
Received April 2, 2020, accepted April 20, 2020, date of publication April 27, 2020, date of current version May 15, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2990439

A Newly Developed Integrative Bio-Inspired
Artificial Intelligence Model for Wind Speed
Prediction
HAI TAO 1, SINAN Q. SALIH 2,3, MANDEEP KAUR SAGGI 4, ESMAEEL DODANGEH 5,
CYRIL VOYANT 6, NADHIR AL-ANSARI 7, ZAHER MUNDHER YASEEN 8,
AND SHAMSUDDIN SHAHID 9
1Computer Science Department, Baoji University of Arts and Sciences, Baoji, China
2Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
3Computer Science Department, College of Computer Science and Information Technology, University of Anbar, Ramadi, Iraq
4Department of Computer Science, Thapar Institute of Engineering and Technology, Patiala 147004, India
5Department of Watershed Management, Sari Agricultural Sciences and Natural Resources University, Sari 48181-68984, Iran
6SPE Laboratory, University of Corsica UMR 6134, 20000 Ajaccio, France
7Civil, Environmental and Natural Resources Engineering, Lulea University of Technology, 97187 Lulea, Sweden
8Sustainable Developments in Civil Engineering Research Group, Faculty of Civil Engineering, Ton Duc Thang University, Ho Chi Minh City, Vietnam
9School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Malaysia

Corresponding author: Zaher Mundher Yaseen (yaseen@tdtu.edu.vn)

This work was supported by the Key Research and Development Program in Shaanxi Province under Grant 2020GY-078.

ABSTRACT Accurate wind speed (WS) modelling is crucial for optimal utilization of wind energy. Numer-
ical Weather Prediction (NWP) techniques, generally used for WS modelling are not only less cost-effective
but also poor in predicting in shorter time horizon. Novel WS prediction models based on the multivariate
empirical mode decomposition (MEMD), random forest (RF) and Kernel Ridge Regression (KRR) were
constructed in this paper better accuracy in WS prediction. Particle swarm optimization algorithm (PSO)
was employed to optimize the parameters of the hybridized MEMD model with RF (MEMD-PSO-RF)
and KRR (MEMD-PSO-KRR) models. Obtained results were compared to those of the standalone RF and
KRR models. The proposed methodology is applied for monthly WS prediction at meteorological stations
of Iraq, Baghdad (Station1) and Mosul (Station2) for the period 1977-2013. Results showed higher accuracy
of MEMD-PSO-RF model in predicting WS at both stations with a correlation coefficient (r) of 0.972 and r
= 0.971 during testing phase at Station1 and Station2, respectively. The MEMD-PSO-KRR was found as the
secondmost accurate model followed by Standalone RF and KRR, but all showed a competitive performance
to the MEMD-PSO-RF model. The outcomes of this work indicated that the MEMD-PSO-RF model has a
remarkable performance in predicting WS and can be considered for practical applications.

INDEX TERMS Wind speed prediction, multivariate empirical mode decomposition, random forest, Kernel
Ridge Regression, Iraq region.

I. INTRODUCTION
The importance of wind speed prediction in wind energy
farm operation and maintenance has increased over the years
[1], [2]. The sustained increase in the rate of wind turbines
erections demands the deployment of optimal dispatching
strategy that will guarantee stable power generation by the
wind turbines without having much influence on the power
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grid. However, the cost of wind farm operation may be
affected by imperfect predictions due to the underlying uncer-
tainties in WS [3], [4]. Similarly, the availability of wind
resources must be considered for a maintenance schedule
to ensure optimal maintenance for reducing the turbines’
production loss [5], [6]. Therefore, accurate WS prediction
has grasped research attention in recent years due to its great
practical and academic values.

Different prediction models are currently used for predic-
tion of WS in different time horizons. Most of the recent
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studies on WS prediction reportedly used intelligent models
[7], [8]. Such models are generally helpful in short-range
(30 min−6.0 h)WS estimation [7]. There are several versions
of these intelligent models, including adaptive neural fuzzy
inference system, support vector machine, artificial neural
network, etc. In practice, theWS data measured at the turbine
locations are used to train these models while the tuning
of the model parameters is done using the immediate past
observed WS.

