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Abstract The present study explores the two-dimensional linear permeable stretched flow of nano-

fluid in the presence of double stratification and slip impacts. The mathematical model is developed

in the presence of Joule heating, viscous dissipation and chemical reaction impacts. Nanofluid is

electrically conducting in the presence of applied electric and magnetic fields. Suitable transforma-

tions yield the couple of nonlinear set of ordinary differential systems. The resulting system of equa-

tions has been solved numerically via implicit finite difference scheme. Graphs are plotted to

examine the effects of physical emerging parameters on the velocity, temperature and concentration

profiles. Also, the skin friction coefficients, local Nusselt and Sherwood numbers are computed and

analyzed.
� 2019 Faculty of Engineering, Alexandria University. Production and hosting by Elsevier B.V. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Nanofluid involves dilute mechanical suspensions of ultrafine
particles in an ordinary fluid, which significantly contributes
to the intensification of thermal conductivity [1]. Due to the

poor nature of heat transfer characteristics associated with
the ordinary fluids, is the major challenge face for efficiency
and high compactness in engineering applications through dif-

ferent models [2–8]. Furthermore, nanofluids are liquids with
enriched thermal physical appearance which is widely applied
to increase the strength of thermal energy in a system [9].

The fact is that fluid particles having thermal conductivities
function higher and better as compared to ordinary fluids.
Reinforced thermal energy is needed, where the Lorentz force
decreases the convection flow within the system.
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Nomenclature

a constant

b stretching sheet constant
B0 magnetic field factor
cf coefficient of Skin friction
DB coefficient of Brownian diffusion

DT coefficient of Thermophoresis diffusion
E0 electric field influence
Ec Eckert number

fg dimensionless velocity
J Joule current
k thermal conductivity

L1;L2;L3 slips parameters
M magnetic field
Rd radiation constant
Nb brownian motion number

Nt thermophoresis number
Nu local Nusselt number
Pr Prandtl number

Re local Reynolds number
s suction/injection parameter
Sc Schmidt number

Sh local Sherwood number
sm mass stratification parameter
st thermal stratification parameter

t time
T temperature of the fluid
TW variable wall temperature
T1 temperature at infinity

u; v velocity constituent lengthways x�plus
y�direction

vW wall mass transfer

V fluid velocity

Greek symbols
a thermal diffusivity
r electrical conductivity

r� Steffan-Boltzmann constant
g variable of dimensionless-similarity
l fluid dynamic-viscosity

t fluid Kinematic-viscosity
qð Þf nanofluid Density
qcð Þf nanofluid-Heat-capacity
qcð Þp nanoparticles-heat-capacity

w stream function
r electrical conductivity
uW surface nanoparticle concentration

u1 infinity nanoparticle concentration
h dimensionless temperature
/ dimensionless concentration

s nanofluid heat capacity to the nanoparticle heat
capacity

k diffusion constant parameter
c chemical reaction

Subscripts
1 condition at the free stream
W condition at the surface
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The deferral of magnetic nanoparticles in liquid tends to
increase performance, and therefore strengthening the process-
ing through the heat transfer. Consequently, the investigation
associates to Lorentz force effects draws the attention of

experts in the areas of engineering, and sciences, and these
can be attributed to broadly industrial applications mostly in
magnetohydrodynamic generators, the pumps, the bearings

etc. see [10–12]. However, improvements in the field of
nanoscience are initiated distinctly by exploring the materialis-
tic characteristics of matter at the nanoscale level. Considering

different applications of nanosciences, nanofluids institute new
area over heat transfer see [13–15]. Mostly, fascinating
research over the heat transfer focuses owing to its inclusive

of scientific and engineering processing notice in polymer pro-
cessing, microchips upscale computer-processors, hydro-
dynamical machines, micro-mechanical, chemical processing,
hybrid-powered engines, food processing, nuclear engineering,

cooling towers, air-conditioners/refrigerators, space cooling,
and lubrication system [16–20]. Nevertheless, investigations
analyzed on MHDmixed convection flow of conventional heat

