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Abstract: In this paper, we describe a method to solve the problem of �nding periodic solutions for second-
order neutral delay-di�erential equations with piecewise constant arguments of the form x′′(t) + px′′(t − 1) =
qx([t]) + f (t), where [·] denotes the greatest integer function, p and q are nonzero real or complex constants,
and f (t) is complex valued periodic function. The method reduces the problem to a system of algebraic
equations. We give explicit formula for the solutions of the equation. We also give counter examples to some
previous �ndings concerning uniqueness of solution.
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1 Introduction
In the study of almost periodic di�erential equations, many useful methods have been developed in the
classical references such as Hale and Lunel [1], Fink [2], Yoshizawa [3], and Hino et al. [4].

Di�erential equations with piecewise constant arguments are usually referred to as a hybrid system, and
could model certain harmonic oscillators with almost periodic forcing. For some excellent works in this �eld
we refer the reader to [5, 6] and references therein, and for a survey of work on di�erential equations with
piecewise constant arguments we refer the reader to [7, 8].

A recently published paper [9] has studied the di�erential equation of the form

x′′(t) + px′′(t − 1) = qx(2[ t + 12 ]) + f (t), (1)

where [·] denotes the greatest integer function, p and q are nonzero constants, and f (t) is a 2n-periodic
continuous function. The 2n-periodic solvable problem (1) is reduced to the study a system of n + 1 linear
equations. Furthermore, by applying the well-known properties of linear system in algebra, all existence
conditions are described for 2n-periodic solutions that yields explicit formula for the solutions of (1).

In this paper we study certain functional di�erential equation of neutral delay type with piecewise
constant arguments of the form

x′′(t) + px′′(t − 1) = qx([t]) + f (t), (2)
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where p and q are nonzero real or complex constants, f (t) is a complex valued n-periodic continuous function
de�ned on R.

The papers [5, 6] have investigated the existence of almost periodic solutions of (2), when f is an almost
periodic function, while Nth-order di�erential equation of neutral delay type are studied in [10, 11]. In these
works some theorems for the existence and uniqueness of the almost periodic solutions have been obtained.
However, there are some incorrectness of uniqueness results given in [5, 10–12].

In the present paper, by adapting the method in [9], we give all exact conditions for the uniqueness,
in�niteness and emptiness of n-periodic solutions of (2), in the case when f is n-periodic. We give explicit
formula for the exact solutions of the equation. For some functions f , we also show that equation (2) may
have in�nitely many 3-periodic solutions.

Throughout this paper, we use the notations R for the set of reals and Z for the set of integers.

2 De�nition of periodic solution

A solution of (2) is de�ned in [13] as follows

De�nition 2.1. A function x is called a solution of (2) if the following conditions are satis�ed:

(i) x and x′ are continuous on R;
(ii) the second-order derivative of x(t) exists everywhere, with possible exception at points t = n, n ∈ Z,

where one-sided second-order derivatives of x(t) exist;
(iii) x satis�es (2) on each interval (n, n + 1) with integer n ∈ Z.

Comments: The importance of the di�erentiability condition imposed on x is given in De�nition 13 of [13],
since we deal with second-order di�erential equations. This condition may admit uniqueness condition of
periodic solution of (2), however it is a su�cient condition for the uniqueness condition (see Theorem 3.2
(ii) of this paper). Equation (2) may have in�nite number of periodic continuous functions, satisfying (2) on
each interval (n, n + 1) and may not have derivative at each point n, n ∈ Z (see Examples 1 and 2 below).
Moreover, if we omit the continuity condition of x′ on R, then the uniqueness of periodic solution of (2) does
not hold, and well-posedness of (2) is not true. In the de�nition of solution, the continuity condition of x′

on R is omitted in many works (see, for example, [5], [11] and [12]) consequently, the uniqueness of pseudo
periodic and hence almost periodic solution does not hold. We illustrate this in the following two examples.

Example 1. Let f (t) = −3π2 cos πt, p = 2, q = 4. Then the function

x(t) = −15 − 2α + αt − 4
3Q(t) + 3 − 3 cos πt, t ∈ [0, 2] (3)

satis�es (2) with the function Q de�ned on [0, 2] as

Q(t) =
{
−9t

2

2 , t ∈ [0, 1),
−92 − 9(t − 1) + (27 + 3α)

(t−1)2
2 , t ∈ [1, 2],

where α is any number. One can easily check that x(t) is continuous on R. But x′(t) is discontinuous at k ∈ Z
when α ≠ −6. If α = −6, x(t) is the exact solution of (2) (see Figures 1 and 2).