Despite the effectiveness of these intelligent models for
short-term predictions, they still experience a rapid declina-
tion in prediction accuracy with the increase of prediction
horizon. Numerical Weather Prediction is the most widely
used for medium-term (daily, weekly and monthly) WS pre-
diction to guarantee satisfactory prediction accuracy. The
NWP needs intensive computational capacity. Supercomput-
ers are used to NWP which provides predictions only once
or twice in a day. Moreover, the accuracy of NWP prediction
is lower than the statistical models. Thus, medium- to long-
termWS predictions are usually done using the NWPmodels.
Owing to the need for better WS prediction model with
good accuracy at multiple horizons, a novel WS prediction
technique with enhanced short and medium accuracy should
be explored.

Industrialization has predisposed the world to several
energy-related problems. Renewable resources are becoming
important due to the declining fossil fuel reserves and the
adverse impacts of fossil fuel on environment [9]. A major
practical renewable energy source is wind energy, hence, its
related technologies ought to be thoroughly investigated and
developed. Wind has an intermittent characteristic; hence, its
energy generation is unstable. Energy conservation and man-
agement can be disturbed due to instability in wind energy
generation [10], [11]; however, this problem can be addressed
by an efficient WS prediction. Several factors influence wind
speed, making it difficult to measure the complicated wind-
speed features accurately using the simple prediction models.
Therefore, much attention has recently been paid to high
precision WS prediction techniques.

The past decades have witnessed the development of sev-
eral numerical WS prediction models. Such models are clas-
sified into physical, deterministic and probabilistic models
[12], [13]. The physical models use physical features like
atmospheric pressure, ambient temperature, and local terrain
to approximate WS [14]. Owing to the strong theoretic foun-
dation and tremendous performance of the physical models
in WS prediction, they are deployed in the field [15]. Mean-
while, several equations are required in the physical models,
making them unsuitable for mid to long-term WS prediction
when the computation cost is considered. They are also less
capable of short-range WS prediction at the local or station
level. Several physical models have recently been developed,
for instance, Allen et al., (2017) presented a boundary layer
scaling model to predict long-term average near-surface WS
[16], a physical-based model for WS prediction in complex
terrain was developed by [17].

WS prediction using the statistical models is based on
historical data. Statistical models are becoming more popular
due to the recent advancements in data science [18], [19].
Statistical models can be categorized into multiple and single
data models based on the number of different types of data
used. WS prediction with the multiple data models requires
a combination of several physical information with some sta-
tistical frameworks [20]. Multiple data models often present
excellent prediction performances, and therefore, they have
attracted the attention of researchers. The observed multi-
ple meteorological data are modelled using Gaussian pro-
cess regression [21] while a probabilistic approach based on
some statistical algorithms (non-parametric) and numerical
weather prediction data is used to design the WS prediction
model [22]. A new approach based on copula is used by [23]
to develop a WS prediction model [23]. Despite the chances
of achieving better results using multiple data models, the
complication and vagueness of the model can sometimes be
increased by the multiple data. The multiple data models are
therefore less stable compared to single WS data models.
Furthermore, the single WS data models are often associ-
ated with low computational complexity and are therefore
often suggested for short-term WS prediction [24]. Several
algorithms have been deployed in designing single WS data
models to ensure maximum utilization of antecedent WS
data for prediction of WS; such frameworks include signal
processing and time series algorithms [25]–[28]. The time
series algorithms are classified as the classical algorithms for
WS prediction which contain persistence algorithms. In con-
trary, the signal processing algorithms are primarily deployed
for feature extraction during WS prediction; such algorithms
include wavelet decomposition, empirical mode decompo-
sition (EMD), wavelet packet decomposition, and complete
ensemble empirical mode decomposition [29].

