATL yields a convergent mono-
tone nonincreasing sequence of values for the objec-
tive function. However, there is no guarantee that it
will converge to the global minimum but the result,
when not optimal, is found empirically to lie within
�10%, and usually within 2–3%, of the optimal
solution when tested on small instances.

The rest of the paper is structured as follows:
in the next section, the modification on Coo-
per’s ATL is presented. Section 3 describes our



1196 Z.M. Zainuddin, S. Salhi / European Journal of Operational Research 179 (2007) 1194–1207
perturbation-based heuristic and section Section 4
presents a neighbourhood reduction for solving
the TP. Section 5 provides our computational
results and our findings as well as some research
issues are given in the last section.

2. A modified Cooper’s heuristic

In this section we present a scheme for generating
initial solutions and implementations that consider
the diversity of these solutions when addressing
the capacitated problem. These ideas with a slight
modification within Cooper’s algorithm are then
combined to form our first heuristic which we refer
to as the modified Cooper’s heuristic.

2.1. The generation of an initial solution

The first part of the heuristic is to generate an ini-
tial facility configuration. Instead of just starting
with M randomly chosen points as in ATL, the ini-
tial facility configuration is found through solving
heuristically the uncapacitated problem. This is used
for two reasons (i) the solution found can be opti-
mal or near optimal if found feasible, and (ii) this
solution can be used as a lower bound especially if
the solution is known to be optimal or very close
to optimal as shown in the literature (see [3]). Our
approach is based on Cooper’s multi-start alternate
algorithm (CMSA) [5]. For each starting configura-
tion, the Cooper’s alternate procedure of locate and
allocate is carried out until there is less than epsilon
improvement in cost, (say 0.0001). However, the
solution found by this method is a local minimum.
To increase the chance of getting a near optimal
solution the method is repeated several times, say
K, using different random starting locations. In
other words, CMSA is the repeated use of Cooper’s
alternate method.

2.1.1. The Furthest Distance Rule

The obtention of the initial solution can be car-
ried out either randomly or via quick greedy heuris-
tics for the p median problem. In our preliminary
testing (see [14, pp. 74–80]), based on the 50-cus-
tomers problem from the literature (see [3]), we used
the multi-start heuristic as performed in Cooper, the
Furthest Distance Rule which we refer to as the
FDR, and also a combination of FDR and the drop
heuristic. As a compromise between solution quality
and computational effort we have opted for the
FDR as our quick heuristic for generating our ini-
tial facility configurations for the uncapacitated
location problem. The reasoning behind the FDR
is to generate reasonably quickly initial facility loca-
tion points which are situated far apart. This rule is
defined asX
i2E1

dðX i; aj� Þ ¼ max
j2J

X
i2E1

dðX i; ajÞ; ð6Þ

where E1 is the set of facility locations already cho-
sen as initial points, J is the set of fixed points not
chosen yet, and (j*) is the new selected site using
Eq. (6).

The first point is chosen randomly from the exist-
ing fixed points, then the remaining M � 1 points
that are far apart are generated using Eq. (6). For
simplicity we restrict our initial location to a fixed
point though this could be generated randomly in
the plane. The algorithm that uses this idea is
referred to as the Furthest Distance Method
(FDM for short) and its steps are given in Fig. 1.

2.2. Solving the capacitated location problem

In this section, we first discuss three implementa-
tions based on the solutions found by the FDM to
solve the capacitated problem, and then we present
the algorithm which we refer to as the modified
Cooper’s algorithm.

2.2.1. Multi-start alternate algorithm (MSA)

One way of solving the capacitated problem is by
taking the best configuration (i.e., configuration
with the minimum cost) out of the K runs for the
uncapacitated problem to be the starting configura-
tion for the capacitated problem. In other words,
the capacitated problem is only solved once.

2.2.2. Single-start alternate algorithm (SSA)

It is observed that, the best cost for the capaci-
tated problem does not necessarily originate from
the initial solution that yields the best cost for the
uncapacitated problem. Therefore, another way of
solving the problem is by considering all the K con-
figurations for the uncapacitated problem to be the
initial starting location for the capacitated problem.
In this case, the capacitated problem is solved K

times.