Example 2. Let f (t) = 1
π2 cos πt and p

2 ≠ 1, 8 − 8p + q = ̸ 0. Then, by the de�nition of solution given in the
papers [5], [10] and [11], the 2-periodic functions

xα(t) = x(0) + αt +
q

1 − p2 Q(t) +
1 − cos πt
1 − p (4)

are solutions of the equation (2), where α is any number and the function Q de�ned on [0, 2] as

Q(t) = (x(0) − px(1)) t
2

2 for t ∈ [0, 1),
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Figure 1: The graph of x(t) when α = −10.
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Figure 2: The graph of x(t) when α = −6.

Q(t) = Q(1 − 0) + (x(0) − px(1))(t − 1) + (x(1) − px(0)) (t − 1)
2

2 for t ∈ [1, 2),

x(0) = 2(−6q + 18pq − 4α + 4p2α − qα + pqα)
q(8 − 8p + q) ,

x(1) = −2(18q − 6pq − 4α + 4p
2α + qα − pqα)

(−8 + 8p − q)q .

Note that x(0) = xα(2), which gives continuity of xα on R.
It has been claimed in the papers [5], [10] and [11] that if |λi| = ̸ 1, i = 1, 2, 3, then equation (2) has a

unique solution, where λi , i = 1, 2, 3, are the eigenvalues of the matrix

A =

1 + q
2 − p 1 p

q 1 0
1 0 0

 .

For the case, when p = 1
2 , q = 3, the matrix A has a form

A =

2 1 1
2

3 1 0
1 0 0

 .

One can easily check that the eigenvalues λi , i = 1, 2, 3 are reals and |λi| = ̸ 1, i = 1, 2, 3. Moreover, the
conditions of the Main results of these papers are satis�ed. Example 2 shows incorrectness of the results
Theorem 2.11 in [10], Theorem 3.3 in [11] and Theorem 1 in [5], which claim uniqueness of the almost periodic
solutions of (2).
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3 2 and 3-periodic solutions

In this section we give a method of �nding periodic solutions of (2) and their existence conditions. Let f be
n-periodic continuous function. We consider two cases n = 2 and n = 3 in this section before considering the
general case n in Section 4.

The case n = 2. We seek a function x as a 2-periodic function that solves (2).
Equation (2) is equivalent to

x′′(t + 1) + px′′(t) = qx([t + 1]) + f (t + 1).

Since x′′(t + 1) = x′′(t − 1), this becomes

x′′(t − 1) = −px′′(t) + qx([t + 1]) + f (t + 1). (5)

Substitute this into (2) and assuming p2 = ̸ 1, we get

x′′(t) = q
1 − p2 (x([t] − px([t + 1])) +

1
1 − p2 (f (t) − pf (t + 1)). (6)

Integrating (6) twice on [0, t], t < 2, we obtain

x(t) = x(0) + x′(0)t + q
1 − p2 Q(t) + F2(t), (7)

where

Q(t) =
t∫

0

t1∫
0

(x([s]) − px([s + 1])dsdt1, F2(t) =
1

1 − p2

t∫
0

t1∫
0

(f (s) − pf (s + 1))dsdt1. (8)

The function Q on [0, 2) can be represented as

Q(t) = (x(0) − px(1)) t
2

2 for t ∈ [0, 1)

and
Q(t) =

1∫
0

t1∫
0
X(s)dsdt1 +

t∫
1

1∫
0
X(s)dsdt1 +

t∫
1

t1∫
1
X(s)dsdt1

= Q(1 − 0) + (x(0) − px(1))(t − 1) + (x(1) − px(0)) (t−1)
2

2 for t ∈ [1, 2),

where X(s) = x([s]) − px([s + 1] and Q(a − 0) denotes a left limit of Q(t) at the point t = a.
This shows that the right-hand side of (7) contains only unknown numbers x(0), x(1) and x′(0). Since x

and x′ are continuous and periodic, they should satisfy x(0) = x(2), x′(0) = x′(2). To �nd x(0), x(1) and x′(0)
we apply (7) to get the system of equations

x(1) = x(0) + x′(0) + q
1−p2 Q(1) + F2(1),

x(2) = x(0) + 2x′(0) + q
1−p2 Q(2) + F2(2),

x′(0) = x′(0) + q
1−p2 Q

′(2) + F′2(2).