transfer fluids were performed in diverse fields using several
geometries in [21–28]. Furthermore, nanofluids have attracted
enormous interest particularly relating to their extraordinary

thermal transport as well as its scientific and engineering
applications.
Stratification surfaces in a liquid when the temperature fluc-
tuations or distinctions in concentration, otherwise the occur-
rence of different liquids with varying densities, tends to form
layering. Consequently, in water systems such as the rivers,

lakes or pond, oceans, and reservoirs, salinity stratification
in estuaries, change in temperature, distinct fathomage, and
change in fluid’s density and temperature refers to as stratifica-

tion [29]. It is exceptional secure temperature [30], resonating
body of water connected to certainly areas in a system. Sudden
inclination away from fluid directed toward embodiment flow

overlay, act unsettled extremely not high temperatures. Sudden
degrees descents lower than the freezing point, as the coldest
layer, flows change and rises up to the topmost of the layer.

Nevertheless, in heat and mass transfer processes, simultane-
ous occurrence takes place. Considering double stratification
(thermal and concentration [31]) due to convective flow in
the fluid, arises in a different situation. It is frequently faced

in power collectors, annealing and thinning of copper wires,
reservoir mixing, liquid film, internal waves, condensation
mechanisms of boundary layer, shear flow instability, desalina-

tion, internal hydraulics, solar human transpiration, crops
damage originated from freezing, air conditioning, refrigera-
tion etc. [32]. The fluids transpire with respect through degrees

differences known as thermal stratification [33], not to mention
the concentration variations also tagged as solutal stratifica-



Fig. 1 Geometrical sketch.
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tion or even existence of diverse liquids attributed to varying
densities, in a suspenseful system.

Advanced energy efficiency, enhances the system perfor-

mance which is obtainable through well-defined stratification.
It has numerous relevance’s in physical phenomenon regarding
with aerodynamic extrusion of sheets, geophysics, heat

exchangers, metallurgy processes, and engineering fields just
to mention the chemical engineering, petroleum engineering,
ceramic (composite) engineering, and biochemical engineering

[34]. However, presence of Lorentz force towards convective
heat transfer in stratified fluid with engineering and industrial
significance, is extremely crucial in heat and mass transfer
fields. Two phase models using Buongiorno mathematical

model was used by different researchers such as: Reported
on MHD flow involving second-grade nanofluid induced by
a nonlinear stretching surface with deforming thickness was

given by Hayat et al. [35]. Analysis of double stratifications
in magneto-nanomaterials by nonlinear stretching sheet is
addressed by Hayat et al. [36]. Also, the aspects of Joule dissi-

pation, heat generation and thermal radiation are considered
by Waqas et al. [37] that analyze the heat transportation anal-
ysis. The research work on doubly stratified medium subject to

both magnetized and non-magnetized flow fields was discussed
by Rehman et al. [38].

The objective of this investigation is to study the flow of
unsteady electromagnetohydrodynamic (EMHD) nanofluid

in the presence of double stratification with slips conditions
over a vertical stretching using Buongiorno mathematical
model [39]. The application is to reduce the skin friction coef-

ficient and enhance the rate of heating or cooling in the
advanced technological processes through nanofluids. How-
ever, the effects of synchronized magnetic and electric fields

on mixed convection are deliberated. Viscous dissipation and
thermal radiation are considered on the energy field, as well
as Ohmic heating. The existence of chemical reaction on the

nanoparticle concentration field performed. No study so far
has been conducted in esteems to the problem mentioned fea-
turing nanofluid flow against vertical stretching. Consequently,
this study targets to bridge the gap and also gives the idea to be

the first attempt in this respect. Numerical solutions are
achieved using implicit finite difference scheme known as Kel-
ler box method [40,41]. The impacts of incipient parameters

from the fields are presented and discussed. The skin friction
coefficient, local Nusselt and Sherwood numbers are deliberate
numerically and reflected accordingly.