2.2.3. Intermediate-start alternate algorithm (ISA)

In this method, the capacitated problem is solved
by using a sample of configurations extracted
from the K found initial configurations (say D



Fig. 1. The Furthest Distance Method (FDM).
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configurations, D < K) obtained when solving the
uncapacitated problem. The scheme of selecting
these D configurations is described below. Once
these D configurations are chosen, we will then pro-
ceed to solve the capacitated problem for each value
of these D scenarios. This scheme could be seen as a
compromise between the MSA and the SSA. For
instance, if D = K, this becomes the SSA whereas
when D = 1 it is the MSA. It is obviously clear that
when the value of D gets larger, the quality of the
solution when solving the capacitated problem gets
better or remains unchanged but such a gain in
quality requires relatively more computing time.
Fig. 2. Alternating transportation-location–allocation
In this paper, the diversity or the dissimilarity of
the sample candidates is measured based on the
cost. The K configurations are arranged in ascend-
ing order of the cost. The least cost configuration
(i.e., the top of the list) is always selected since it
has the minimum cost. To choose the other
(D � 1) candidates, the gaps between two successive
costs are calculated and used as a measure to differ-
entiate between dissimilar configurations. In this
approach we only consider the configurations with
gaps larger than a prescribed gap � which is defined

as the average value of the gaps, i.e., � ¼
PK�1

t¼1
GðtÞ

K�1

where G(t) represents the gap between the cost of
-location (ATLAL) for a given d, d = 1, . . . ,D.
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the (t + 1)th and the tth configuration. Thus, in this
scheme, the value of D is not necessarily constant.

2.3. The modified Cooper’s algorithm

The capacitated problem is solved using a proce-
dure modified from Cooper’s ATL. This method
which we refer to as the alternating transporta-
tion-location–allocation-location method (ATLAL)
is similar to the ATL except that instead of alternat-
ing between the TP and the location problem, we
add another step (see step 4 in Fig. 2) where after
we get the new location of the facilities, we allocate
the customers to their nearest facility, solve the loca-
tion problem again and then the TP for the new
allocation for the capacitated problem. The main
steps of ATLAL are given in Fig. 2, for a given d,
d = 1, . . . ,D where D = 1,K or 1 < D < K. Let Sd

be the dth configuration and cost(Sd) its corre-
sponding cost. If d > 1, we select the configuration
yielding the overall least cost, costðS�dÞ ¼
mind¼1;...;DfcostðSdÞg.

We would like to note that the introduction of
this additional step (step 4) no longer results in a
convergent sequence as the monotonic property
can be lost from one cycle (step 2 to step 5) to
another. However, this shake up is embedded pur-
posely to provide flexibility in exploring more than
one local minimum by being able to escape from
regions of the previously found local minima.

3. A perturbation-based scheme

A post optimisation procedure that attempts to
improve the currently found solution by ATLAL
for each Sd, d = 1, . . . ,D is proposed. In this
approach, the locations of the facilities found with
the ATLAL heuristic are perturbed by taking into
account the clustering of the borderline customers.
These customers are defined as those which lie in
between their nearest facility and their second near-
est facility. In other words, the distance between the
customers and their nearest and second nearest
facilities is more or less the same. The formation
of these clusters is defined in the next subsection.
The point candidates (customers) of these clusters
are temporarily forced to be assigned to their near-
est facilities while we solve the TP. This task is per-
formed by temporarily removing these customers
from the system when we are solving the TP and
then re-introducing them back when we solve the
location problem. This restriction is imposed in
order to make the locations of their ‘best’ facilities
nearer to these customers. When using these new
locations, it is likely that some of these customers
will be allocated to their nearest facility as in the
uncapacitated case. This scheme is repeated starting
with the recent best configuration for the capaci-
tated problem until there is no epsilon reduction
in cost or when there is no borderline customers that
can be served by their second best facility. The
remainder of this section covers the different mecha-
nisms used within this perturbation-based procedure.
3.1. The creation of the clusters

The construction of the clusters is performed as
follows:

3.1.1. Borderline customers

We identify the set of borderline customers, B,
irrespective of the capacity of the facilities as

B ¼ i 2 f1; . . . ; ng s.t. qi ¼
dðF 1;iiÞ
dðF 2;i;iÞ

P qmax

� �
;

where d(F1,i, i) is the distance of customer i to its
nearest facility, F1,i, d(F2,i, i) is the distance of cus-
tomer i to its second nearest facility, F2,i, and qmax

is the cut off point.
The choice of the value qmax is important. If the

value is too small (near 0), too many points will be
in the set B and if it is too large (near 1), the number
of points in B will be too small. In this work, the
value of qmax is found dynamically as shown below
where the initial value of qmax is set to 0.8.

