
mathematics

Article

Discrete Mutation Hopfield Neural Network in
Propositional Satisfiability

Mohd Shareduwan Mohd Kasihmuddin 1 , Mohd. Asyraf Mansor 2,* , Md Faisal Md Basir 3

and Saratha Sathasivam 1

1 School of Mathematical Sciences, Universiti Sains Malaysia, Penang 11800 USM, Malaysia;
shareduwan@usm.my (M.S.M.K.); saratha@usm.my (S.S.)

2 School of Distance Education, Universiti Sains Malaysia, Penang 11800 USM, Malaysia
3 Department of Mathematical Sciences, Faculty of Science, Universiti Teknologi Malaysia,

Johor Bahru 81310 UTM, Johor, Malaysia; mfaisalmbasir@utm.my
* Correspondence: asyrafman@usm.my; Tel.: +60-46535906

Received: 21 September 2019; Accepted: 16 October 2019; Published: 19 November 2019 ����������
�������

Abstract: The dynamic behaviours of an artificial neural network (ANN) system are strongly
dependent on its network structure. Thus, the output of ANNs has long suffered from a lack
of interpretability and variation. This has severely limited the practical usability of the logical
rule in the ANN. The work presents an integrated representation of k-satisfiability (kSAT) in a
mutation hopfield neural network (MHNN). Neuron states of the hopfield neural network converge
to minimum energy, but the solution produced is confined to the limited number of solution spaces.
The MHNN is incorporated with the global search capability of the estimation of distribution
algorithms (EDAs), which typically explore various solution spaces. The main purpose is to
estimate other possible neuron states that lead to global minimum energy through available output
measurements. Furthermore, it is shown that the MHNN can retrieve various neuron states with the
lowest minimum energy. Subsequent simulations performed on the MHNN reveal that the approach
yields a result that surpasses the conventional hybrid HNN. Furthermore, this study provides a new
paradigm in the field of neural networks by overcoming the overfitting issue.

Keywords: Mutation Hopfield Neural Network; Hopfield neural network; k-satisfiability

1. Introduction

In recent years, the high dimensional neural network has been developed by researchers in
various mathematical fields. Although many optimization approaches have been proposed to achieve a
global solution, several problems have arisen associated with overfitting and lack of solution variation.
In another development, the artificial neural network (ANN) approach provides feasible solutions to
useful optimization problem such as Very Large-Scale Integration (VLSI) [1], pattern recognition [2],
image processing [3], classification problems [4] and knowledge discoveries [5]. Inspired by the
biological human brain, the Hopfield neural network (HNN) was originally proposed by Hopfield and
Tank [6] to solve optimization problems. Due to the simplicity of the network, the HNN has attracted
much attention [7,8]. The HNN utilizes a dynamic system in which the possible solution of the HNN
will be reduced to a minimum Lyapunov energy function. In this case, if the solution achieves the
lowest minimum energy, the solution is likely to be optimal. Although the energy function always
converges to minimum energy, neurons oscillate with the same energy and are ultimately trapped in
the local minima [9]. The main disadvantages of the HNN are the storage capacity problem [10] and
that it is easily trapped to the local minimum solution [11]. Motivated by these weaknesses, researchers
have proposed various hybrid systems to increase the accuracy and stability of the HNN. Silva and

Mathematics 2019, 7, 1133; doi:10.3390/math7111133 www.mdpi.com/journal/mathematics

http://www.mdpi.com/journal/mathematics
http://www.mdpi.com
https://orcid.org/0000-0001-9125-1101
https://orcid.org/0000-0002-3516-5898
http://www.mdpi.com/2227-7390/7/11/1133?type=check_update&version=1
http://dx.doi.org/10.3390/math7111133
http://www.mdpi.com/journal/mathematics

Mathematics 2019, 7, 1133 2 of 21

Bastos-Filho [7] proposed the hierarchical HNN to reduce the network structure and mitigate the
convergence problem of the normal HNN. The proposed hybrid HNN increased the storage capacity
issue in solving various practical applications. Yang et al. [12] proposed a hybrid metaheuristic with the
HNN to solve the assignment problem. In this study, a hybrid genetic algorithm with HNN managed
to overcome the problem constraints by searching for high quality solutions with the minimum
possible cost. Jayashree and Kumar [8] proposed a gravitational search algorithm with a genetically
optimized HNN to diagnose diabetes patients. The proposed method is able to create a diabetic expert
system which consists only of induced feature interpretation. In terms of quality of the neuron states,
Zhang et al. [13] proposed an impulsive and switching HNN by using the B-equivalence method.
The proposed method has enhanced global stability by altering the state of the neuron. In addition,
gradient descent learning has been used by Kobayashi [14] in a quaternionic HNN. In his work,
proposed gradient descent learning incorporated with an activation function outperformed a projection
rule in noise tolerance in a computer simulation. The common denominator in these studies is the
implementation of the optimal learning method in the HNN.

The estimation distribution algorithm (EDA) has been applied to many optimization problems.
This algorithm generally chooses some high fitness solution from the current population to form the
parent population. Hence, the EDA implements a probability model from the parent population
and the next generation is sampled from this probabilistic model [15,16]. The EDA has been widely
introduced in various practical applications, such as the job scheduling problem [17], the economic
dispatch problem [18], traffic modelling [19] and species modelling [20]. Wang [21] proposed an
interesting hybrid HNN with the EDA. In the proposed hybrid network, the neuron state that achieved
local minimum energy is perturbed based on the EDA. The act of perturbation for the neuron state
will generate the new starting point for the HNN and reduce the possible local minimum solution.
Hu et al. [22] proposed the mutation hopfield neural network (MHNN) to solve max-cut and aircraft
landing schedule (ALS) problems. In this work, the proposed model utilized the EDA to explore other
solution spaces that fulfil the given cost function. Unfortunately, most EDAs have focused on finding
the solution to the problem instead of creating a learning model for the problem.

Representing the nondeterministic polynomial time (NP) problems by reducing them to a
proportional satisfiability (SAT) logical rule is a powerful strategy that is widely used in a range
of research disciplines and to tackle various industrial problems. Recently, SAT representation has
been proposed in mathematical formulation [23,24], model checking [25], protein bioinformatics [26],
social networking [27], disease detection [28], ANN [29] and many industrial automations [30]. In order
to create an intelligent system, SAT is an important language in propositional logic. The introduction
of SAT as propositional logic in the ANN is a step towards understanding human intelligence.
Propositional logic has been embedded in the HNN as a single intelligent unit [31]. The proposed
method was further implemented with Horn clauses [32]. The developed model is able to achieve
more than 90% global minimum energy. In another development, the proposed model utilized the
unbounded McCulloch–Pitts (MCP) neuron to retrieve the final state of neurons. Although the MCP
neuron helps the network to converge to global minima, it was shown by some researchers [33]
that the MCP neuron is prone to a number of weaknesses, such as computational burdening and
lack of efficiency when the complexity of the logic program increased. Sathasivam [34] upgraded
the MCP neuron by incorporating the effective relaxation method in generating the optimum final
neuron states. Such realization lead Sathasivam [35] to develop a stochastic energy distribution
method in determining the neuron state. This proposed approach reduces the neuron oscillations
during the retrieval phase deployed by the HNN. Mansor and Sathasivam [36] and Kasihmuddin and
Sathasivam [37] proposed unipolar and bipolar activation functions, respectively, to reduce neuron
oscillation during the retrieval phase. Yoon and Lee [38] utilized the sub-planner algorithm in reducing
the local minima, which indicated the possibility of escaping the local minima in the HNN. Velavan et
al. [39] constructed a feasible method using mean field theory (MFT) to reduce the local minima in the
HNN. Alzaeemi and Sathasivam [40] used the kernel method in the HNN as a systematic classification

Mathematics 2019, 7, 1133 3 of 21

of the state of neurons. The proposed method manages to achieve 99% accuracy in terms of global
minimum energy. To this end, the implementation of the mentioned work only manages to retrieve the
correct and redundant neuron states.

Unfortunately, there has been no recent effort to discover other possible neuron states in the solution
space. A detailed comparison of different retrieval phases may reveal better possibilities in terms of
theoretical assumptions, modelling frameworks and computational processes. Thus, the contributions
of the present paper are: (1) A novel mutation hopfield neural network (MHNN) is proposed by
implementing the EDA into the Hopfield neural network. (2) Implementation of propositional
satisfiability in the MHNN and determination of the effectiveness of the retrieval properties of the
proposed MHNN. (3) A comprehensive comparison of the MHNN with five established HNN models
with two different retrieval models. By constructing an effective ANN work model, the proposed
network will be beneficial in finding the correct approximate solution for various mathematical
formulations, such as Runge–Kutta, the Lie group integrator and control theory. Our results showed
that the proposed MHNN displays the best performance in terms of propositional satisfiability
compared to other well-established existing work.

2. Propositional Satisfiability

Satisfiability (SAT) can be defined as a logical rule that comprises clauses containing variables.
The three components of general SAT problems are summarized as follows:

1. Consist of a set of l variables, x1, x2,, xl, where xi ∈ {1,−1}. All the variables in the clause will
be connected by logical OR (∨).

2. A set of literals. A literal is a variable or a negation of variable.
3. A set of n distinct clauses, C1, C2,, Cn. Each clause consists of only literals combined by logical

AND (∧).