Taking into account

Q(1) = 1
2(x(0) − px(1)), Q(2) = 3

2(x(0) − px(1)) +
1
2(x(1) − px(0)),

the last system of equations yields

(1 + 1
2

q
1−p2 )x(0) − (1 +

1
2

qp
1−p2 )x(1) + x

′(0) = −F2(1),
1
2

q
1−p2 (3 − p)x(0) +

1
2

q
1−p2 (1 − 3p)x(1) + 2x

′(0) = −F2(2),
q

1+p x(0) +
q

1+p x(1) = −F′2(2).
(9)
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The determinant D(p, q) of this system is

D(p, q) :=

∣∣∣∣∣∣∣
1 + 1

2
q

1−p2 −1 − 1
2

qp
1−p2 1

1
2

q
1−p2 (3 − p)

1
2

q
1−p2 (1 − 3p) 2

q
1+p

q
1+p 0

∣∣∣∣∣∣∣ = −
4q
1 + p .

Since D(p, q) = ̸ 0, we get

Theorem 3.1. Let p2−1 = ̸ 0 and f be 2-periodic continuous function. Then equation (2) has a unique 2-periodic
solution having the form (7), where (x(0), x(1), x′(0)) is the unique solution of (9).

Example 3. We consider equation (2) with p = 3, q = 1 and 2-periodic function f (t) =
{
t, t ∈ [0, 1),
2 − t, t ∈ [1, 2].

It can be shown from (8) that

F2(t) =
{
− 1
24 t

2(−9 + 2t), t ∈ [0, 1),
1
8 (−

5
3 + 4t +

1
3 (−1 + t)

2(1 + 2t)), t ∈ [1, 2],

Q(t) =
{

47t2
24 , t ∈ [0, 1),
1
24 (2 − 4t + 49t

2), t ∈ [1, 2].

Solving (9), we obtained x(0) = −9748 , x(1) = −
95
48 , x

′(0) = − 1
192 . The graph of 2-periodic solution (7) is shown

in Figure 3.
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Figure 3: The graph of 2-periodic solution x(t) of equation (2) for Example 3.

Example 4. Let p = 2i, q = 1 and f (t) = eiπt . For this case, it can be shown that the 2-periodic solution of
equation (2) is

x(t) =
{
− 1
50π2

(
(10 + 20i)eiπt − (3 − 4i)(−1 + t)t

)
, t ∈ [0, 1),

− 1
50π2

(
(10 + 20i)eiπt + (3 − 4i)(2 − 3t + t2)

)
, t ∈ [1, 2].

The case n = 3. Let a function x be a 3-periodic function. From (2) we have

x′′(t) + px′′(t − 1) = qx([t]) + f (t),
x′′(t + 1) + px′′(t) = qx([t + 1]) + f (t + 1),
x′′(t − 1) + px′′(t + 1) = qx([t + 2]) + f (t + 2).

(10)

In the last equation we have used the fact that x′′(t + 2) = x′′(t − 1). The system of equations (10) of
x′′(t − 1), x′′(t) and x′′(t + 1) is solvable i� ∣∣∣∣∣∣∣

p 1 0
0 p 1
1 0 p

∣∣∣∣∣∣∣ = 1 + p3 = ̸ 0.
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From this system of equations, assuming p3 ≠ −1, we get

x′′(t) = q
1 + p3 (p

2x([t + 1]) − px([t + 2]) + x([t])) + 1
1 + p3 (p

2f (t + 1) − pf (t + 2) + f (t)). (11)

Integrating (11) two times on [0, t], t < 3, we have

x(t) = x(0) + x′(0)t + q
1 + p3 Q3(t) + F3(t), (12)

where
Q3(t) =

t∫
0

t1∫
0
(p2x([s + 1]) − px([s + 2]) + x([s]))dsdt1,

F3(t) = 1
1+p3

t∫
0

t1∫
0
(p2f (s + 1) − pf (s + 2) + f (s))dsdt1.

The function Q3 on [0, 3) can be presented by

Q3(t) = (p2x(1) − px(2) + x(0)) t
2

2 for t ∈ [0, 1),

Q3(t) =
1∫
0

t1∫
0
Y(s)dsdt1 +

t∫
1

1∫
0
Y(s)dsdt1 +

t∫
1

t1∫
1
Y(s)dsdt1

= Q3(1 − 0) + (p2x(1) − px(2) + x(0))(t − 1) + (p2x(2) − px(0) + x(1)) (t−1)
2

2 for t ∈ [1, 2),

where Y(s) = p2x([s + 1]) − px([s + 2]) + x([s]),

Q3(t) =
2∫
0

t1∫
0
Y(s)dsdt1 +

t∫
2

1∫
0
Y(s)dsdt1 +

t∫
2

2∫
1
Y(s)dsdt1 +

t∫
2

t1∫
2
Y(s)dsdt1

= Q(2 − 0) + (p2x(1) − px(2) + x(0))(t − 2) + (p2x(2) − px(0) + x(1))(t − 2) + (p2x(0) − px(1) + x(2)) (t−2)
2

2
for t ∈ [2, 3).