2. Mathematical formulation

Consider the unsteady mixed convective flow of an electrically-

conducting nanofluid over a stretching sheet subjected to slips
and double stratification. The coordinate system is Cartesian
chosen, x-lengthwise the stretching-material and y-lengthwise
designates the perpendicular position at the material surface.

ðu; vÞ symbolizes the velocity constituents directly towards
x� connecting to y-direction (see Fig. 1). The fluid-velocity
indicated as uW x; tð Þ ¼ bx= 1� atð Þ; where ða; bÞ are constants

coefficient of the stretching with dimension (time)�1 for
(at < 1; a � 0). Applied magnetic and electric fields upon
intensities performances alongside the defined direction.

Magnetic-field including electric field adheres to Ohm’s law

outline J
�
¼ r E

�
þV

�
�B

�� �
[42] whereby J

�
; r;V

�
takes Joule-
current, electrical conductivity, besides the velocity of the fluid.
Magnetic field as well as the electric field of strengths symbol-

ize by B
�

tð Þ ¼ B0=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� at

p
and E

�
tð Þ ¼ E0=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� at

p
are func-

tional normal on the sheet, the Reynolds magnetic number is
considered insignificant [43]. The induced magnetic field and
Hall current effects are ignored subject to small magnetic Rey-

nolds number. Heat transport is inspected subject toward
radiative transfer, viscous-dissipation, and Ohmic heating.
Using Rosseland and boundary layer approximations, resulted

in,
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y ¼ 0 : u ¼ uw x; tð Þ þ l1
@u

@y
; v ¼ vw x; tð Þ;

T ¼ TW x; tð Þ þ l2
@T

@y
; u ¼ uW x; tð Þ þ l3

@u
@y

; ð5Þ

y ! 1 : u ! 0; T ! T1; u ! u1 ð6Þ
where

uW x; tð Þ ¼ bx= 1� atð Þ; TW x; tð Þ¼ T0 þ A1x 1� atð Þ�1
;

uW x; tð Þ ¼ u0 þ C1x 1� atð Þ�1
; T1¼ T0 þ A2x 1� atð Þ�1

;

u1 ¼ u0 þ C2x 1� atð Þ�1
:

Here l1 ¼ l
0
1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� at

p
; l2 ¼ l

0
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� at

p
; l3 ¼ l

0
3

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� at

p
; which

represents the velocity slip factor, temperature slip factor, con-
centration slip factor [44,45]. A1;A2;C1; and C2 are the dimen-

sional constants for thermal and solutal stratifications factors.

However, vw ¼ �v0=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� at

p
denote the mass-transfer at the

wall, and vw < 0 as flow due to injection whereas vw > 0
depicts the suction-flow. The notation a ¼ k= qcð Þf; g; l; qf;

qp;DB;DT; k1 ¼ k0= 1� atð Þand s ¼ qcð Þp= qcð Þf are the fluid

thermal diffusivity, gravitational acceleration, fluid kinematic
viscosity, fluid density, density with respect to particles, Brow-
nian diffusion coefficient, the thermophoresis diffusion coeffi-
cient, the rate of chemical reaction, and the nanoparticles

material heat transfer capacity to the fluid heat capacity
respectively.

The system of Eqs. (1)–(6) can be reduced by using the sim-

ilarities variables defined as:

w ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
bv

1� at

r
xf gð Þ; g ¼ y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b

v 1� atð Þ

s
; h ¼ T� T1

Tw � T0

;