Generalized k-satisfiability (kSAT) has demonstrated the ability to represent real life applications.
Thus, [41] has noted that generalized kSAT can be reduced to maximum satisfiability (MAX2SAT),
and the 2SAT logical rule is a step toward exploring an ANN based on the MAX2SAT logical rule.
The general formula of 2SAT is given as:

P2SAT = ∧n
i=1C (1)

where P2SAT is a 2-satisfiability logical rule that consists of clause Ci given as:

Ci = ∨
2
j=1(xi j, yi j) (2)

with l variables and n clauses denoted by Fk(n, m). In this case, Fk is a Conjunctive Normal Form (CNF)
formula where the clauses are chosen uniformly, independently and without replacement among all

2k
(

n
k

)
non-trivial clauses of length k. Note that variable x occurs in a clause, if the clause contains

either x or ¬x. A mapping α : V(Fk)→ {−1, 1} is called logical interpretation. If α maps all variables to
a Boolean value, it is considered complete. A true literal is a literal that evaluates true under the given
interpretation. A given clause is considered satisfied if it has at least one true literal under the given
interpretation and falsified if it has no true literal under the given interpretation. The comprehensive
summary of the implementation of propositional satisfiability is given in Figure 1.

Mathematics 2019, 7, 1133 4 of 21
Mathematics 2019, 7, x FOR PEER REVIEW 4 of 22

Figure 1. Summary of propositional satisfiability.

3. Discrete Hopfield Neural Network

The usage of the Hopfield neural network (HNN) in solving various NP problems was proposed
by Hopfield and Tank [6]. The first task of the newly introduced HNN demonstrated the
computational power in solving travelling salesman and circuit problems. The HNN comprises N
interconnected neurons, each described by an Ising spin variable [42,43]. Conventional neuron
update in the HNN is as follows:

Si =
1 if WijS j >ψ i

j

−1 Otherwise

 (3)

where Wij is the synaptic weight from unit j to i, S j is the state of unit j and ψ i is the pre-defined

threshold of unit i. Several studies [43] have defined ψ i = 0 to ensure the energy of the network

decreases monotonically. Each time a neuron is connected with Wij , the value of the connection will

be stored in an interconnection matrix where W 2() = Wij
2()

n×n

 and W 1() = Wi
1()

n×n

 for N

dimensional column vectors ψ = ψ 1,ψ 2,ψ 3,...,ψ N()T . As indicated in [44], the constraint of matrix

W 1() and W 2() does not permit self neuron connection, Wii
2() =Wjj

2() =Wkk
2() = 0 , and symmetrical

neuron connection, Wij
(2) =Wji

(2) . The simple features of the HNN, such as fault tolerance [6] and

content addressable memory [11], make it suitable for integration of propositional satisfiability. The
HNN utilizes the usage of logical rules to instruct the behaviour of the network using the synaptic
weight (neuron connection). In this case, the logical formula consists of variables represented in terms
of N neurons. The implementation of the 2SAT logic rule in the HNN is abbreviated HNN-2SAT
and the primary aim of the network is to reduce logical inconsistencies by minimizing the cost
function of the network. The cost function EP of the logic rule in the HNN is given by:

2
1 1

SAT

NVNC

P ij
i j

E L
= =

=∏ (4)

where NC and NV denote the number of clauses and variables, respectively. The inconsistencies

of logic clause Lij is given as follows:

Figure 1. Summary of propositional satisfiability.

3. Discrete Hopfield Neural Network

The usage of the Hopfield neural network (HNN) in solving various NP problems was proposed
by Hopfield and Tank [6]. The first task of the newly introduced HNN demonstrated the computational
power in solving travelling salesman and circuit problems. The HNN comprises N interconnected
neurons, each described by an Ising spin variable [42,43]. Conventional neuron update in the HNN is
as follows:

Si =

1 if

∑
j

Wi jS j > ψi

−1 Otherwise
(3)

where Wi j is the synaptic weight from unit j to i, S j is the state of unit j and ψi is the pre-defined
threshold of unit i. Several studies [43] have defined ψi = 0 to ensure the energy of the network
decreases monotonically. Each time a neuron is connected with Wi j, the value of the connection will be

stored in an interconnection matrix where W(2) =
[
W(2)

i j

]
n×n

and W(1) =
[
W(1)

i

]
n×n

for N dimensional

column vectors ψ = (ψ1,ψ2,ψ3, . . . ,ψN)
T. As indicated in [44], the constraint of matrix W(1) and

W(2) does not permit self neuron connection, W(2)
ii = W(2)

j j = W(2)
kk = 0, and symmetrical neuron

connection, W(2)
i j = W(2)

ji . The simple features of the HNN, such as fault tolerance [6] and content
addressable memory [11], make it suitable for integration of propositional satisfiability. The HNN
utilizes the usage of logical rules to instruct the behaviour of the network using the synaptic weight
(neuron connection). In this case, the logical formula consists of variables represented in terms of N
neurons. The implementation of the 2SAT logic rule in the HNN is abbreviated HNN-2SAT and the
primary aim of the network is to reduce logical inconsistencies by minimizing the cost function of the
network. The cost function EP of the logic rule in the HNN is given by:

EP2SAT =
NC∑
i=1

NV∏
j=1

Li j (4)

where NC and NV denote the number of clauses and variables, respectively. The inconsistencies of
logic clause Li j is given as follows:

Li j =

{ 1
2 (1− Sx), i f ¬x
1
2 (1 + Sx), Otherwise

(5)

Mathematics 2019, 7, 1133 5 of 21

The synaptic weight represents the connection between the variable and the clauses in the logical
formula. In order to calculate the synaptic weight of the HNN, Abdullah [41] described the most
straightforward measure by comparing EP2SAT with the final energy function HP2SAT . Denoting the state
of neuron for each variable in the logic rule Si at time t as Si(t), the local field of the network can be
represented as follows:

hi(t) =
N∑

j=1,i, j,k

W(2)
i j S j + W(1)

i (6)

Si(t + 1) =

1,

N∑
j=1,i, j

W(2)
i j S j + W(1)

i ≥ 0

−1,
N∑

j=1,i, j
W(2)

i j S j + W(1)
i < 0

(7)

Equations (6) and (7) guarantee the energy will decrease monotonically with the network. The final
energy of the HNN is given by:

HP2SAT = −
1
2

N∑
i=1,i, j

N∑
j=1,i, j

W(2)
i j SiS j−

N∑
i=1

W(1)
i S j (8)

In this case, the updating rule proposed in [6] is as follows.

Theorem 1. Let W be a symmetric matrix with a non-negative diagonal. The neurons in the discrete HNN
N = (W, T) that operate in asynchronous mode will always converge to a stable state. Under this circumstance,
the HNN is considered stable.

The synaptic weight of HNN-2SAT is always symmetrical. Hence the final neuron state of the
proposed HNN will converge to minimum energy. In this approach, the energy value of each logical
rule embedded to the HNN, HP2SAT is used to separate local minimum and global minimum solutions.
Global minimum energy, Hmin

P2SAT
, can be pre-calculated because the total magnitude of the energy

that corresponds to any logic clause is always a constant [35,45]. The implementation of the discrete
Hopfield neural network is summarized in the block diagram as shown in Figure 2.Mathematics 2019, 7, x FOR PEER REVIEW 6 of 22

Figure 2. Summary of discrete Hopfield neural network (HNN).

4. Mutation Hopfield Neural Network

The conventional HNN has a high chance of being trapped in local minima as the number of
neurons involved increases. For decades, several scholars have incorporated genetic algorithm (GA)
into the HNN [8,46,47] to increase the searching capability of the HNN. However, the usage of genetic
algorithm during the retrieval phase of the HNN is considered inefficient due to the complexity of
several operators, such as crossover and mutation. These two operators require more
generations/iterations before the apparent improvement can take place [22]. Several studies indicate
[48–50] that GAs entail a higher complexity, leading to premature convergence. Recently, the EDA
was proposed to avoid premature convergence of the system [16,51,52]. The EDA utilizes a
probability model to learn and sampling to optimize the entire swarm. In this case, the crossover and
mutation operators are not required in the EDA. The complete implementation of the EDA in the
HNN is as follows:

Step 1: The input of the HNN, Si = Si1,Si2,......,SiN() is randomly initialized.

Step 2: The output hi = h1,h2,h3,....,hN() of the HNN for every Si , i = 1,2,...,n is computed using

Equation (6). When the HNN converges to a single stable state, the output of the HNN will be
mutated with a univariate marginal Gaussian distribution probability model [52].

hi
Mi = 1

2πσ i
2

exp −
hi − μi()2

2σ i
2

 (9)

where μ and σ i
2 are defined as:

1

1 N

i i
i

h
N

μ
=

= (10)

()22

1

1=
1

N

i i i
i

h
N

σ μ
=

−
−

(11)

The mutation creates a minor perturbation to the neuron and helps the neuron to escape the
current stable state of the HNN.

Figure 2. Summary of discrete Hopfield neural network (HNN).