Hence the right-hand side of (12) contains only unknown variables x(0), x(1), x(2) and x′(0). Since x and x′

are continuous and periodic, they should satisfy

x(0) = x(3), x′(0) = x′(3).

Using these equations and (12) we have

x(1) = x(0) + x′(0) + q
1+p3 Q3(1) + F3(1),

x(2) = x(0) + 2x′(0) + q
1+p3 Q3(2) + F3(2),

x(3) = x(0) + 3x′(0) + q
1+p3 Q3(3) + F3(3),

x′(0) = x′(0) + q
1+p3 Q

′
3(3) + F′3(3).

(13)

Note that
Q3(1) = 1

2 (p
2x(1) − px(2) + x(0)),

Q3(2) = 3
2 (p

2x(1) − px(2) + x(0)) + 1
2 (p

2x(2) − px(0) + x(1)),
Q3(3) = 5

2 (p
2x(1) − px(2) + x(0)) + 3

2 (p
2x(2) − px(0) + x(1)) + 1

2 (p
2x(0) − px(1) + x(2)),

Q′
3(3) = 3

2 (p
2x(1) − px(2) + x(0)) + 1

2 (p
2x(2) − px(0) + x(1)).

Therefore, we have

(1 + 1
2

q
1+p3 )x(0) + (

1
2

q
1+p3 − 1)x(1) −

1
2

qp
1+p3 x(2) + x

′(0) = −F2(1),
(1 + q

1+p3
3−p
2 )x(0) + q

1+p3
3p2+1

2 x(1) + ( q
1+p3

−3p+p2
2 − 1)x(2) + 2x′(0) = −F2(2),

q
1+p3

5−3p+p2
2 x(0) + q

1+p3
5p2+3−p

2 x(1) + q
1+p3

−5p+3p2+1
2 x(2) + 3x′(0) = −F2(3),

q
1+p3 (1 − p + p

2)x(0) + q
1+p3 (1 − p + p

2)x(1) + q
1+p3 (1 − p + p

2)x(2) = −F′2(3).

(14)

Let D3(p, q) be the determinant of the matrix

A =


1 + 1

2
q

1+p3
1
2

q
1+p3 − 1 −12

qp
1+p3 1

1 + q
1+p3

3−p
2

q
1+p3

3p2+1
2

q
1+p3

−3p+p2
2 − 1 2

q
1+p3

5−3p+p2
2

q
1+p3

5p2+3−p
2

q
1+p3

−5p+3p2+1
2 3

q
1+p3 (1 − p + p

2) q
1+p3 (1 − p + p

2) q
1+p3 (1 − p + p

2) 0

 .
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It can be shown that
D3(p, q) = −

q(36 + 36p2 + 6p(−6 + q) + 6q + q2)
4(1 + p3) .

Summarizing these results, we get

Theorem 3.2. Let p3 + 1 ≠ 0 and f be a 3-periodic continuous function.

(i) If D3(p, q) = ̸ 0, then equation (2) has a unique 3-periodic solution having the form (12), where
(x(0), x(1), x(2), x′(0)) is the unique solution of (14).

(ii) If D3(p, q) = 0 and F3(1) = F3(2) = F3(3) = F′3(3) = 0, then equation (2) has in�nite number of
3-periodic solutions having the form

x(t) = α
(
x(0) + x′(0)t + q

1 + p3 Q3(t)
)
+ F3(t),

where (x(0), x(1), x(2), x′(0)) is an eigenvector of A corresponding to 0, α is any number.
(iii) If D3(p, q) = 0 and the rank[A] < rank[A, FT ], F = (F3(1), F3(2), F3(3), F′3(3)), then equation (2) does

not have any 3-periodic solution.