3.1.2. Assignment of customers

The set of customers that were re-assigned not to
their nearest facility, due to the TP, is defined by B1 as

B1 ¼ fi 2 B and i is not completely allocated to F 1;ig
¼ fjhgh¼1;...;H ;

where H denotes the number of elements in B1 (i.e.,
jB1j).

Note that B1 may include borderline customers,
that are not necessarily served by the second,
third, . . ., best facility. Note also if the weight of a
customer is not unity, this customer may be served
by more than one facility. In this case, even if a frac-
tion of the weight of some facility is served by its
‘best’ facility, it is still considered as a candidate in
B1. The value of jB1j plays also an important role
in defining the centre of the clusters. More explana-
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tion on this issue will be given in Section 3.1.3
below.

(a) Case B1 = {} (i.e., all the borderline customers
are completely served by their ‘best’ facility).

• If qmax > qmin (the minimum cut off, say

0.6), do the following steps:
Do while qmax > q

maxmin and B1 = {},
set qmax = qmax � 0.1 and reconstruct B1

Enddo
• If qmax = qmin (i.e., all the borderline cus-

tomers are still served by their ‘best’ facil-
ity), do the following;
if (the perturbation scheme is applied for the

first time) then

take the configuration found for the
capacitated problem using ATLAL with-
out the perturbation scheme.

else

take the best configuration found from
the previous application of the perturba-
tion scheme as the best solution.

endif
(b) Case jB1j > 0 (i.e., not all borderline customers
are completely served by their best facility).

Set qmax = qmax � 0.1, reconstruct B1, and let
L = jB1j.

if (L > H) take the new value of qmax and
the new set B1.
else (i.e., L = H) take the previous value of

qmax and the previous set B1 since there is no
change in the number of candidates of B1 even
with qmax decreased.

endif

The last value of qmax found is then used as our
cut off point for generating borderline customers.
Note that L P H.
3.1.3. Formation of the clusters

After B1 has been identified, we proceed with the
formation of the clusters. The maximum number of
clusters is taken to be k0, which is set to M in our
study. We first find the centres of the clusters then
assign the customers to these clusters.

(a) The obtention of the centres of the clusters

• Find X1 the centre of the cluster C1 such

that X1 2 B1. The first centre is chosen as
the customer of B1 with the smallest value
of qi.
• Apply the Furthest Distance Rule as given
by Eq. (6) based on B1 to get the other
k0 � 1 centres, Xk 2 B1, k = 2, . . . ,k0.
The idea of using the Furthest Distance
Rule in finding the centres is that we want
the centres to be as far away from each
other as possible. This is because, if the cen-
tres are too close to each other, they may
attract one another in the process of clus-
tering the points.

• Construct a forbidden region
Note that, when applying the Furthest Dis-
tance Rule we may get a point which is
close to one of the points we have already
selected previously. To avoid this, we
impose a forbidden region around the cur-
rent centre/s. The concept of making previ-
ously visited solutions forbidden for future
exploration is one of the key factors in tabu
search meta-heuristic methodology. In this
work, for simplicity, we define such a
region by a circle centred at the current cen-
tre with a radius to be defined below. In
other words, only the points that are out-
side the already constructed circle(s) are
potential points for cluster centers. There-
fore, the number of clusters may be less
than or equal to k0, say k1. A similar idea
was also used by Gamal and Salhi [9] when
solving the multi-source Weber problem.
The radius of the forbidden region is
defined as follows. Initially, the customers
situated within a certain radius around the
centre are found. As there might be some
other points that lie close to these already
chosen customers but happen to be just
marginally outside the cluster, the neigh-
bouring customers of these chosen points
need also to be included in the cluster. In
the following, for simplicity of notation,
we consider the first cluster as an example
since the same formulae applies to all the
k clusters. Let d(X1,FX1) be the Euclidean
distance between the first centre X1 and
the facility that serves it (FX1) and set the
radius of the forbidden region (r) to
r ¼ �max þ �̂ where �max is the initial radius
set to dðX 1;FX 1Þ

2
. In other words, customers sit-

uated within this radius of the centre will be
assigned to this cluster.
�̂ is the radius of the neighbourhood of the
initial cluster candidates which we set to
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dðX 1;FX 1Þ
4