Mathematics 2019, 7, 1133 6 of 21

4. Mutation Hopfield Neural Network

The conventional HNN has a high chance of being trapped in local minima as the number
of neurons involved increases. For decades, several scholars have incorporated genetic algorithm
(GA) into the HNN [8,46,47] to increase the searching capability of the HNN. However, the usage
of genetic algorithm during the retrieval phase of the HNN is considered inefficient due to the
complexity of several operators, such as crossover and mutation. These two operators require
more generations/iterations before the apparent improvement can take place [22]. Several studies
indicate [48–50] that GAs entail a higher complexity, leading to premature convergence. Recently, the
EDA was proposed to avoid premature convergence of the system [16,51,52]. The EDA utilizes a
probability model to learn and sampling to optimize the entire swarm. In this case, the crossover and
mutation operators are not required in the EDA. The complete implementation of the EDA in the HNN
is as follows:

Step 1: The input of the HNN, Si = (Si1, Si2, , SiN) is randomly initialized.
Step 2: The output hi = (h1, h2, h3,, hN) of the HNN for every Si, i = 1, 2, . . . , n is computed

using Equation (6). When the HNN converges to a single stable state, the output of the HNN will be
mutated with a univariate marginal Gaussian distribution probability model [52].

hMi
i =

1√
2πσi2

exp (−
(hi − µi)

2

2σi2
) (9)

where µ and σ2
i are defined as:

µi =
1
N

N∑
i=1

hi (10)

σ2
i =

1
N − 1

N∑
i=1

(hi − µi)
2 (11)

The mutation creates a minor perturbation to the neuron and helps the neuron to escape the
current stable state of the HNN.

Step 3: Obtain the new state SMi
i by using hMi

i . Check the solution fitness using the
following equation:

fi =
NC∑
i=1

Ci (12)

where Ci is defined as follows:

Ci =

{
1, True
0, False

(13)

The best solution of SMi
i will be updated.

Step 4: New output SMi
i based on hM

i and SMi
i will be retained.

Step 5: Steps 2–5 are repeated until termination criteria are satisfied. The best individual is chosen.
In this paper, the implementation of the EDA in the HNN is named the MHNN. The MHNN will

be embedded with the logic rules stated in Equations (1) and (2). The primary aim of the MHNN is to
increase the variation of logic rules produced by neurons and explore more global minimum energy in
the search space.

5. HNN Model Performance Evaluation

To test the effectiveness of the proposed method, the performance of all HNNs will be evaluated
based on error analysis, energy analysis and similarity analysis of the retrieval neurons. The equations

Mathematics 2019, 7, 1133 7 of 21

for root mean squared error (RMSE), mean absolute error (MAE) and mean absolute percentage error
(MAPE) analysis are as follows:

RMSE =
NC∑
i=1

√
1
n
(Hmin

P2SAT
−HP2SAT)

2 (14)

MAE =
NC∑
i=1

1
n

∣∣∣∣Hmin
P2SAT

−HP2SAT

∣∣∣∣ (15)

MAPE =
NC∑
i=1

100
n

∣∣∣∣Hmin
P2SAT

−HP2SAT

∣∣∣∣∣∣∣∣Hmin
P2SAT

∣∣∣∣ (16)

Zm =
1
tc

NN∑
i=1

NHP2SAT
(17)

where the global minimum energy HP
i is given in Equation (6) and

∣∣∣∣Hmin
P2SAT

−HP2SAT

∣∣∣∣ ≤ ∂. In general,
the bipolar state of the retrieved neuron represents the interpretation of the logic rule. For similarity
analysis, the key component of analyzing the final state of the neuron is from comparing the retrieved
state with a benchmark neuron state. The benchmark state is defined as the ideal neuron state retrieved
from the HNN model. The benchmark neuron state is given as follows:

Smax
i =

{
1 , A
−1 ,¬A

(18)

where A and¬A are positive and negative literals in the logic clause, respectively. Based on Equation (17),
if the logic rule reads P = (A∨¬B∨¬C)∧ (D∨ E∨¬F), the benchmark state of the neuron is given
as Smax

A = 1, Smax
B = −1, Smax

C = −1, Smax
D = 1, Smax

E = 1, Smax
F = −1 or Smax

i = (1,−1,−1, 1, 1,−1).

Notably, the final energy of Smax
i is always a global minimum solution or

∣∣∣∣∣∣HPSmax
i
−Hmin

PSmax
i

∣∣∣∣∣∣ ≤ ∂ [22].

∂ is a tolerance value for energy difference in the HNN. By using a benchmark state, the variation of
the HNN model is formulated as follows:

V =
λ∑

i=0

Fi (19)

Fi =

{
1 , Si , Smax

i
0 , Si = Smax

i
(20)

where λ is a total solution produced by the HNN model and Fi is a scoring mechanism to evaluate
the difference between the benchmark state and the final state of neuron. Since most of the neuron
states retrieved in the HNN achieve global minimum energy [53], Smax

i is a perfect benchmark state in
comparing the final states of different HNN models. In this section, the final neuron state retrieved that
corresponds to the 2SAT logic rule will be analyzed using similarity metrics. Despite its mathematical
simplicity, several similarity metrics were implemented to identify which HNN model maximized the
value of V. In particular, instead of comparing logic with logic, the comparison will be made based on
the individual neuron state. Hence, the general comparison between benchmark state and the final
neuron state is as follows:

CSmax
i Si =

{(
Smax

i , Si
)∣∣∣∣i = 1, 2,, n

}
(21)

The further specifications of the variables are defined as follows:

l is the number of (Smax
i , Si) where both elements have the value 1 in CSmax

i Si ;

Mathematics 2019, 7, 1133 8 of 21

m is the number of (Smax
i , Si) where Smax

i is 1 and Si is −1 in CSmax
i Si ;

n is the number of (Smax
i , Si) where Smax

i is −1 and Si is 1 in CSmax
i Si ;

o is the number of (Smax
i , Si) where both elements have the value −1 in CSmax

i Si .

Note that the size of the neuron string is given as n = l + m + n + o. Using the above information,
the similarity coefficient for all HNN models is summarized in Table 1.

Table 1. Similarity coefficient for neuron state.

No Similarity Coefficient Similarity Representation (Smax
i ,Si)

1 Jaccard’s Index [54] J(Smax
i , Si) =

l
l+m+n

2 Sokal Sneath 2 [55] SS(Smax
i , Si) =

l
l+2(m+n)

3 Dice [56] D(Smax
i , Si) =

2l
2l+m+n

6. Simulation

To further investigate the performance of the proposed model for propositional logic, the proposed
MHNN was compared with the standard Hopfield neural network (HNN), the kernel Hopfield neural
network (KHNN), the hybrid Boltzman Hopfield neural network (BHNN) and the Hopfield neural
network incorporated with mean field theory (MFTHNN). The simulation dynamic is divided into
two parts. Firstly, the performance of all hybrid models will be implemented without internal noise
on the retrieval phase. In this case, the HNN will retrieve the final state of neurons by following the
network dynamic proposed by Sathasivam [34] and Mansor et al. [35]. The full flowchart of HNN is
enclosed in the Appendix A, specifically in Figure A1. Si will be updated using Equations (6) and (7)
and the final energy will be computed. Secondly, each HNN model will be incorporated with a noise
function [57] given as follows:

hi(t + 1) = hi(t) + β(t) (22)

where hi is a local field of the network and β(t) is the noise function incorporated in every HNN
model. In this experiment, the noise function will be implemented for the range β(t) ∈ [−0.05, 0.05].
In both simulations, the quality of the retrieval phase for the HNN model will be tested based on
RMSE, MAE and MAPE. Similarity analysis will be conducted to identify different global minimum
solutions produced by the HNN model. The HNN with a different initial neuron state might contribute
to the biasedness of the retrieval state because the network simply memorizes the final state without
producing a new state [58]. In this respect, possible positive and negative bias can be reduced by
generating all the neuon states randomly:

(S1, S2, S3, , SN) =

{
1 , rand(0, 1) < 0.5
−1 , otherwise

(23)

where the states of true and false are given as 1 and −1, respectively. In this case, the simulated dataset
will be obtained by generating random clauses and literals for each 2SAT logic rule. The parameters
for each HNN model are listed in Tables 2–6.

Table 2. List of Parameters in MHNN.

Parameter Parameter Value

Neuron Combination 100
Tolerance Value (∂) 0.001

Number of Learning (Ω) 100
No_Neuron String 100

Selection_Rate 0.1
Mutation Rate 0.01

Mathematics 2019, 7, 1133 9 of 21

Table 3. List of Parameters in HNN [49].

Parameter Parameter Value

Neuron Combination 100
Tolerance Value (∂) 0.001

Number of Learning (Ω) 100
No_Neuron String 100

Selection_Rate 0.1

Table 4. List of Parameters in KHNN [38].

Parameter Parameter Value

Neuron Combination 100
Tolerance Value (∂) 0.001

Number of Learning (Ω) 100
No_Neuron String 100

Selection_Rate 0.1
Type of Kernel Linear Kernel

Table 5. List of Parameters in BHNN [34].

Parameter Parameter Value

Neuron Combination 100
Tolerance Value (∂) 0.001

Number of Learning (Ω) 100
No_Neuron String 100

Selection_Rate 0.1
Temperature (T) 70

Table 6. List of Parameters in MFTHNN [37].

Parameter Parameter Value

Neuron Combination 100
Tolerance Value (∂) 0.001

Number of Learning (Ω) 100
No_Neuron String 100

Selection_Rate 0.1
Temperature (T) 70

Activation Function Hyperbolic Tangent (HTAF)

The mutation rate in our proposed model, MHNN, plays a prominent role in determining the
nature of final neuron states. If the mutation rate is more than 0.1, the neuron tends to converge to one
state only, Si → a, a = ±1 . Meanwhile, if the mutation rate is between 0.05 and 0.1, the neuron will

undergo state oscillation that will produce local minima solutions EP2SAT , 0 or

∣∣∣∣∣∣HPSmax
i
−Hmin

PSmax
i

∣∣∣∣∣∣ ≤ ∂.