Remark 3.1. We emphasize again that in the de�nition of solution, it is important to have the continuity
condition of its derivative. If we omit this condition, we must remove the equality x′(0) = x′(3) in (13). Let p = 1.
Then the equation (13) is equivalent to 3 × 3 system

−F2(1) − α = (1 + 1
2
q
2 )x(0) + (

1
2
q
2 − 1)x(1) −

1
2
q
2 x(2),

−F2(2) − 2α = (1 + q
2
2
2 )x(0) +

q
2
4
2 x(1) + (

q
2
−1
2 − 1)x(2),

−F2(3) − 3α = q
2
3
2 x(0) +

q
2
7
2 x(1) +

q
2
−1
2 x(2),

(15)

where α is any number. Since the determinant D(q) of the system of equations (15) is

D(q) = 1
4q(9 + 3q +

q2
4 ),

(15) has a unique solution (x(0), x(1), x(2)) when D(q) ≠ 0. Therefore, for any continuous 3-periodic f and q
with q(9 + 3q + q2

4 ) = ̸ 0 the continuous function

xα(t) = x(0) + αt +
q
2Q3(t) + F3(t)

satis�es (2). In particular, the functions {xα} are well-de�ned for q and 3- periodic functions f satisfying the
conditions of the Theorem 2.1 in [12], which claim on uniqueness of almost periodic solutions. This example
shows that the Theorem 2.1 in [12] is incorrect.

Wedenote byL0 the class of continuous 3-periodic functions f with F3(1) = F3(2) = F3(3) = F′3(3) = 0, where

F3(t) =
1

1 + p3

t∫
0

t1∫
0

(p2f (s + 1) − pf (s + 2) + f (s))dsdt1.

Remark 3.2. Theorem (3.2) (ii) shows that the di�erentiability of a solution of (2) does not ensure uniqueness
of the 3-periodic and hence almost periodic solutions of this equation. We can observe the existence of in�nite
number of 3-periodic solutions for the case when f belongs toL0. Let f (t) = fk(t), fk(t) = cos 2kπt, k = 1, 2, . . .
and p = 1, q = −6. Then F3(t) = 1

1+p2
1

(2kπ)2 (1 − cos 2kπt) and hence fk ∈ L0. The matrix A is represented by

A =


−12 −

5
2

3
2 1

−2 −6 2 2
−92 −

21
2

3
2 3

−3 −3 −3 0

 .
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One can cheek that, det(A) = D3(1, −6) = 0 and the number 0 is an eigenvalue of A with multiplicity 2. The
corresponding eigenvectors are x1 = (−12 ,

1
2 , 0, 1), x2 = (−2, 1, 1, 0). By Theorem 3.2 the functions

x1(t) = (−12 + t − 3Q31(t))α +
1
8

1
(kπ)2 (1 − cos 2kπt), (16)

x2(t) = (−2 − 3Q32(t))α +
1
8

1
(kπ)2 (1 − cos 2kπt), (17)

are 3-periodic solutions of (2), where α is any nonzero constant,

Q31(t) =


0 as t ∈ [0, 1),
(t−1)2
2 as t ∈ [1, 2),

−32 + t −
(t−2)2
2 as t ∈ [2, 3],

Q32(t) =


−t2 as t ∈ [0, 1),
1 − 2t + 2(t − 1)2 as t ∈ [1, 2),
−5 + 2t − (t − 2)2 as t ∈ [2, 3].

4 n-periodic solutions

We next solve equation (2), where f is periodic with positive integer period n ≥ 3. It is clear that to seek a
function x as a periodic function, we assume that x(t) = x(t + n).

It follows from (2) and periodicity of x(t) that

(x(t) + px(t − 1))′′ = qx([t]) + f (t),
(x(t + 1) + px(t))′′ = qx([t + 1]) + f (t + 1),

. . . . . . . . .
(x(t + n − 2) + px(t + n − 3))′′ = qx([t + n − 2]) + f (t + n − 2),
(x(t − 1) + px(t + n − 2))′′ = qx([t + n − 1]) + f (t + n − 1).

(18)

Assuming the right-hand sides of (18) are known, we consider this system of equations with respect to

x′′(t − 1), x′′(t), . . . , x′′(t + n − 1).

It is solvable if and only if ∆(p) = ̸ 0, where ∆(p) = detP and P is the n × n matrix

P =


p 1 0 . . . 0 0
0 p 1 . . . 0 0
...

...
...
... . . .

...
0 0 0 . . . p 1
1 0 0 . . . 0 p

 .

Observe that
∆(p) = detP = pn − (−1)n .

Assuming pn = ̸ (−1)n, we can �nd x′′(t) from (18), i.e.,

x′′(t) = ∆(p; t)∆(p) , (19)

where ∆(p; t) = detQ and Q is the n × n matrix

Q =


p Q1(t) 0 . . . 0 0
0 Q2(t) 1 . . . 0 0
...

...
...
... . . .

...
0 Qn−1(t) 0 . . . p 1
1 Qn 0 . . . 0 p

 ,
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Qk(t) = qx([t + k − 1]) + f (t + k − 1), k = 1, 2, . . . , n.