. This flexibility is introduced to
allow those customers very close to those
already assigned based on �max to be
included.
(b) The generation of the clusters
Let B2 be the set of all customers served by

other facilities than their best one and note
that B2 is not necessarily a subset of B1.
Fig. 3 shows how r, �max and �̂ are defined
for a given cluster k, and also illustrates the
elements in B, B1, B2 and the cluster Ck. For
each centre, those customers in B2 which fall
within the radius �max are checked. If the clus-
ter is empty (this means that there are no other
candidate besides the centre), then the next
centre is checked and so on. If some customers
are obtained, the cluster’s candidates are
assigned as follows. Firstly, those customers
which fall within the radius � are assigned to
the cluster, initially � = �min, see Fig. 4 for
details. If the cluster is empty, the value of e

is increased by a fixed amount (say b = 0.1)
up to �max until customer(s) are assigned to
this cluster. Then, the neighbouring customers
which lie outside the � radius but within �min

radius of the currently chosen customers are
also chosen. To obtain the cluster’s candidates
for a certain cluster, say cluster k, the scheme
given in Fig. 4 can be followed.

Note that if some customers are served by their
‘best’ facilities, even though they are located close
Formation of a given cluster k, k = 1, . . . ,k1 with radius r

ntre c.
to one another, as in a cluster, they will not be con-
sidered to form a cluster.

3.2. Temporary removal of clusters

In this subsection, we restrict the clusters to
remain assigned to their nearest facility while we
solve the allocation problem. Note that as the total
demand of those customers in a given cluster is rel-
atively smaller compared to the capacity of the facil-
ity as given by the value of b, the assignment of a
given cluster to its nearest facility is therefore feasi-
ble. In the case where the facilities happen to have
different capacities, the proposed relaxation scheme
needs to be modified to cater for such a situation. In
this scheme we temporarily omit the customers of
the clusters when we are solving the TP. By doing
this, we are forcing the customers to remain served
by their nearest facilities until the location of the
facilities become unchanged from one iteration to
the next. However, if by assigning a cluster point
to its nearest facility violates the supply constraint
of that facility, the point will be omitted from the
cluster. This is repeated for all the clusters obtained.
The main steps are summarised in Fig. 5.

We present two variants for handling these clus-
ters when solving the TP with full capacity. The
issue here is to avoid the snowball effect where the
location and allocation of one facility will affect
the location of other facilities and the allocation
of their customers. The first variant is based on tem-
porarily removing all clusters one at time whereas
the second concentrates on temporarily removing
only those clusters that are likely to have an effect
on the total cost.

3.2.1. Removal of all clusters

The location and their allocation problems with
full capacity are solved alternately for all the clus-
ters until less than epsilon improvement in cost is
found. Obviously, this will require relatively a
longer computing time since there are k1 full TPs
to be solved at each iteration.

3.2.2. Removal of some clusters

An empirical study is conducted to see the impact
of the change after solving the TP without those
customers belonging to the clusters (step 3 of
Fig. 5), (dL)k where k = 1, . . . ,k1 to the final solu-
tion found by the full TP when using the final con-
figuration. This change in cost (dL)k is then sorted
in descending order. It is worth noting that in some



Fig. 4. The selection of the kth cluster candidates, k = 1, . . . ,k1.

Fig. 5. Temporary removal of a cluster.
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instances, the final solution is found to be better
even though the respective change in cost (dL)k is
lower. Therefore, the difference between the highest
change in cost (dL)1 and the change in cost (dL)k

that yields the best solution is calculated for 2–25
open facilities for the 50-fixed points problem and
the 287-fixed points problem. These data sets which
are usually used for the multisource Weber problem
are taken from the literature (see [3]). From this lim-
ited preliminary experiment, we observed that it is
not necessary to solve the full TPs for all the clusters
but only to concentrate on those clusters having a
change in cost j(dL)kj 6 4j(dL)1j. Here, at iteration,
the number of full TPs solved is k2 where k2� k1.
This simple but powerful reduction scheme will then
be used in our future testing.