On the contrary, the effect of the mutation in the HNN can be seen to be significant when the mutation
rate is within 0.01 until 0.04. Thus, the ideal mutation rate was chosen to be 0.01 to effectively investigate
the impact of a mutation in the HNN. The choice of mutation rate has good agreement with [22].
A non-common parameter such as T was utilized in the BHNN and MFTHNN as the simulated
annealing effect takes place in both models. Theoretically, if we select the temperature, T > 75, the
neuron states tend to oscillate and affect the final states of the neuron attained after the simulation. On
the contrary, if T < 70, the effect of simulated annealing will vanish, and the network will be reduced to
the ordinary HNN, as proposed by [34]. Therefore, the value of T was selected according to [35] for the
BHNN and [39] for the MFTHNN. According to Table 4, the linear kernel is applied due to the good
agreement with the logic programming problem as outlined in the work of [40]. Based on Table 6, the

Mathematics 2019, 7, 1133 10 of 21

hyperbolic tangent (HTAF) was selected due to the differentiable nature of the function and the ability
to establish the non-linear relationship among the neuron connections [42]. The comparison among
the MHNN, HNN, KHNN, BHNN, and MFTHNN was made on the same basis, which is utilized in
propositional satisfiability problems. Thus, the important parameters, including the non-common
parameter, must comply with the previous studies dealing with the similar problem.

All HNN models were implemented in Dev C++ Version 5.11 in Windows 10 (Bloodshed), using
an Intel Core i3 with 1.7 GHz processor. To make an impartial comparison, all HNN models were
terminated after being executed for not more than 24 h. All models were stopped after the computation
time reached 24 h. In order to make an overall comparison, the original exhaustive search method was
deployed during the learning phase of the HNN model. The learning model remained constant and
the results only measured the influence of the retrieval property.

7. Results and Discussion

In this experiment, the retrieval property for the MHNN model against the other existing
HNN models in the literature will be investigated. The simulation will be divided into two parts.
First, the restricted learning model of propositional logic [59] will be used to examine the accuracy
and stability of the network. Secondly, a non-restricted learning model will be used to examine the
quality of the solution produced by the HNN models [34]. This is an interesting question since relying
on a single learning model does not provide an actual performance measure of the proposed model.
Hence, the main contribution of our work is to show the effectiveness of the MHNN in outperforming
the existing HNN models.

In most studies of the HNN, the quality of the neuron state is not well assessed since the focus is
to attain the final state. For instance, the studies of Sathasivam [35] and Velavan et al. [39] achieved
global minimum energy 98% of the time but the quality of the final neuron state was not effectively
measured. In this section, learning iteration will be restricted to NH ≤ Ω. In this case, learning in the
HNN will terminated when NH = Ω. Hence, all the HNN models exhibit the same learning phase via
the Wan Abdullah method [31]. According to Figures 3–6, for 0 ≤ NN ≤ 60, the MHNN is the best
model in terms of Zm, RMSE, MAE and MAPE. Although the MHNN underwent restricted iteration
during the learning phase, the MHNN is still able to locate a state that leads to global minimum energy∣∣∣∣∣∣HPSmax

i
−Hmin

PSmax
i

∣∣∣∣∣∣ ≤ ∂. In this case, the MHNN only requires a fragment of correct synaptic weight

to retrieve the optimal final state during the learning phase. A similar perturbation strategy was
utilized by Hu et al. [22] in solving the max-cut problem. On the other hand, the EDA in the MHNN
creates minor neuron oscillations and retrieves the state independently, although the network trained
the suboptimal synaptic weight. Hence, the synergistic property of the learning phase of the HNN
and the EDA reduces the number of local minima. The neuron perturbation reduces the effect of the
suboptimal synaptic weight during the learning phase. Other HNN models, such as the BHNN [35]
and MFTHNN [40], reduced the number of local minima but failed to achieve optimal global minimum
energy as the number of clauses increased. According to Figures 4–6, the conventional HNN has the
highest error at NN = 60 because the network retrieved the suboptimal synaptic weight. Structurally,
the conventional HNN has no second optimization layer and focuses solely on the MCP neuron in
retrieving the final state of neurons [60]. Similar to the BHNN and MFT, the suboptimal synaptic
weight reduces the effectiveness of the Boltzmann machine in retrieving the correct final state. In
addition, MHNN is minimally affected when more negative or positive noise is added to the retrieval
phase. The EDA in the MHNN independently locates several possible neuron states that leads to a
global minimum solution. In addition, at NN ≥ 20, the conventional HNN failed to obtain at least
10% global minimum energy and the learned synaptic weight has no effect on the retrieval phase.
Although the BHNN and MFTHNN utilized energy to overcome the barrier of local minima, the energy
from the temperature increment does not compensate for the incorrect synaptic weight. Although the
direction of the Boltzmann machine in the BHNN and MFTHNN can be improved, as seen in other

Mathematics 2019, 7, 1133 11 of 21

work such as [61], it can be argued that it will create more unnecessary free parameters. Additional
optimization algorithms, such as a metaheuristics algorithm, is required to find the optimal value of the
free parameter. In addition, low values of Zm (refer to Figure 3) accompanied by high values of RMSE,
MAE and MAPE (refer Figures 4–6) were recorded in the KHNN. Unfortunately, the kernel function
in the KHNN is largely dependent on the quality of the neuron state retrieved. In fact, at NN = 20,
more than 50% of the states retrieved were trapped at local minima. Similar to other HNN models,
a suboptimal synaptic weight also reduces the effectiveness of the kernel function in the KHNN by
retrieving the final state that contributes to inconsistent interpretation. As can be seen, the MHNN
increases the fault tolerance property of the conventional HNN model and is comparatively different
from other metaheuristics algorithms, such as the genetic algorithm and artificial bee colony, that
focus on gradual solution improvement. Gradual solution improvement requires several layers of
optimization, such as local and global search operators. The implementation of multiple layers in the
metaheuristic algorithm will increase the complexity of the HNN. Additional random parameters
are required to avoid premature convergence. In addition, this simulation only takes into account
the effect of the retrieval property of HNN models due to incorrect synaptic weight. In this context,
all HNN models utilized a conventional exhaustive search method during the learning phase and
computation time for all HNN model was not considered.

Mathematics 2019, 7, x FOR PEER REVIEW 12 of 22

algorithm and artificial bee colony, that focus on gradual solution improvement. Gradual solution
improvement requires several layers of optimization, such as local and global search operators. The
implementation of multiple layers in the metaheuristic algorithm will increase the complexity of the
HNN. Additional random parameters are required to avoid premature convergence. In addition, this
simulation only takes into account the effect of the retrieval property of HNN models due to incorrect
synaptic weight. In this context, all HNN models utilized a conventional exhaustive search method
during the learning phase and computation time for all HNN model was not considered.

Figure 3. Global minima ratio (Zm) of HNN models in restricted learning.

Figure 4. RMSE of HNN models in restricted learning.

Figure 3. Global minima ratio (Zm) of HNN models in restricted learning.

Mathematics 2019, 7, x FOR PEER REVIEW 12 of 22

algorithm and artificial bee colony, that focus on gradual solution improvement. Gradual solution
improvement requires several layers of optimization, such as local and global search operators. The
implementation of multiple layers in the metaheuristic algorithm will increase the complexity of the
HNN. Additional random parameters are required to avoid premature convergence. In addition, this
simulation only takes into account the effect of the retrieval property of HNN models due to incorrect
synaptic weight. In this context, all HNN models utilized a conventional exhaustive search method
during the learning phase and computation time for all HNN model was not considered.

Figure 3. Global minima ratio (Zm) of HNN models in restricted learning.

Figure 4. RMSE of HNN models in restricted learning. Figure 4. RMSE of HNN models in restricted learning.

Mathematics 2019, 7, 1133 12 of 21

Mathematics 2019, 7, x FOR PEER REVIEW 13 of 22

Figure 5. MAE of HNN models in restricted learning.

Figure 6. MAPE of HNN models in restricted learning.

In this section, non-restricted learning will be implemented in all HNN models. Learning will

iterate until the consistent interpretation is obtained NH → EP = 0() . Note that the similarity indexes

only evaluate the neuron state that achieves the global minimum solution. High similarity values
signify low variation value in generating the final state of the neuron for the HNN model. According
to Figures 7–9, the MHNN has the lowest index value for Jaccard, Socal Sneath 2 and Dice compared
to other HNN models in a given benchmark state. The lower value of similarity index for the MHNN
was supported by a high value of variability. With the same amount of global minimum energy, the
MHNN generated more different neuron final states compared to other HNN models. Figures 11–16
illustrate the performance error of HNN models in terms of RMSE, MAE and MAPE with and
without ()tβ . It can be observed from these figures that the learning error (in RMSE, MAE and
MAPE) increase rapidly as the number of neuron exceeds 10. The conventional HNN has the worst
performance, as 83% of the final states produced contain EP ≠ 0 . A similar pattern is reported in

energy analysis for all HNN models (in Zm). It is apparent that an improvement in Zm is achieved
using the MHNN in comparison with other HNN model. For instance, the Zm value for the BHNN,
MFTHNN and KHNN reduced dramatically to leass than 50% as the number of NN ≥ 20 . In this case,
the retrieval power of other HNN models reduces because the introduction of ()tβ as an extra bias
to Equation (6) increases the probability of the local field to achieve the suboptimal state. According
to Figure 17, the conventional HNN has the lowest variability value compared to other HNN models.

Figure 5. MAE of HNN models in restricted learning.

Mathematics 2019, 7, x FOR PEER REVIEW 13 of 22

Figure 5. MAE of HNN models in restricted learning.

Figure 6. MAPE of HNN models in restricted learning.