/ ¼ u� u1
uw � u0

; ð7Þ

The stream function w can be expressed as:

u ¼ @w
@y

; v ¼ � @w
@x

ð8Þ

Using Eqs. (7) and (8) into Eqs. (1)–(6), the velocity, tem-
perature and nanoparticles concentration with boundary con-
ditions are presented as follow,
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g
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Boundary conditions:

f ¼ s; fg ¼ 1þ L1fgg; h ¼ 1� st þ L2hg; /

¼ 1� sm þ L3/g; at g ¼ 0 ð12Þ

fg ¼ 0; h ¼ 0; / ¼ 0; as g ! 1: ð13Þ
The dimensionless nanoparticle concentration is connected
with/, dimensionless temperature is associated with h; dimen-

sionless velocity is denoted as fg: Also, k ¼ Gr=Re2 is Richard-

son number known as mixed convection parameter: for the

values of k > 0ð Þaccounts for heated surface, k < 0ð Þ corre-
sponds to cold surface, and k ¼ 0ð Þ indicates the forced con-
vection flow. Again, we have the

Grashof parameter: Gr ¼ gb 1� u1ð Þ TW � T 0ð Þqf1=m
2qf ,

Reynolds parameter: Re ¼ uwx=v,
Buoyancy ratio parameter: N ¼ qf � qf1

� �
uW � u0ð Þ=

bqf1 1� u1ð Þ TW � T 0ð Þ,
Unsteadiness parameter: d ¼ a=b,
Velocity slip parameter: L1 ¼ l

0
1

ffiffiffiffiffiffiffi
b=v

p
,

Thermal slip parameter: L2 ¼ l
0
2

ffiffiffiffiffiffiffi
b=v

p
,

Solutal slip parameter: L3 ¼ l
0
3

ffiffiffiffiffiffiffi
b=v

p
,

Thermal stratification parameter: st ¼ A2=A1,

Concentration stratification parameter: sm ¼ C2=C1,
Prandtl number: ¼ v=a,
Brownian motion parameter: Nb ¼ qcð ÞpDB uw � u0ð Þ=
qcð Þf v,
Thermophoresis number:Nt ¼ qcð ÞpDT T w � T 0ð Þ= qcð Þf vT1,
Schmidt number: Sc ¼ v=DB,

Magnetic field parameter: M ¼ rB2
0=bqf ,

Electric field parameter: E1 ¼ E0=uW B0,

Eckert number: Ec ¼ u2W =cp T w � T 0ð Þ,
Radiation parameter: Rd ¼ 4r�T 3

1=k
�k,

Parameter viz chemical reaction c ¼ k0=b inasmuch that
ðc > 0Þ allied to destructive-chemical-reaction flow and
ðc < 0Þ connected to the generative-chemical-reaction

parameter.

Parameter viz s ¼ v0=
ffiffiffiffiffi
vb

p
denote suction ðs > 0Þ whereas

ðs < 0Þ associated with injection respectively.

Now, the defined local Sherwood number, the local Nusselt
number and then skin friction coefficient, are given as:

Sh ¼ xqm
DB uw � u0ð Þ ; Nu ¼ xqw

k Tw � T0ð Þ ; cf ¼ sw
qu2wðx; tÞ

;

ð14Þ
here
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;

ð15Þ

sw represents the shear stress of the nanofluid,
qw associates with surface heat flux,

qm accounts for surface mass flux, and then
k is linked to nanofluid thermal conductivity.

In non-dimensional form, the local skin-friction-
coefficient, local Nusselt and Sherwood numbers are expressed
as:

Re
1
2cf ¼ fgg 0ð Þ; Nu=Re

1
2 ¼ � 1þ 4

3
Rd

� �
1

1�st

� �
hg 0ð Þ;

Sh=Re
1
2 ¼ � 1

1�sm

� �
/g 0ð Þ:

ð16Þ
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3. Results and discussion

In this investigation, the unsteady mixed convection for elec-
tromagnetic flow of nanofluid over stretchable sheet is deliber-

ated with double stratification and slip conditions. The
governing Eqs. (9)–(11) subjected to the boundary conditions
(12) and (13) were solved numerically. Results validation, are

compared with the previous published work of [46], see Table 1
and velocity profile in Fig. 2. The based fluid value for Prandtl
number is fixed Pr ¼ 6:2 (that is water), and the selection of

values for other parameters follows [18,19,29,34–37] in the
computation. According to these results using the Keller box
method see [47–50], shows good agreement in limiting sense.