Using the properties of determinant, we have

detQ =Q1(t)


0 1 0 . . . 0 0
0 p 1 . . . 0 0
...
...

...
... . . .

...
0 0 0 . . . p 1
1 0 0 . . . 0 p

 + Q2(t)


p 0 0 . . . 0 0
0 p 1 . . . 0 0
...

...
...
... . . .

...
0 0 0 . . . p 1
1 0 0 . . . 0 p

 + · · ·

+ Qn−1(t)(−1)n−1


p 0 0 . . . 0 0
0 1 0 . . . 0 0
...

...
...
... . . .

...
0 0 0 . . . 1 0
1 0 0 . . . 0 p

 + Qn(t)(−1)n


p 0 0 . . . 0 0
0 1 0 . . . 0 0
...

...
...
... . . .

...
0 0 0 . . . 1 0
1 0 0 . . . 0 1


=(−1)n+1Q1(t) + Q2(t)pn−1 + · · · + (−1)n−1Qn−1(t)p2 + (−1)nQn(t)p).

Taking into Q1(t) = Qn+1(t), the equation (19) represents

x′′(t) = 1
∆(p)

∑n
k=1(−1)

k+1Qk+1(t)pn−k

= q
∆(p)

∑n
k=1(−1)

k+1x([t + k])pn−k + 1
∆(p)

∑n
k=1(−1)

k+1f (t + k)pn−k .
(20)

Integrating (20) we get
x(t) = x(0) + x′(0)t + q

∆(p) Q̃n(t) + Fn(t), (21)

where
Q̃n(t) =

t∫
0

t1∫
0
R(s)dsdt1,

R(s) =
∑n

k=1(−1)
k+1x([s + k])pn−k ,

Fn(t) = 1
∆(p)

t∫
0

t1∫
0

∑n
k=1(−1)

k+1f (s + k)pn−kdsdt1.

We set

X[s] =
n∑
k=1

(−1)k+1x([s + k])pn−k .

Then the function Q̃n on [0, n) can be represented by

Q̃n(t) = X[0] t
2

2 , t ∈ [0, 1),

Q̃n(t) =
1∫
0

t1∫
0
R(s)dsdt1 +

t∫
1

1∫
0
R(s)dsdt1 +

t∫
1

t1∫
1
R(s)dsdt1

= Q̃n(1 − 0) + X[0](t − 1) + X[1] (t−1)
2

2 , t ∈ [1, 2),

Q̃n(t) =
2∫
0

t1∫
0
R(s)dsdt1 +

t∫
2

1∫
0
R(s)dsdt1 +

t∫
2

2∫
1
R(s)dsdt1 +

t∫
2

t1∫
2
R(s)dsdt1

= Q̃n(2 − 0) + (X[0] + X[1])(t − 2) + X[2] (t−2)
2

2 , t ∈ [2, 3),
. . . . . . . . . . . .

Q̃n(t) =
n−1∫
0

t1∫
0
R(s)dsdt1 +

t∫
n−1

∑n−1
l=1

l∫
l−1
R(s)dsdt1 +

t∫
n−1

t∫
n−1

R(s)dsdt1

= Q̃n(n − 1 − 0) +
∑n−1

l=1 X[l − 1](t − n + 1) + X[n − 1]
(t−n+1)2

2 , t ∈ [n − 1, n).

We remark that the functions Q̃n and Fn are twice di�erentiable on (n − 1, n) and there exist one-sided
second derivatives at t = n − 1 and t = n.
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The right-hand side of (21) contains only unknownnumbers x(0), . . . , x(n−1), x′(0). Using the periodicity
conditions x and continuity x′ from (21) we have n + 1 system of equations

x(1) = x(0) + x′(0) + q
∆(p)Qn(1) + Fn(1),

. . . . . . . . . . . .
x(n − 1) = x(0) + (n − 1)x′(0) + q

∆(p)Qn(n − 1) + Fn(n − 1),
x(n) = x(0) + nx′(0) + q

∆(p)Qn(n) + Fn(n),
x′(n) = x′(0) + q

∆(p)Q
′
n(n) + F′n(n).

(22)

The last system of equations can be written as

x(1) = x(0) + x′(0) + 1
2

q
∆(p)X(0) + Fn(1),

x(2) = x(0) + 2x′(0) + q
∆(p)

2∑
k=1

( k−1∑
r=1
X(r − 1) + 1

2X(k − 1)
)
+ Fn(2),

. . . . . . . . .

x(n − 1) = x(0) + (n − 1)x′(0) + q
∆(p)

n−1∑
k=1

( k−1∑
r=1
X(r − 1) + 1

2X(k − 1)
)
+ Fn(n − 1),

0 = nx′(0) + q
∆(p)

n∑
k=1

( k−1∑
r=1
X(r − 1) + 1

2X(k − 1)
)
+ Fn(n),

0 = q
∆(p)

n∑
l=1
X[l − 1] + F′n(n).