In this section, non-restricted learning will be implemented in all HNN models. Learning will

iterate until the consistent interpretation is obtained NH → EP = 0() . Note that the similarity indexes

only evaluate the neuron state that achieves the global minimum solution. High similarity values
signify low variation value in generating the final state of the neuron for the HNN model. According
to Figures 7–9, the MHNN has the lowest index value for Jaccard, Socal Sneath 2 and Dice compared
to other HNN models in a given benchmark state. The lower value of similarity index for the MHNN
was supported by a high value of variability. With the same amount of global minimum energy, the
MHNN generated more different neuron final states compared to other HNN models. Figures 11–16
illustrate the performance error of HNN models in terms of RMSE, MAE and MAPE with and
without ()tβ . It can be observed from these figures that the learning error (in RMSE, MAE and
MAPE) increase rapidly as the number of neuron exceeds 10. The conventional HNN has the worst
performance, as 83% of the final states produced contain EP ≠ 0 . A similar pattern is reported in

energy analysis for all HNN models (in Zm). It is apparent that an improvement in Zm is achieved
using the MHNN in comparison with other HNN model. For instance, the Zm value for the BHNN,
MFTHNN and KHNN reduced dramatically to leass than 50% as the number of NN ≥ 20 . In this case,
the retrieval power of other HNN models reduces because the introduction of ()tβ as an extra bias
to Equation (6) increases the probability of the local field to achieve the suboptimal state. According
to Figure 17, the conventional HNN has the lowest variability value compared to other HNN models.

Figure 6. MAPE of HNN models in restricted learning.

In this section, non-restricted learning will be implemented in all HNN models. Learning will
iterate until the consistent interpretation is obtained NH→ (EP = 0) . Note that the similarity indexes
only evaluate the neuron state that achieves the global minimum solution. High similarity values
signify low variation value in generating the final state of the neuron for the HNN model. According to
Figures 7–11, the MHNN has the lowest index value for Jaccard, Socal Sneath 2 and Dice compared to
other HNN models in a given benchmark state. The lower value of similarity index for the MHNN was
supported by a high value of variability. With the same amount of global minimum energy, the MHNN
generated more different neuron final states compared to other HNN models. Figures 11–16 illustrate
the performance error of HNN models in terms of RMSE, MAE and MAPE with and without β(t). It can
be observed from these figures that the learning error (in RMSE, MAE and MAPE) increase rapidly as
the number of neuron exceeds 10. The conventional HNN has the worst performance, as 83% of the final
states produced contain EP , 0. A similar pattern is reported in energy analysis for all HNN models (in
Zm). It is apparent that an improvement in Zm is achieved using the MHNN in comparison with other
HNN model. For instance, the Zm value for the BHNN, MFTHNN and KHNN reduced dramatically
to leass than 50% as the number of NN ≥ 20. In this case, the retrieval power of other HNN models
reduces because the introduction of β(t) as an extra bias to Equation (6) increases the probability of the
local field to achieve the suboptimal state. According to Figure 17, the conventional HNN has the lowest

Mathematics 2019, 7, 1133 13 of 21

variability value compared to other HNN models. The Boltzmann component in both the BHNN and
MFTHNN showed similar retrieval patterns which are relatively low compared to the MHNN. β(t) is
observed to reduce the effectiveness of the BHNN and MFTHNN (low Zm value) and the global solution
retrieved has lower variation value. In this case, the BHNN and MFTHNN were only effective if the
desired solution space is small. A similar variation pattern is reported in the KHNN. Although several
studies [58] showed the beneficial effect of the noise in an ANN, β(t) contributed a minimal impact
in retrieving more global solutions in HNN models. On the other hand, all the existing HNN models
failed to achieve a 70% variation value and explored less than 50% of neuron configurations. The energy
penalty for the evaluation of the HNN model is given in Figure 16, where the global minimum energy
will be penalized if the state is Smax

i = Si. From Figure 18, it is clear that:

1. The MHNN has the lowest energy penalty value compared to other HNN models
2. With the same number of neurons, such as NN = 60, the energy penalty of the HNN has the largest

value, followed by the KHNN, BHNN and HNN, indicating that the EDA has the significant
effect on the performance of the MHNN.

3. β(t) has little impact on the MHNN in terms of the energy penalty.

Mathematics 2019, 7, x FOR PEER REVIEW 14 of 22

The Boltzmann component in both the BHNN and MFTHNN showed similar retrieval patterns
which are relatively low compared to the MHNN. ()tβ is observed to reduce the effectiveness of
the BHNN and MFTHNN (low Zm value) and the global solution retrieved has lower variation value.
In this case, the BHNN and MFTHNN were only effective if the desired solution space is small. A
similar variation pattern is reported in the KHNN. Although several studies [58] showed the
beneficial effect of the noise in an ANN, ()tβ contributed a minimal impact in retrieving more global
solutions in HNN models. On the other hand, all the existing HNN models failed to achieve a 70%
variation value and explored less than 50% of neuron configurations. The energy penalty for the
evaluation of the HNN model is given in Figure 16, where the global minimum energy will be
penalized if the state is m ax

i iS S= . From Figure 18, it is clear that:

1. The MHNN has the lowest energy penalty value compared to other HNN models
2. With the same number of neurons, such as 60NN= , the energy penalty of the HNN has the

largest value, followed by the KHNN, BHNN and HNN, indicating that the EDA has the
significant effect on the performance of the MHNN.

3. ()tβ has little impact on the MHNN in terms of the energy penalty.

Figure 7. Jaccard Index of HNN models in non-restricted learning.

Figure 8. Sokal Sneath Index of HNN models in non-restricted learning.

Figure 7. Jaccard Index of HNN models in non-restricted learning.

Mathematics 2019, 7, x FOR PEER REVIEW 14 of 22

The Boltzmann component in both the BHNN and MFTHNN showed similar retrieval patterns
which are relatively low compared to the MHNN. ()tβ is observed to reduce the effectiveness of
the BHNN and MFTHNN (low Zm value) and the global solution retrieved has lower variation value.
In this case, the BHNN and MFTHNN were only effective if the desired solution space is small. A
similar variation pattern is reported in the KHNN. Although several studies [58] showed the
beneficial effect of the noise in an ANN, ()tβ contributed a minimal impact in retrieving more global
solutions in HNN models. On the other hand, all the existing HNN models failed to achieve a 70%
variation value and explored less than 50% of neuron configurations. The energy penalty for the
evaluation of the HNN model is given in Figure 16, where the global minimum energy will be
penalized if the state is m ax

i iS S= . From Figure 18, it is clear that:

1. The MHNN has the lowest energy penalty value compared to other HNN models
2. With the same number of neurons, such as 60NN= , the energy penalty of the HNN has the

largest value, followed by the KHNN, BHNN and HNN, indicating that the EDA has the
significant effect on the performance of the MHNN.

3. ()tβ has little impact on the MHNN in terms of the energy penalty.

Figure 7. Jaccard Index of HNN models in non-restricted learning.

Figure 8. Sokal Sneath Index of HNN models in non-restricted learning. Figure 8. Sokal Sneath Index of HNN models in non-restricted learning.

Mathematics 2019, 7, 1133 14 of 21

Mathematics 2019, 7, x FOR PEER REVIEW 15 of 22

Figure 9. Dice Index of HNN models in non-restricted learning.

Figure 10. Global minima ratio (Zm) of HNN models in non-restricted learning.

Figure 11. RMSE of HNN models (with noise) in non-restricted learning.

Figure 9. Dice Index of HNN models in non-restricted learning.

Mathematics 2019, 7, x FOR PEER REVIEW 15 of 22

Figure 9. Dice Index of HNN models in non-restricted learning.

Figure 10. Global minima ratio (Zm) of HNN models in non-restricted learning.

Figure 11. RMSE of HNN models (with noise) in non-restricted learning.

Figure 10. Global minima ratio (Zm) of HNN models in non-restricted learning.

Mathematics 2019, 7, x FOR PEER REVIEW 15 of 22

Figure 9. Dice Index of HNN models in non-restricted learning.

Figure 10. Global minima ratio (Zm) of HNN models in non-restricted learning.

Figure 11. RMSE of HNN models (with noise) in non-restricted learning. Figure 11. RMSE of HNN models (with noise) in non-restricted learning.

Mathematics 2019, 7, 1133 15 of 21

Mathematics 2019, 7, x FOR PEER REVIEW 16 of 22

Figure 12. RMSE of HNN models (without noise) in non-restricted learning.

Figure 13. MAE of HNN models (with noise) in non-restricted learning.

Figure 14. MAE of HNN models (without noise) in non-restricted learning.

Figure 12. RMSE of HNN models (without noise) in non-restricted learning.

Mathematics 2019, 7, x FOR PEER REVIEW 16 of 22

Figure 12. RMSE of HNN models (without noise) in non-restricted learning.

Figure 13. MAE of HNN models (with noise) in non-restricted learning.

Figure 14. MAE of HNN models (without noise) in non-restricted learning.

Figure 13. MAE of HNN models (with noise) in non-restricted learning.

Mathematics 2019, 7, x FOR PEER REVIEW 16 of 22

Figure 12. RMSE of HNN models (without noise) in non-restricted learning.

Figure 13. MAE of HNN models (with noise) in non-restricted learning.

Figure 14. MAE of HNN models (without noise) in non-restricted learning. Figure 14. MAE of HNN models (without noise) in non-restricted learning.

Mathematics 2019, 7, 1133 16 of 21

Mathematics 2019, 7, x FOR PEER REVIEW 17 of 22

Figure 15. MAPE of HNN models (with noise) in non-restricted learning.