Velocity profiles fg gð Þ: Fig. 3 portrays the variation of mag-

netic field M on the velocity profile fg gð Þ along the stretching
Table 1 Assessment of the skin friction coefficient �fgg 0ð Þ when N

M s E1

0 0.5 0.0

0.5

1.0

1.5

2.0

1.0 0

0.2

0.7

1.0

0.2 0.1

0.3

0.5

0.1

Fig. 2 Comparison of the results with the previously published stu
sheet. Both velocity and momentum boundary layer thickness
are reduced for larger values of magnetic field parameter.
Physically with an increase in magnetic field parameter, the

Lorentz force increases and hence the velocity of nanofluid
decreases. Lorentz forces drag the magnetic nanoparticles as
results of that, the strength of the velocity reduced, for an

enhancement of the magnetic field. Fig. 4, shows the variation
on the velocity field fg gð Þwith respect to electric field E1.

Involvement of electric field applied normal, it encourages

nanofluid acceleration adjacent the stretchable surface. Conse-
quently, the velocity and momentum boundary layer thickness
intensifies for augmentation. As a result, the flow in uphill-way

heightens as the accelerating force attributed to the Lorentz
force reinforces. Fig. 5 depicts the velocity profile fg gð Þ for

nanofluid flow over a linear stretching sheet decreased with
¼ k ¼ 0.

d Present results Ref. [46]

0.0 1.280777 1.2808

1.500000 1.5000

1.686141 1.6861

1.850781 1.8508

2.000000 2.0000

1.414214 1.4142

1.517745 1.5177

1.806880 1.8069

2.000000 2.0000

1.335083

1.003660

0.698797

0.2 1.400699

0.7 1.547543

1.5 1.774626

dies of Ref. [46] for fg gð Þ; h gð Þ&/ gð Þ when N ¼ k ¼ E1 ¼ d ¼ 0.



Fig. 3 Variation regarding M over velocity field.

Fig. 4 Variation regarding E1 over velocity field.
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an intense amount of velocity slip parameter L1. The influence
of momentum slip create the velocity of nanofluid away from
the sheet at initial stage and then the velocity of nanofluid flow

steadily, which gives an insight on the occurrence of intersec-
tion close the sheet and declines asymptotically to zero near
the stretching sheet of the momentum boundary layer. Conse-

quently, the momentum boundary layer thickness for nanoflu-
ids reduces as the slip parameter rises.

Temperature profiles h gð Þ: Fig. 6 demonstrates the behavior

of thermal radiation parameter Rd on temperature profile h gð Þ
over the stretching sheet. Intensification in thermal radiation
results in heightening of nanofluid temperature and thermal
layer thickness over the sheet surface. Accumulative thermal

radiation involvement divulges that the absorption coefficient
decayed gradually as the nanofluid flow over the stretching
sheet. Thus, enhancement of the temperature profile. Fig. 7

depicts the variation in temperature profile with the impact
of thermal stratification parameter st. It was noticed that the
temperature and thermal layer thickness substantially drops

as the thermal stratification accumulates. Also, this designates



Fig. 5 Variation regarding L1 over velocity field.

Fig. 6 Variation regarding Rd over temperature field.
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an increase in free stream temperature or reduction in nano-
fluid surface temperature. The existence of thermal stratifica-
tion influences the temperature of the nanofluid such that, it
raises the ambient temperature or results to decay in surface

temperature. This behavior frequently happens when heat is
moving from hotter region to a colder region. The field steadily
reduced as results of temperature difference which gradually

declining between ambient fluid and surface of the sheet.
Fig. 8 confirms the variation of temperature field h gð Þ with
respect to thermal slip parameter L2. It was revealed that the
temperature of the nanofluid and thermal layer thickness
declined when the values of thermal slip parameter intensified.