In this approach, we explore another configu-
ration besides the k2 configurations already
obtained. We restrict to just one more only to pro-
vide more flexibility while limiting the additional
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computational burden as this exercise is performed
for each value of d (d = 1, . . . ,D) and at each itera-
tion. It may be useful to investigate the effect of
exploring more than one additional configuration
in future. The idea is inspired from Genetic Algo-
rithms where a new solution is constructed based
on combining two existing configurations. Here,
only the clusters with positive (dL)k are considered
for combination. The rational behind this is that if
we combine two or more clusters having positive
(dL)k values, we may generate a new solution with
a higher positive value. The new configuration will
take the location of the affected facilities of all the
clusters involved. For instance, in Fig. 6 where we
have two clusters and four facilities to be opened,
after temporary removing the cluster candidates,
the location of facilities 2 and 3 are changed in clus-
ter 1 and the location of facilities 1 and 4 are chan-
ged in cluster 2. Therefore, the new configuration
will take the location of facilities 2 and 3 from clus-
ter 1 and the location of facilities 1 and 4 from clus-
ter 2. However, if there are shared affected facilities,
the location of the facilities i, i = 1, . . . ,M with more
total demand will be taken. For example, in Fig. 7,
the location of facility 3 is changed in both clusters 1
and 2. But, since the demand to facility 3 at the loca-
tion in cluster 1 is more, or in other words, facility 3
has more customers if it is situated as in cluster 1,
therefore, the new configuration will take the loca-
tion of facility 3 from cluster 1. At each iteration,
the number of full TPs to be solved in this method
is then k3 = k2 + 1.

The selected configuration is the one that yields
the least cost after solving the full TPs in both clus-
ter methods.

As the solution obtained might be a local mini-
mum, the perturbation scheme is then applied with
the recently chosen configuration as the starting
locations. However, before doing this, the change
between the current cost of the capacitated problem
after applying the perturbation scheme, cap*(Sd),
′

′

′′

′′ ′′

′

′

′′

Fig. 6. No shared affected facilities.
and the cost of the capacitated problem without
the perturbation scheme, cap(Sd), is evaluated. Let
(dG)d denote this change.

• If (dG)d is positive, we start the perturbation
scheme again with the recently obtained configu-
ration.
The process of creating the clusters, forcing them
to stay at their nearest facilities and solving the
location and allocation problem is repeated until
there is less than � reduction in cost. It can be
observed that after a few iterations, though the
number of clusters and the candidates of the clus-
ters remain the same, we still continue with this
process until no more improvement in cost. We
adopt this strategy since the location may have
changed without affecting any change in the
allocation.

• If dGd is negative, we record cap(Sd) as our solu-
tion and stop.

4. Effect of neighbourhood reduction

It can be shown that a large amount of the total
cpu time is consumed in solving the large number of
TPs. Note that though the TP is solved in polyno-
mial time, the use of such a procedure so many
times renders the whole exercise computationally
unattractive. There are a few ways on how to over-
come this drawback. In this study, at each iteration,
when solving the TP, we concentrate on a smaller
portion of the original problem by considering a
subset of facilities only. A smaller neighbourhood
is then defined and the TP is solved for the facilities
involved and their respective customers only. The
main steps of the procedure are given in Fig. 8
and an illustration is provided in Fig. 9. In other
words, for each cluster, we determine those facilities
close to it and the assigned customers and then solve
the TP based on this smaller subset of facilities.



Fig. 8. Definition of a smaller neighbourhood (jH*j < M, jA(H*)j < n).

Fig. 9. Illustration of smaller neighbourhood.
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According to Fig. 8, we apply the TP based on jH*j
facilities (jH*j < M) and A(H*) the new set of allo-
cated customers instead of n where jA(H*)j < n.
Note that the selection of neighbourhood is carried
out using a distance-related criterion but other pro-
cedures such as the use of the Voronoi diagram are
also possible. Though the latter scheme may obvi-
ously select more precisely those affected facilities,
since the process of alternating between location–
allocation requires several iterations, our approxi-
mation scheme in detecting the affected facilities is
reasonably appropriate. This reduction scheme is
embedded into our method when we are solving
the TP for M times while temporary removing the
cluster’s candidates. The effect of such a reduction
is demonstrated in our computational results in
the next section.
5. Computational results