Figure 16. MAPE of HNN models (without noise) in non-restricted learning.

Figure 17. Variability of HNN models in non-restricted learning.

Figure 15. MAPE of HNN models (with noise) in non-restricted learning.

Mathematics 2019, 7, x FOR PEER REVIEW 17 of 22

Figure 15. MAPE of HNN models (with noise) in non-restricted learning.

Figure 16. MAPE of HNN models (without noise) in non-restricted learning.

Figure 17. Variability of HNN models in non-restricted learning.

Figure 16. MAPE of HNN models (without noise) in non-restricted learning.

Mathematics 2019, 7, x FOR PEER REVIEW 17 of 22

Figure 15. MAPE of HNN models (with noise) in non-restricted learning.

Figure 16. MAPE of HNN models (without noise) in non-restricted learning.

Figure 17. Variability of HNN models in non-restricted learning. Figure 17. Variability of HNN models in non-restricted learning.

Mathematics 2019, 7, 1133 17 of 21

Mathematics 2019, 7, x FOR PEER REVIEW 18 of 22

Figure 18. Energy penalty of HNN models in non-restricted learning.

The limitation of the MHNN is the computation time due to the complexity of the learning
phase. Metaheuristics and accelerating algorithms, such as in [29,62], are required to reduce the
learning complexity. Since all HNN models used the same learning model to find the correct
interpretation, computation time is not a significant factor. In the case of 60NN≥ , the MHNN was
trapped in a trial and error state; this phenomenon was explained in [53]. In addition, this simulation
only limits the initial state to random initial points. All consistent initial states do not play a significant
role in comparing the effectiveness of the proposed network. The Euclidean distance is not favored
in calculating the similarity index because it is not effective in high dimensional data. For instance,

both Euclidean distances for 1,1,1,−1() and 1,−1,1,1() with respect to Si
max = 1,1,−1,1() are 2 2 .

This observation lacks a consensus between HNN models with different logical rules. In addition,
other established logical rules, such as MAXSAT [29], MinSAT [63] and HornSAT [64], must be
investigated in depth to further verify the effectiveness of propositional logic in the MHNN.

8. Conclusions

The primary aim of an ANN is to find an optimal solution in an infinite space. Thus, we believe
that the output of this study widened the ability of the conventional neural network in various
mathematical perspectives, such as complex analysis [65], stability analysis [66] and forecasting
analysis [67–70]. In this article, the core solution diversification principle of the EDA was found to be
beneficial for ANN optimization tasks. Using this principle, we presented an efficient MHNN based
on the beneficial features of the HNN and EDA. In this case, comprehensive coverage via EDA was
utilized to optimize the retrieval phase of a regular HNN. The proposed MHNN was tested using
both non-restricted and restricted learning models, and the comparison in terms of various
performance metrics between the proposed MHNN and other established HNN models was
presented. The evaluation of the results showed the superiority of the proposed MHNN model for
all performance metrics. Presenting a satisfactory and efficient MHNN model was a challenging task,
particularly for a large number of neurons. Therefore, the efficient learning phase of the MHNN is a
subject of great importance, and future research needs to be directed to training the learning phase
of the MHNN using metaheuristic algorithms, such as the genetic algorithm, artificial bee colony,
artificial immune system, and ant colony optimization.

Author Contributions: conceptualization, M.F.M.B.; methodology, software, validation, S.S; formal analysis,
writing—Original draft preparation, writing—Review and editing, M.A.M and M.F.M.B.; project
administration, funding acquisition, M.S.M.K.

Funding: This research was funded by Universiti Sains Malaysia, grant number 304/PMATHS/6315226 and the
APC was funded by Universiti Sains Malaysia.

Figure 18. Energy penalty of HNN models in non-restricted learning.

The limitation of the MHNN is the computation time due to the complexity of the learning phase.
Metaheuristics and accelerating algorithms, such as in [29,62], are required to reduce the learning
complexity. Since all HNN models used the same learning model to find the correct interpretation,
computation time is not a significant factor. In the case of NN ≥ 60, the MHNN was trapped in a
trial and error state; this phenomenon was explained in [53]. In addition, this simulation only limits
the initial state to random initial points. All consistent initial states do not play a significant role
in comparing the effectiveness of the proposed network. The Euclidean distance is not favored in
calculating the similarity index because it is not effective in high dimensional data. For instance,
both Euclidean distances for (1, 1, 1,−1) and (1,−1, 1, 1) with respect to Smax

i = (1, 1,−1, 1) are 2
√

2.
This observation lacks a consensus between HNN models with different logical rules. In addition,
other established logical rules, such as MAXSAT [29], MinSAT [63] and HornSAT [64], must be
investigated in depth to further verify the effectiveness of propositional logic in the MHNN.

8. Conclusions

The primary aim of an ANN is to find an optimal solution in an infinite space. Thus, we believe
that the output of this study widened the ability of the conventional neural network in various
mathematical perspectives, such as complex analysis [65], stability analysis [66] and forecasting
analysis [67–70]. In this article, the core solution diversification principle of the EDA was found to
be beneficial for ANN optimization tasks. Using this principle, we presented an efficient MHNN
based on the beneficial features of the HNN and EDA. In this case, comprehensive coverage via EDA
was utilized to optimize the retrieval phase of a regular HNN. The proposed MHNN was tested
using both non-restricted and restricted learning models, and the comparison in terms of various
performance metrics between the proposed MHNN and other established HNN models was presented.
The evaluation of the results showed the superiority of the proposed MHNN model for all performance
metrics. Presenting a satisfactory and efficient MHNN model was a challenging task, particularly for a
large number of neurons. Therefore, the efficient learning phase of the MHNN is a subject of great
importance, and future research needs to be directed to training the learning phase of the MHNN
using metaheuristic algorithms, such as the genetic algorithm, artificial bee colony, artificial immune
system, and ant colony optimization.

Author Contributions: Conceptualization, M.F.M.B.; methodology, software, validation, S.S.; formal analysis,
writing—Original draft preparation, writing—Review and editing, M.A.M. and M.F.M.B.; project administration,
funding acquisition, M.S.M.K.

Mathematics 2019, 7, 1133 18 of 21

Funding: This research was funded by Universiti Sains Malaysia, grant number 304/PMATHS/6315226 and the
APC was funded by Universiti Sains Malaysia.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

The complete implementation of HNN models is demonstrated as follows:

Mathematics 2019, 7, x FOR PEER REVIEW 19 of 22

Conflicts of Interest: The authors declare no conflict of interest.

Appendix

The complete implementation of HNN models is demonstrated as follows:

Figure. A. The flowchart of discrete Hopfield neural network.

References

1. Zamanlooy, B.; Mirhassani, M. Mixed-signal VLSI neural network based on continuous valued number
system. Neurocomputing 2017, 221, 15–23.

2. Fu, Y.; Aldrich, C. Flotation froth image recognition with convolutional neural networks. Miner. Eng. 2019,
132, 183–190.

3. Melin, P.; Sanchez, D. Multi-objective optimization for modular granular neural networks applied to
pattern recognition. Inf. Sci. 2018, 460, 594–610.

4. Turabieh, H.; Mafarja, M.; Li, X. Iterated feature selection algorithms with layered recurrent neural network
for software fault prediction. Expert Syst. Appl. 2019, 122, 27–42.

5. Grissa, D.; Comte, B.; Petera, M.; Pujos-Guillot, E.; Napoli, A. A hybrid and exploratory approach to
knowledge discovery in metabolomic data. Discret. Appl. Math. 2019, doi:10.1016/j.dam.2018.11.025.

6. Hopfield, J.J.; Tank, D.W. “Neural” computation of decisions in optimization problems. Biol. Cybern. 1985,
52, 141–152.

7. Silva, H.O.; Bastos-Filho, C.J. Inter-domain routing for communication networks using Hierarchical
Hopfield neural network. Eng. Appl. Artif. Intell. 2018, 70, 184–198.

8. Jayashree, J.; Kumar, S.A. Evolutionary Correlated Gravitational Search Algorithm (ECGS) With Genetic
Optimized Hopfield Neural Network (GHNN)—A Hybrid Expert System for Diagnosis of Diabetes.
Measurement 2019, 145, 551–558.

9. Bafghi, M.S.; Zakeri, A.; Ghasemi, Z. Reductive dissolution of manganese in sulfuric acid in the presence
of iron metal. Hydrometallurgy 2008, 90, 207–212.

10. Yang, J.; Wang, L.; Wang, Y.; Gou, T. A novel memristive Hopfield neural network with application in
associative memory. Neurocomputing 2017, 227, 142–148.

11. Peng, M.; Gupta, N.K.; Armitage, A.F. An investigation into the improvement of local minima of the
Hopfield Network. Neural Netw. 1996, 90, 207–212.

12. Yang, G.; Wu, S.; Jin, Q.; Xu, J. A hybrid approach based on stochastic competitive Hopfield neural network
and efficient genetic algorithm for frequency assignment problem. Appl. Soft Comput. 2016, 39, 104–116.

Figure A1. The flowchart of discrete Hopfield neural network.