Concentration profiles / gð Þ: The variation of concentration
stratification parameter sm on the concentration field is exhib-

ited in Fig. 9. It is scrutinized that the volumetric fraction tight
to the surface and the reference nanoparticles decayed when
concentration stratification enhances. Therefore the concentra-

tion profile decayed over the stretching sheet. Note that, an
increase in concentration stratification parameter results in a
decrease in the concentration difference between the ambient



Fig. 7 Variation regarding st over temperature field.

Fig. 8 Variation regarding L2 over temperature field.
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fluid and the linear stretching sheet. Fig. 10 proves the differ-

ence of nanoparticles concentration due to solutal slip param-
eter L3. As it worth noticed from the graph, enhancement in
solutal slip parameter decreases amount of nanoparticles

fluid-concentration distance away from the wall and its related
concentration layer thickness.
The skin friction coefficient with cumulative parameters for

electric field, velocity slip, and mixed convection, as demon-
strated in Fig. 11. The skin friction decreased due to an
increase in accelerating body force from the fluid particles

applied to the sheet to the nanofluid directly above the sheet
surface. At a higher rate of the electric field, the skin friction



Fig. 9 Variation regarding sm over the concentration field.

Fig. 10 Variation regarding L3 over concentration field.
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is found to be lower and increases with a decrease in the elec-
tric field. The mixed convection and velocity slip parameters
decreased the frictional drag forces of the nanofluid over the

stretching sheet surface for higher values.
Fig. 12 proves the impacts of thermal stratification, mag-

netic field and Brownian motion parameters on the dimension-

less heat transfer rate at the sheet surface. It can be perceived
that the reduced Nusselt number reduces with increasing
Brownian motion, thermal stratification, and magnetic field.
The Nusselt number is the ratio of convective to conductive
heat transfer at a boundary in a nanofluid. So, the main attri-

butes connecting with the thermal energy of nanofluid
increases with Brownian motion and magnetic field within
the thermal boundary layer. The convection includes both

advection and diffusion. Thus, this invariably leads to weaken
the rate of heat transfer over the sheet surface of the nanofluid.



Fig. 11 Variations regarding E1 and k over skin friction coefficient.

Fig. 12 Variations regarding st and M over Nusselt number.

186 Y.S. Daniel et al.
It is also noticed that the Nusselt numbers are higher for smal-
ler values of thermal stratification. The conductive component
is measured under the same conditions as the convective nev-

ertheless for the working nanofluid.
The influences of parameters distinction on reduced Sher-

wood numbers are depicted in Fig. 13. It is worth noticing
that, the mass transfer rate of the nanoparticle concentration
intensifies with increasing Schmidt number. Whereas the mass
stratification uniquely decreased with the destructive chemical

reaction when c ¼ 1:0 (i.e. the rate of diffusive mass transport
increased) and increased when c ¼ 0:1 (i.e. the convective mass
transfer increased). This unveils the fact that chemical reaction



Fig. 13 Variations regarding sm and Sc over Sherwood number.
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decreased the nanoparticles concentration leading to rising in
the mass transport rate noticed over the surface.

4. Concluding remark

The unsteady EMHD mixed convection flow of nanofluid
over a stretching sheet is simulated using implicit finite differ-

ence known Keller box. In order to simulate nanofluid flow
in vertical permeable stretching sheet, the Buongiorno math-
ematical model is used. Simultaneously the slips and double

stratification were considered. The governing equation, the
effects of both electric and magnetic fields function are used.
The following momentous results are drawn from this

investigation:

1. Nanofluid velocity advances along intensification involving
electric field, nonetheless with lessening magnetic field and

velocity slip parameters.
2. Nanofluid thermal energy intensifies with a rise in radiative

transfer however, it decayed with thermal slip and thermal

stratification parameters.
3. Nanoparticles concentration diminished with solutal slip

and concentration of stratification parameters.

4. Skin friction coefficient reduces from increasing in mixed
convection and velocity slip parameters.

5. Reduced Nusselt and Sherwood numbers decayed with

stratification parameters, but the destructive chemical reac-
tion parameter intensified with Sherwood number.
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