(23)

Since
m∑
k=1

( k−1∑
r=1

X(r − 1) + 1
2X(k − 1)

)
=
m−1∑
k=0

(m − k − 1
2)X(k),

we have

x(1) = x(0) + x′(0) + 1
2

q
∆(p)X(0) + Fn(1),

x(2) = x(0) + 2x′(0) + q
∆(p)

1∑
k=0

(2 − k − 1
2 )X(k) + Fn(2),

. . . . . . . . .

x(n − 1) = x(0) + (n − 1)x′(0) + q
∆(p)

n−2∑
k=0

(n − 1 − k − 1
2 )X(k) + Fn(n − 1),

0 = nx′(0) + q
∆(p)

n−1∑
k=0

(n − k − 1
2 )X(k) + Fn(n),

0 = q
∆(p)

n∑
l=1
X[l − 1] + F′n(n).

(24)

To evaluate the above summation, we apply the following lemma.

Lemma 4.1. For any positive integer number l ≥ 2 the equality

l−1∑
k=0

(l − k − 1
2)X(k) =

n∑
r=1

Plr(p)x(r)

holds, where

Plr(p) =
r−1∑
k=0

(l − k − 1
2)(−1)

r−k+1pn−r+k +
l−1∑
k=r

(l − k − 1
2)(−1)

n+r+1−kpk−r .
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Proof. Let αlk = l − k − 1
2 .

∆(p)
q

l−1∑
k=0

αlkX(k) =
l−1∑
k=0

αlk
n∑
r=1

(−1)r+1x(k + r)pn−r =
l−1∑
k=0

αlk
k+n∑
s=k+1

(−1)s−k+1x(s)pn−s+k

=
l−1∑
k=0

αlk
( n∑
s=k+1

(−1)s−k+1x(s)pn−s+k +
k+n∑
s=n+1

(−1)s−k+1x(s)pn−s+k
)

=
l−1∑
k=0

αlk
( n∑
s=k+1

(−1)s−k+1x(s)pn−s+k +
k∑
r=1

(−1)r+n−k+1x(r + n)p−r+k
)

=
l−1∑
k=0

αlk
( k∑
r=1

(−1)r+n−k+1x(r)p−r+k +
n∑

r=k+1
(−1)r−k+1x(r)pn−r+k

)
= αl0

n∑
r=1

(−1)r+1x(r)pn−r + αl1
( 1∑
r=1

(−1)r+nx(r)p1−r +
n∑
r=2

(−1)rx(r)pn−r+1
)

+ · · · + αl,l−1
( l−1∑
r=1

(−1)r+n−l+2x(r)p−r+l−1 +
n∑
r=l
(−1)r−l+2x(r)pn−r+l−1

)
=
(
αl0pn−1 + αl1(−1)1+np0 + · · · + αl,l−1(−1)n−l+3pl−2

)
x(1)

+· · · +
(
αl0(−1)lpn−l+1 + αl1(−1)l−1pn−l+2 + · · · + αl,l−2(−1)2pn−1 + αl,l−1(−1)n+1p0

)
x(l − 1)

+
(
αl0(−1)l+1pn−l + αl1(−1)lpn−l+1 + · · · + αl,l−1(−1)2pn−1

)
x(l)

+ · · · +
(
αl0(−1)n+1p0 + αl1(−1)np + · · · + αl,l−1(−1)n−l+2pl−1

)
x(n)

=
n∑
r=1
x(r)

( r−1∑
k=0

αlk(−1)r−k+1pn−r+k +
l−1∑
k=r
αlk(−1)n+r+1−kpk−r

)
.

By Lemma 4.1, equation (24) can be written as

x(1) = x(0) + x′(0) + q
∆(p)

n∑
r=1
P1r(p)x(r) + Fn(1),

x(2) = x(0) + 2x′(0) + q
∆(p)

n∑
r=1
P2r(p)x(r) + Fn(2),

. . . . . . . . .

x(n − 1) = x(0) + (n − 1)x′(0) + q
∆(p)

n∑
r=1
Pn−1,r(p)x(r) + Fn(n − 1),

0 = nx′(0) + q
∆(p)

n∑
r=1
Pnr(p)x(r) + Fn(n),

0 = q
∆(p)

n∑
r=1
P0(p)x(r) − F′n(n),

(25)

where

P0(p) =
n∑
k=1

(−1)k+1pn−k .