References

1. Zamanlooy, B.; Mirhassani, M. Mixed-signal VLSI neural network based on continuous valued number
system. Neurocomputing 2017, 221, 15–23. [CrossRef]

2. Fu, Y.; Aldrich, C. Flotation froth image recognition with convolutional neural networks. Miner. Eng.
2019, 132, 183–190. [CrossRef]

3. Melin, P.; Sanchez, D. Multi-objective optimization for modular granular neural networks applied to pattern
recognition. Inf. Sci. 2018, 460, 594–610. [CrossRef]

4. Turabieh, H.; Mafarja, M.; Li, X. Iterated feature selection algorithms with layered recurrent neural network
for software fault prediction. Expert Syst. Appl. 2019, 122, 27–42. [CrossRef]

5. Grissa, D.; Comte, B.; Petera, M.; Pujos-Guillot, E.; Napoli, A. A hybrid and exploratory approach to
knowledge discovery in metabolomic data. Discret. Appl. Math. 2019. [CrossRef]

6. Hopfield, J.J.; Tank, D.W. “Neural” computation of decisions in optimization problems. Biol. Cybern.
1985, 52, 141–152.

7. Silva, H.O.; Bastos-Filho, C.J. Inter-domain routing for communication networks using Hierarchical Hopfield
neural network. Eng. Appl. Artif. Intell. 2018, 70, 184–198. [CrossRef]

8. Jayashree, J.; Kumar, S.A. Evolutionary Correlated Gravitational Search Algorithm (ECGS) With Genetic
Optimized Hopfield Neural Network (GHNN)—A Hybrid Expert System for Diagnosis of Diabetes.
Measurement 2019, 145, 551–558. [CrossRef]

9. Bafghi, M.S.; Zakeri, A.; Ghasemi, Z. Reductive dissolution of manganese in sulfuric acid in the presence of
iron metal. Hydrometallurgy 2008, 90, 207–212. [CrossRef]

10. Yang, J.; Wang, L.; Wang, Y.; Gou, T. A novel memristive Hopfield neural network with application in
associative memory. Neurocomputing 2017, 227, 142–148. [CrossRef]

http://dx.doi.org/10.1016/j.neucom.2016.08.090
http://dx.doi.org/10.1016/j.mineng.2018.12.011
http://dx.doi.org/10.1016/j.ins.2017.09.031
http://dx.doi.org/10.1016/j.eswa.2018.12.033
http://dx.doi.org/10.1016/j.dam.2018.11.025
http://dx.doi.org/10.1016/j.engappai.2018.02.002
http://dx.doi.org/10.1016/j.measurement.2018.12.083
http://dx.doi.org/10.1016/j.hydromet.2007.07.003
http://dx.doi.org/10.1016/j.neucom.2016.07.065

Mathematics 2019, 7, 1133 19 of 21

11. Peng, M.; Gupta, N.K.; Armitage, A.F. An investigation into the improvement of local minima of the Hopfield
Network. Neural Netw. 1996, 90, 207–212. [CrossRef]

12. Yang, G.; Wu, S.; Jin, Q.; Xu, J. A hybrid approach based on stochastic competitive Hopfield neural network
and efficient genetic algorithm for frequency assignment problem. Appl. Soft Comput. 2016, 39, 104–116.
[CrossRef]

13. Zhang, X.; Li, C.; Huang, T. Hybrid Impulsive and switching Hopfield neural networks with state-dependent
impulses. Neural Netw. 2017, 93, 176–184. [CrossRef] [PubMed]

14. Kobayashi, M. Symmetric quaternionic Hopfield neural networks. Neurocomputing 2017, 227, 110–114.
[CrossRef]

15. Larrañaga, P.; Karshenas, H.; Bielza, C.; Santana, R. A review on probabilistic graphical models in evolutionary
computation. J. Heuristics 2012, 18, 795–819. [CrossRef]

16. Gao, S.; De Silva, C.W. Estimation distribution algorithms on constrained optimization problems. Appl. Math.
Comput. 2018, 339, 323–345. [CrossRef]

17. Zhao, F.; Shao, Z.; Wang, J.; Zhang, C. A hybrid differential evolution and estimation of distributed algorithm
based on neighbourhood search for job shop scheduling problem. Int. J. Prod. Res. 2016, 54, 1039–1060.
[CrossRef]

18. Gu, W.; Wu, Y.; Zhang, G. A hybrid Univariate Marginal Distribution Algorithm for dynamic economic
dispatch of unites considering valve-point effects and ramp rates. Int. Trans. Electr. Energy Syst.
2015, 25, 374–392. [CrossRef]

19. Fard, M.R.; Mohaymany, A.S. A copula-based estimation of distribution algorithm for calibration of
microscopic traffic models. Transp. Res. Part C 2019, 98, 449–470. [CrossRef]

20. Gobeyn, S.; Mouton, A.M.; Cord, A.F.; Kaim, A.; Volk, M.; Goethals, P.L. Evolutionary algorithms for species
distribution modelling: A review in the context of machine learning. Ecol. Model. 2019, 392, 179–195.
[CrossRef]

21. Wang, J. Hopfield neural network based on estimation of distribution for two-page crossing number problem.
IEEE Trans. Circuits Syst. II 2008, 55, 797–801. [CrossRef]

22. Hu, L.; Sun, F.; Xu, H.; Liu, H.; Zhang, X. Mutation Hopfield neural network and its applications. Inf. Sci.
2011, 181, 92–105. [CrossRef]

23. Glaßer, C.; Jonsson, P.; Martin, B. Circuit satisfiability and constraint satisfaction around Skolem Arithmetic.
Theor. Comput. Sci. 2017, 703, 18–36. [CrossRef]

24. Budinich, M. The Boolean Satisfiability Problem in Clifford algebra. Theor. Comput. Sci. 2019. [CrossRef]
25. Jensen, L.S.; Kaufmann, I.; Larsen, K.G.; Nielsen, S.M.; Srba, J. Model checking and synthesis for branching

multi-weighted logics. J. Log. Algebraic Methods Program. 2019, 105, 28–46. [CrossRef]
26. Małysiak-Mrozek, B. Uncertainty, imprecision, and many-valued logics in protein bioinformatics. Math. Biosci.

2019, 309, 143–162. [CrossRef] [PubMed]
27. Christoff, Z.; Hansen, J.U. A logic for diffusion in social networks. J. Appl. Log. 2015, 13, 48–77. [CrossRef]
28. Xue, C.; Xiao, S.; Ouyang, C.H.; Li, C.C.; Gao, Z.H.; Shen, Z.F.; Wu, Z.S. Inverted mirror image molecular

beacon-based three concatenated logic gates to detect p53 tumor suppressor gene. Anal. Chim. Acta
2019, 1051, 179–186. [CrossRef]

29. Kasihmuddin, M.S.M.; Mansor, M.A.; Sathasivam, S. Discrete Hopfield Neural Network in Restricted
Maximum k-Satisfiability Logic Programming. Sains Malays. 2018, 47, 1327–1335. [CrossRef]

30. Tasca, L.C.; de Freitas, E.P.; Wagner, F.R. Enhanced architecture for programmable logic controllers targeting
performance improvements. Microprocess. Microsyst. 2018, 61, 306–315. [CrossRef]

31. Wan Abdullah, W.A.T. Logic programming on a neural network. Int. J. Intell. Syst. 1992, 7, 513–519.
[CrossRef]

32. Sathasivam, S. First Order Logic in Neuro-Symbolic Integration. Far East J. Math. Sci. 2012, 61, 213–229.
33. Mansor, M.A.; Sathasivam, S. Accelerating Activation Function for 3-Satisfiability Logic Programming. Int. J.

Intell. Syst. Appl. 2016, 8, 44–50.
34. Sathasivam, S. Upgrading logic programming in Hopfield network. Sains Malays. 2010, 39, 115–118.
35. Sathasivam, S. Learning Rules Comparison in Neuro-Symbolic Integration. Int. J. Appl. Phys. Math.

2011, 1, 129–132. [CrossRef]
36. Mansor, M.A.; Sathasivam, S. Performance analysis of activation function in higher order logic programming.

AIP Conf. Proc. 2016, 1750.

http://dx.doi.org/10.1016/0893-6080(96)00017-2
http://dx.doi.org/10.1016/j.asoc.2015.10.056
http://dx.doi.org/10.1016/j.neunet.2017.04.009
http://www.ncbi.nlm.nih.gov/pubmed/28646762
http://dx.doi.org/10.1016/j.neucom.2017.02.044
http://dx.doi.org/10.1007/s10732-012-9208-4
http://dx.doi.org/10.1016/j.amc.2018.07.037
http://dx.doi.org/10.1080/00207543.2015.1041575
http://dx.doi.org/10.1002/etep.1854
http://dx.doi.org/10.1016/j.trc.2018.12.008
http://dx.doi.org/10.1016/j.ecolmodel.2018.11.013
http://dx.doi.org/10.1109/TCSII.2008.922373
http://dx.doi.org/10.1016/j.ins.2010.08.007
http://dx.doi.org/10.1016/j.tcs.2017.08.025
http://dx.doi.org/10.1016/j.tcs.2019.03.027
http://dx.doi.org/10.1016/j.jlamp.2019.02.001
http://dx.doi.org/10.1016/j.mbs.2018.08.004
http://www.ncbi.nlm.nih.gov/pubmed/30118719
http://dx.doi.org/10.1016/j.jal.2014.11.011
http://dx.doi.org/10.1016/j.aca.2018.11.029
http://dx.doi.org/10.17576/jsm-2018-4706-30
http://dx.doi.org/10.1016/j.micpro.2018.06.007
http://dx.doi.org/10.1002/int.4550070604
http://dx.doi.org/10.7763/IJAPM.2011.V1.25

Mathematics 2019, 7, 1133 20 of 21

37. Kasihmuddin, M.S.B.M.; Sathasivam, S. Accelerating activation function in higher order logic programming.
AIP Conf. Proc. 2016, 1750.