The proposed heuristics are written in Fortran90
and run on Sun Enterprise Workstation 450 run-
ning Solaris 2.6. We used the four test problems
given in the literature for the uncapacitated case,
see [3]. These are the 50-fixed points, the 287-fixed
points, 654-fixed points and the 1060-fixed points
test problems. The weight of all customers is set to
unity except for the 287-fixed point problem. The
algorithms are applied to the test problems to solve
for 2–25 open facilities for the 50-fixed points prob-
lem and 5–50 with an increment of 5 for the other
three problems. To evaluate the performance of
our heuristics, we present the computational results
obtained when solving the problem using the ATL
and the ATLAL.
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As these instances do not include the capacity of
the facilities, we generate the capacity of the facility

as b ¼
Pn

j¼1
wj

M

� �
. The value of b is for some facilities

either larger or smaller than the total demand of the
allocated customers to the facilities for the case of
the uncapacitated problem. Note that in some cases,
the total supply of the facilities will exceed the total
customers demand as we are using the smallest inte-

ger which is greater than

Pn

j¼1
wj

M . In this case, a
dummy customer with a unit transportation cost
of 0 and a demand equals to the remaining demand
is added. This dummy customer is used only when
solving the TP, but not at the location and alloca-
tion stages.

The values of the parameters K and � are found
empirically using limited experiments. These include
K = 50 as required in Fig. 1, and � = 0.0001 as
referred in several places throughout the text.

We compute the % deviation based on the cost
found for the multisource Weber problem. As these
solutions were already reported in the literature to
be optimal or very close to optimal (see [3]), we
can therefore use such solution costs as lower
bounds in our experiments. These are the optimal
solutions for the 50 and 287-fixed points problems
and the best known solutions for the 654 and
1060-fixed points problems given in [3]. The devia-
tion is then computed based on these lower bounds
as follows:

devð%Þ ¼ F best � F LB

F LB

� 100;

where Fbest is our overall best solution cost and FLB

refers to the lower bound or ‘best’ cost for the unca-
pacitated case. We also record the overall average
deviation (OAD) for the instances for each of the
four test problems.

We conducted two experiments. In the first one,
our aim is to select, based on the smallest data set,
the most appropriate cluster type method which will
then be used in our second experiment. This variant
is then used with the reduction neighbourhood
when dealing with the larger data sets.
5.1. Experiment 1: The choice of the variant for

the large capacitated problems

The decision is based on the solution quality
(measured by the average deviation) and the aver-
age computing time for the SSA, MSA and ISA
using the all-clusters method (A: single all cluster,
B: multi all cluster and C: intermediate all cluster,
respectively) without the neighbourhood reduction
for the 50-fixed point problem. These three algo-
rithms are applied to solve for 2–25 open facilities.
The average deviation obtained through SSA was
10.20% using 23.67 seconds of computing time,
13.11% through MSA with 0.81 seconds and
10.21% through ISA with 9.10 seconds. The detailed
results of all the test problems can be found in [14].

According to our limited experiments, ISA gives
much lower average deviation than MSA but a frac-
tion higher than SSA. In terms of computing time,
ISA takes much shorter time than SSA but slightly
longer than MSA. Taking into consideration both
the solution quality and the computational time,
we conclude that ISA is the most appropriate
method and therefore for convenience we proceed
with the use of the neighbourhood reduction proce-
dure on this method only.

5.2. Experiment 2: The choice of the cluster type

method

The results for each test problem are summarised
in Table 1. Columns 1–3 give the number of custom-
ers, the number of facilities and the lower bound
(LB) respectively. The rest four double columns rep-
resent the % deviation from the LB and the comput-
ing time in seconds needed for the ATL (existing
method in [6]), ATLAL (the modified Cooper’s
ATL heuristic), and our two new variants respec-
tively that are intermediate all cluster + reduction
and enhanced Intermediate (ISA using the some-
clusters method) + reduction. The computing time
given here excludes the time for generating the ini-
tial starting locations for the uncapacitated problem
as this is almost negligible. It could also be noted
that as ATL is relatively much faster than the oth-
ers, it may be useful to test this simple method start-
ing from several initial solutions as this may
improve the current solution found by the present
implementation of ATL.