We rewrite (25) as

(1 + q
∆(p)P1n(p))x(0) + (

q
∆(p)P11(p) − 1)x(1) +

q
∆(p)

n−1∑
r=2
P1r(p)x(r) + x′(0) = −F(1),

(1 + q
∆(p)P2n(p))x(0) + (

q
∆(p)P22(p) − 1)x(2) +

q
∆(p)

n−1∑
r= ̸2
P1r(p)x(r) + 2x′(0) = −F(1),

. . . . . . . . .
(1 + q

∆(p)Pn−1,n(p))x(0) + (
q
∆(p)Pn−1,n−1(p) − 1)x(n − 1)

+ q
∆(p)

n−2∑
r=1
P1r(p)x(r) + (n − 1)x′(0) = −F(1),

q
∆(p)Pnn(p)x(0) +

q
∆(p)

n−1∑
r=1
Pnr(p)x(r) + nx′(0) = −Fn(n),

q
∆(p)P0(p)

n∑
r=1
x(r) = −F′n(n).

(26)
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We denote by Dn(p, q) the determinant of the equation (26). Then, Dn(p, q) is the determinant of the
matrix

D =



1 + q
∆(p)P1n(p)

q
∆(p)P11(p) − 1

q
∆(p)P12(p) . . . q

∆(p)P1,n−1(p) 1
1 + q

∆(p)P2n(p)
q
∆(p)P11(p)

q
∆(p)P22(p) − 1 . . .

q
∆(p)P2,n−1(p) 2

. . . . . . . . . . . . . . .
1 + q

∆(p)Pn−1,n(p)
q
∆(p)Pn−1,1(p)

q
∆(p)Pn−1,2(p) . . . q

∆(p)Pn−1,n−1(p) − 1 n − 1
q
∆(p)Pnn(p)

q
∆(p)Pn,1(p)

q
∆(p)Pn,2(p) . . . q

∆(p)Pn,n−1(p) n
q
∆(p)P0(p)

q
∆(p)P0(p)

q
∆(p)P0(p) . . . q

∆(p)P0(p) 0


Summarizing these results, we get the following main result of the paper.

Theorem 4.1. Let pn − (−1)n = ̸ 0 and f be n-periodic continuous function.

(i) If Dn(p, q) = ̸ 0, then equation (2) has a unique n-periodic solution having the form (21), where
(x(0), . . . , x(n − 1), x′(0)) is the unique solution of (26).

(ii) If Dn(p, q) = 0 and Fn(1) = · · · = Fn(n) = F′n(n) = 0, then equation (2) has in�nite number of n-periodic
solutions having the form

x(t) = α
(
x(0) + x′(0)t + q

∆(p) Q̃n(t)
)
+ Fn(t),

where (x(0), . . . , x(n − 1), x′(0)) is an eigenvector of D corresponding to 0, α is any number.
(iii) if Dn(p, q) = 0 and rank[D] < rank[D, FT ], F = (Fn(1), . . . , Fn(n), F′n(n)), then equation (2) does not

have any n-periodic solution.

Example 5. Let p = 2i, q = 1 and f (t) = cos(πt)+ i sin( π2 t). It can be shown that the unique 4-periodic solution
x of equation (2) has the form

x(t) = − 1
π2 (

19
2550 +

4i
1275 )

(
(8080i) + (131 − 188i)t − (147 − 20i)t2+

+(304 − 128i) cos( π2 t) + (42 + 36i) cos(πt) − (64 + 152i) sin(
π
2 t)
)

for t ∈ [0, 1),

x(t) = − 1
π2 (

19
2550 +

4i
1275 )

(
(246 + 216i) − (201 + 460i)t + (19 + 156i)t2

+(304 − 128i) cos( π2 t) + (42 + 36i) cos(πt) − (64 + 152i) sin(
π
2 t)
)

for t ∈ [1, 2),

x(t) = − 1
π2 (

19
2550 +

4i
1275 )

(
(734 − 392i) − (689 − 148i)t + (141 + 4i)t2

+(304 − 128i) cos( π2 t) + (42 + 36i) cos(πt) − (64 + 152i) sin(
π
2 t)
)

for t ∈ [2, 3),

x(t) = 1
π2 (

19
2550 +

4i
1275 )

(
(652 + 2048i) − (235 + 1252i)t + (13 + 180i)t2

−(304 − 128i) cos( π2 t) − (42 + 36i) cos(πt) + (64 + 152i) sin(
π
2 t)
)

for t ∈ [3, 4].
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