38. Yoon, H.U.; Lee, D.W. Subplanner Algorithm to Escape from Local Minima for Artificial Potential Function
Based Robotic Path Planning. Int. J. Fuzzy Log. Intell. Syst. 2018, 18, 263–275. [CrossRef]

39. Velavan, M.; Yahya, Z.R.; Abdul Halif, M.N.; Sathasivam, S. Mean field theory in doing logic programming
using hopfield network. Mod. Appl. Sci. 2016, 10, 154. [CrossRef]

40. Alzaeemi, S.A.; Sathasivam, S. Linear kernel Hopfield neural network approach in horn clause programming.
AIP Conf. Proc. 2018, 1974, 020107.

41. Paul, A.; Poloczek, M.; Williamson, D.P. Simple Approximation Algorithms for Balanced MAX 2SAT.
Algorithmica 2018, 80, 995–1012. [CrossRef]

42. Morais, C.V.; Zimmer, F.M.; Magalhaes, S.G. Inverse freezing in the Hopfield fermionic Ising spin glass with
a transverse magnetic field. Phys. Lett. A 2011, 375, 689–697. [CrossRef]

43. Barra, A.; Beccaria, M.; Fachechi, A. A new mechanical approach to handle generalized Hopfield neural
networks. Neural Netw. 2018, 106, 205–222. [CrossRef] [PubMed]

44. Zarco, M.; Froese, T. Self-modeling in Hopfield neural networks with continuous activation function.
Procedia Comput. Sci. 2018, 123, 573–578. [CrossRef]

45. Abdullah, W.A.T.W. The logic of neural networks. Phys. Lett. A 1993, 176, 202–206. [CrossRef]
46. Kumar, S.; Singh, M.P. Pattern recall analysis of the Hopfield neural network with a genetic algorithm.

Comput. Math. Appl. 2010, 60, 1049–1057. [CrossRef]
47. Salcedo-Sanz, S.; Ortiz-García, E.G.; Pérez-Bellido, Á.M.; Portilla-Figueras, A.; López-Ferreras, F. On the

performance of the LP-guided Hopfield network-genetic algorithm. Comput. Oper. Res. 2009, 36, 2210–2216.
[CrossRef]

48. Wu, J.; Long, J.; Liu, M. Evolving RBF neural networks for rainfall prediction using hybrid particle swarm
optimization and genetic algorithm. Neurocomputing 2015, 148, 136–142. [CrossRef]

49. Chen, D.; Chen, Q.; Leon, A.S.; Li, R. A genetic algorithm parallel strategy for optimizing the operation of
reservoir with multiple eco-environmental objectives. Water Resour. Manag. 2016, 30, 2127–2142. [CrossRef]

50. García-Martínez, C.; Rodriguez, F.J.; Lozano, M. Genetic Algorithms. Handb. Heuristics 2018, 431–464.
[CrossRef]

51. Tian, J.; Hao, X.; Gen, M. A hybrid multi-objective EDA for robust resource constraint project scheduling
with uncertainty. Comput. Ind. Eng. 2019, 130, 317–326. [CrossRef]

52. Fang, H.; Zhou, A.; Zhang, H. Information fusion in offspring generation: A case study in DE and EDA.
Swarm Evol. Comput. 2018, 42, 99–108. [CrossRef]

53. Kasihmuddin, M.S.M.; Mansor, M.A.; Sathasivam, S. Hybrid Genetic Algorithm in the Hopfield Network for
Logic Satisfiability Problem. Pertanika J. Sci. Technol. 2017, 1870, 050001.

54. Bag, S.; Kumar, S.K.; Tiwari, M.K. An efficient recommendation generation using relevant Jaccard similarity.
Inf. Sci. 2019, 483, 53–64. [CrossRef]

55. Pachayappan, M.; Panneerselvam, R. A Comparative Investigation of Similarity Coefficients Applied to
the Cell Formation Problem using Hybrid Clustering Algorithms. Mater. Today: Proc. 2018, 5, 12285–12302.
[CrossRef]

56. Cardenas, C.E.; McCarroll, R.E.; Court, L.E.; Elgohari, B.A.; Elhalawani, H.; Fuller, C.D.; Kamal, M.J.;
Meheissen, M.A.; Mohamed, A.S.; Rao, A.; et al. Deep learning algorithm for auto-delineation of high-risk
oropharyngeal clinical target volumes with built-in dice similarity coefficient parameter optimization
function. Int. J. Radiat. Oncol. Biol. Phys. 2018, 101, 468–478. [CrossRef]

57. Ikemoto, S.; DallaLibera, F.; Hosoda, K. Noise-modulated neural networks as an application of stochastic
resonance. Neurocomputing 2018, 277, 29–37. [CrossRef]

58. Ong, P.; Zainuddin, Z. Optimizing wavelet neural networks using modified cuckoo search for multi-step
ahead chaotic time series prediction. Appl. Soft Comput. 2019, 80, 374–386. [CrossRef]

59. Kasihmuddin, M.S.M.; Mansor, M.A.; Sathasivam, S. Maximum 2 satisfiability logical rule in restrictive
learning environment. AIP Publ. 2018, 1974, 020021.

60. McCulloch, W.S.; Pitts, W. A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys.
1943, 5, 115–133. [CrossRef]

61. Cheng, S.; Chen, J.; Wang, L. Information perspective to probabilistic modeling: Boltzmann machines versus
born machines. Entropy 2018, 20, 583. [CrossRef]

http://dx.doi.org/10.5391/IJFIS.2018.18.4.263
http://dx.doi.org/10.5539/mas.v10n1p154
http://dx.doi.org/10.1007/s00453-017-0312-6
http://dx.doi.org/10.1016/j.physleta.2010.12.001
http://dx.doi.org/10.1016/j.neunet.2018.07.010
http://www.ncbi.nlm.nih.gov/pubmed/30081347
http://dx.doi.org/10.1016/j.procs.2018.01.087
http://dx.doi.org/10.1016/0375-9601(93)91035-4
http://dx.doi.org/10.1016/j.camwa.2010.03.061
http://dx.doi.org/10.1016/j.cor.2008.08.012
http://dx.doi.org/10.1016/j.neucom.2012.10.043
http://dx.doi.org/10.1007/s11269-016-1274-1
http://dx.doi.org/10.1007/978-3-319-07124-4
http://dx.doi.org/10.1016/j.cie.2019.02.039
http://dx.doi.org/10.1016/j.swevo.2018.02.014
http://dx.doi.org/10.1016/j.ins.2019.01.023
http://dx.doi.org/10.1016/j.matpr.2018.02.207
http://dx.doi.org/10.1016/j.ijrobp.2018.01.114
http://dx.doi.org/10.1016/j.neucom.2016.12.111
http://dx.doi.org/10.1016/j.asoc.2019.04.016
http://dx.doi.org/10.1007/BF02478259
http://dx.doi.org/10.3390/e20080583

Mathematics 2019, 7, 1133 21 of 21

62. Mansor, M.A.; Kasihmuddin, M.S.M.; Sathasivam, S. Modified Artificial Immune System Algorithm with
Elliot Hopfield Neural Network for 3-Satisfiability Programming. J. Inform. Math. Sci. 2019, 11, 81–98.

63. Li, K.; Lu, W.; Liang, C.; Wang, B. Intelligence in Tourism Management: A Hybrid FOA-BP Method on Daily
Tourism Demand Forecasting with Web Search Data. Mathematics 2019, 7, 531. [CrossRef]

64. Frosini, A.; Vuillon, L. Tomographic reconstruction of 2-convex polyominoes using dual Horn clauses.
Theor. Comput. Sci. 2019, 777, 329–337. [CrossRef]

65. Shu, J.; Xiong, L.; Wu, T.; Liu, Z. Stability Analysis of Quaternion-Valued Neutral-Type Neural Networks
with Time-Varying Delay. Mathematics 2019, 7, 101. [CrossRef]

66. Yun, B.I. A Neural Network Approximation Based on a Parametric Sigmoidal Function. Mathematics
2019, 7, 262. [CrossRef]

67. Wu, Z.; Christofides, P.D. Economic Machine-Learning-Based Predictive Control of Nonlinear Systems.
Mathematics 2019, 7, 494. [CrossRef]

68. Kanokoda, T.; Kushitani, Y.; Shimada, M.; Shirakashi, J.I. Gesture Prediction using Wearable Sensing Systems
with Neural Networks for Temporal Data Analysis. Sensors 2019, 19, 710. [CrossRef]

69. Wong, W.; Chee, E.; Li, J.; Wang, X. Recurrent Neural Network-Based Model Predictive Control for Continuous
Pharmaceutical Manufacturing. Mathematics 2018, 6, 242. [CrossRef]

70. Shah, F.; Debnath, L. Wavelet Neural Network Model for Yield Spread Forecasting. Mathematics 2017, 5, 72.
[CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/math7060531
http://dx.doi.org/10.1016/j.tcs.2019.01.001
http://dx.doi.org/10.3390/math7010101
http://dx.doi.org/10.3390/math7030262
http://dx.doi.org/10.3390/math7060494
http://dx.doi.org/10.3390/s19030710
http://dx.doi.org/10.3390/math6110242
http://dx.doi.org/10.3390/math5040072
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Propositional Satisfiability
	Discrete Hopfield Neural Network
	Mutation Hopfield Neural Network
	HNN Model Performance Evaluation
	Simulation
	Results and Discussion
	Conclusions
	
	References