From our experiments, it can be seen that the
neighbourhood reduction does give a significant
improvement in the computing time especially for
enhanced intermediate + reduction. For instance,
for the 50-fixed point problem, the computing time
is reduced by up to 58%. But for this procedure, the
cost is slightly inferior compared to the procedure
where the full TP is solved for every cluster in inter-
mediate all cluster + reduction. However, for the



Table 1
The ATL, ATLAL, intermediate all cluster + reduction and enhanced intermediate + reduction results for solving the continuous
capacitated problem

n M LB Previous Modified ATL New techniques

ATL ATLAL Intermediate all
cluster +
reduction

Enhanced intermediate +
reduction

Dev.
(%)

Time
(seconds)

Dev.
(%)

Time
(seconds)

Dev.
(%)

Time
(seconds)

Dev.
(%)

Time
(seconds)

50 2 135.52 0.84 0.01 0.99 0.38 0.83 0.56 0.83 0.54
3 105.21 1.06 0.01 1.05 0.43 1.02 0.70 1.02 0.65
4 84.15 14.65 0.02 3.23 0.40 2.76 0.67 2.76 0.66
5 72.24 12.37 0.02 6.70 0.47 5.94 1.14 5.94 0.93
6 60.97 0.83 0.02 0.85 0.53 0.85 0.76 0.85 0.75
7 54.50 4.75 0.03 5.21 0.84 3.35 2.17 3.35 2.12
8 49.94 5.33 0.04 2.76 0.72 2.76 1.06 2.76 1.04
9 45.69 9.85 0.04 4.38 1.01 4.05 3.05 4.05 2.81

10 41.69 18.58 0.02 17.50 1.03 15.72 4.21 15.72 3.76
11 38.02 11.62 0.04 7.39 1.29 6.57 3.42 6.57 3.35
12 35.06 16.10 0.05 1.98 1.20 1.98 1.40 1.98 1.38
13 32.31 27.87 0.03 10.07 1.36 8.83 2.81 8.83 2.64
14 29.66 9.69 0.07 7.20 1.44 6.62 2.86 6.62 2.79
15 27.63 14.81 0.05 6.77 1.71 6.49 3.68 6.49 3.08
16 25.74 15.88 0.06 6.83 1.65 5.93 4.41 5.93 4.35
17 23.99 17.80 0.03 9.34 1.66 7.92 6.47 7.92 6.24
18 22.29 22.14 0.04 7.47 1.61 6.89 6.85 6.89 6.35
19 20.64 17.98 0.06 7.36 1.63 7.32 5.97 7.32 5.92
20 19.36 13.97 0.05 17.59 1.94 17.43 9.56 17.43 9.88
21 18.08 39.58 0.07 16.63 2.33 16.41 9.53 16.41 9.08
22 16.82 34.70 0.08 13.90 2.08 13.60 6.21 13.60 6.18
23 15.61 29.76 0.09 16.44 2.63 16.12 6.35 16.12 6.28
24 14.44 20.82 0.10 15.35 2.18 15.35 5.92 15.35 5.88
25 13.30 110.13 0.06 72.08 1.68 70.96 6.25 70.96 6.00

OAV 19.63 0.04 10.80 1.34 10.24 4.00 10.24 3.86

287 5 9715.63 11.61 0.60 7.95 8.09 7.90 56.67 7.90 56.15
10 6705.04 32.19 1.07 28.28 15.78 25.77 539.11 25.77 467.42
15 5224.70 45.88 1.34 40.81 26.77 33.82 1837.17 33.82 1583.15
20 4148.84 48.62 3.57 53.20 30.70 38.99 2532.21 38.63 2451.81
25 3348.71 63.17 3.68 68.02 37.71 44.37 3442.54 44.97 2589.46
30 2716.91 65.63 5.51 92.72 59.84 54.23 6365.81 54.27 5369.35
35 2238.18 107.55 7.41 112.02 74.73 69.27 8310.36 69.56 4815.19
40 1900.84 149.34 6.51 148.19 89.40 84.96 10948.99 88.25 4155.36
45 1630.31 293.58 8.98 167.56 125.38 94.82 12169.82 99.80 2987.60
50 1402.58 383.08 8.73 267.65 183.21 115.94 19814.90 119.22 3593.01

OAV 120.06 4.74 98.64 65.16 57.01 6601.76 58.22 2806.85

654 5 209068.80 54.00 1.73 58.20 9.79 54.00 62.72 54.00 63.45
10 115339.03 42.81 2.63 48.70 20.62 42.81 136.94 42.81 110.84
15 80177.04 67.69 4.90 75.55 52.63 67.69 852.92 67.69 576.32
20 63389.02 71.97 5.60 74.70 60.20 69.37 1086.59 69.37 788.59
25 52209.51 66.45 15.42 53.99 117.95 47.52 3842.79 47.52 2382.54
30 44705.19 83.41 15.14 91.79 66.81 86.77 852.18 86.78 275.71
35 39257.27 95.64 15.67 82.28 193.61 78.13 5772.53 78.75 1604.92
40 35704.41 49.78 18.61 45.90 189.50 44.25 4740.56 44.25 1547.38
45 32306.97 80.47 27.99 61.79 226.92 59.23 5112.34 59.23 846.86
50 29338.01 43.47 36.11 43.07 349.55 41.96 20333.38 42.09 3568.67

OAV 65.57 14.38 63.60 128.76 59.17 4279.29 59.25 1176.53

(continued on next page)
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Table 1 (continued)

n M LB Previous Modified ATL New techniques

ATL ATLAL Intermediate all
cluster +
reduction

Enhanced intermediate +
reduction

Dev.
(%)

Time
(seconds)

Dev.
(%)

Time
(seconds)

Dev.
(%)

Time
(seconds)

Dev.
(%)

Time
(seconds)

1060 5 1851879.88 1.06 5.60 1.20 54.44 1.06 370.85 1.06 266.73
10 1249564.75 3.14 11.24 3.76 110.14 3.11 1167.35 3.11 562.17
15 980132.13 1.73 47.67 2.02 287.13 1.63 4063.94 1.63 1123.70
20 828802.00 3.56 29.45 3.90 254.62 3.42 5116.90 3.42 2514.43
25 722061.19 6.08 47.75 4.72 780.42 3.87 30551.64 4.18 12072.97
30 638263.00 5.68 58.44 4.57 868.19 3.92 45191.83 3.96 6789.35
35 577526.63 8.13 63.36 3.83 548.16 3.35 21713.60 3.37 5279.45
40 529866.19 7.14 123.59 6.75 1139.13 6.02 47253.61 6.03 21112.48
45 489650.00 10.95 87.97 9.24 1582.52 7.83 120072.31 7.89 34370.33
50 453164.00 9.65 111.25 7.39 1678.53 5.87 130753.06 5.87 75512.33

OAV 5.71 58.63 4.74 730.33 4.01 40625.51 4.05 15960.40

Bold: Good solution quality; Bold : CPU best amongst the two new techniques.
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50-fixed point problem, this method reduces the
average deviation by up to 48% from the average
of deviation given by ATL, 52% for the 287-fixed
point problem, 10% for the 654-fixed point problem
and 29% for the 1060-fixed point problem. It is
observed that the one additional configuration in
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Fig. 10. A summary of solution quality and computational time for
enhanced intermediate does not give much contri-
bution to the final solution.

The summary of the performance of all the meth-
ods given in Table 1 when represented by the solu-
tion quality and the computing time is shown in
Fig. 10.
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6. Conclusion and possible research issues

A perturbation-based heuristic is proposed to
solve the capacitated continuous location–alloca-
tion problem which appears to have been scarcely
investigated in the past. The heuristic uses the Fur-
thest Distance Rule method to generate the initial
starting locations for the uncapacitated problem
though other rules were also tested. The uncapaci-
tated problem is then solved using different starting
locations for K times but only a sample of config-
urations are chosen as the starting locations
for the capacitated problem. The sample is
selected using a diversity scheme based on cost. Ini-
tially, the capacitated problem is solved by the alter-
nating transportation-location–allocation-location
(ATLAL) heuristic and later, a perturbation scheme
based on borderline customers is put forward to
improve the obtained solution. A neighbourhood
reduction technique is embedded into the perturba-
tion scheme when solving the TPs with a consider-
able reduction in computational effort without a
detriment in solution quality. Encouraging results
are obtained when compared to the ATL and its
enhanced version the ATLAL. These comparisons
are based on the lower bounds which are taken as
those optimal or near optimal solutions published
for the uncapacitated case. Our obtained solutions
could be used in future as benchmarks for those
researchers interested in tackling this challenging
continuous capacitated location problem.

The present work can be enhanced by considering
a modification within the TP to further reduce the
computing time. For instance, instead of starting
the TP from the very beginning, we can use the cur-
rent location and allocation as the basic feasible solu-
tion and continue the search to find the new optimal
TP solution. A possible approach would be to
develop also a suitable meta-heuristic to generate
even better solutions. From a practical research view-
point, it would also be interesting to tackle the capac-
itated continuous location problem with an unknown
number of facilities by incorporating the facility fixed
cost into the model. The fixed cost can be considered
either constant (fixed charge) or throughput-depen-
dent and/or zone-related. The authors are currently
investigating some of the above issues.
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