The WS data has a high degree of non-linearity and
non-stationary which make an accurate prediction using a
single WS data model challenging. Accuracy of predic-
tive models can be improved using efficient learning and
predicted parameters. Various data decompositions methods
have been used to overcome this challenge which includes
EMD, wavelet decomposition, variational mode decompo-
sition, seasonal adjustment, intrinsic time-Scale decompo-
sition and empirical mode decomposition [30]. The EMD
model belongs to data-adaptive decomposition techniques
has advantages over wavelet transformation methods. EMD
methods decompose a time series into a collection of station-
ary IntrinsicMode Functions (IMFs) with different frequency
bands and a residue-based on local properties of the time
series adaptively and efficiently. An EMD model starts by
decomposition of a given input predictor which is projected
using the adequate lagged sub-series as inputs. Then the
predicted series are summed at various time scales to gain the
target variable at expected data scales (monthly scale in this
study). Therefore, it can efficiently capture the non-linearity
and non-stationary of WS time series by decomposing it
into several series with independent time resolutions [24].
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The EMD algorithm also overcome the difficulties of wavelet
transformation method by fixing the most suitable decompo-
sition levels and specifying the base function [31]. The EMD
has been found highly effective in improvement of model
accuracy in a broad range of applications for analysing non-
linear and nonstationary processes. It has been successfully
applied in forecasting different engineering problems such as
prediction of evapotranspiration [32], soil water [33], crude
oil price [34] and iceberg drift [35].

As WS behaves differently for different time scales, WS
model performance can be improved by engaging the appro-
priate predictors. The WS prediction models can be classi-
fied into various categories: data-driven, model-driven and
hybrid approaches. Model-driven and data-driven approaches
employmetrological information and statistically techniques,
respectively to handle the physical properties that influence
WS. Therefore, they have their inherent advantages and dis-
advantages. To overcome the limitations of model-driven and
data-driven approaches in handling the challenges of stochas-
tic and intermitted nature of WS in its accurate prediction, a
hybrid approach can be used [36].

Besides, it is required to optimize the parameters of
hybrid models for improvement of their prediction accuracy.
In recent decades, many optimization methods are being
adopted for wind forecasting models such as particle swarm
optimization (PSO) and Genetic algorithm (GA). Among
them, the PSO has been widely used in recent years to opti-
mize the parameters of different models in many fields.

Novel models through hybridization of multivariate empir-
ical mode decomposition (MEMD) with random forest (RF)
and Kernel Ridge Regression (KRR), and a parameter opti-
mization algorithm known as Particle swarm optimization
algorithm (PSO) are proposed in this study for accurate pre-
diction of WS. The proposed model directed in a way to
benefit the advantages of other soft computing techniques for
improved tuning of the MEMD model. Random forest (RF)
[37] and Kernel Ridge Regression (KRR) [38] algorithms
were used to avoid the overfitting the MEMD model. The
regression method adopted is the nonlinear KRR method,
which has shown particularly attractive for its simple imple-
mentation, fast processing and accuracy [39]. Nonetheless,
the accurate prediction of the model parameters is also a
requirement for optimal model performance which has been
done using PSO. The key objectives of this study include
evaluation of the performance of the MEMD-PSO-RF and
MEMD-PSO-KRR in WS prediction and benchmark the
results by comparing the performance of newly developed
models with Standalone RF and KRR models.

II. CASE STUDY AND DATASET DESCRIPTION
Despite the arid to semi-arid climate in most part of Iraq, the
Tigris basin still ranges from semi-humid to semi-arid in the
headwaters to the north and south, respectively [40]. Hence,
any event of drought in the future is expected to adversely
affect the already limited water resources of the nation and
this will affect the socio-ecological system of the Tigris

Basin’s that is home to over 18 million people [41], [42]. The
persistent increase in temperature is continuously boosting
surface water scarcity and reducing aquifers’ water tables,
indicating an ongoing drought condition which can worsen
with time. Using climate forecasting models, it has been
predicted that drought and temperature are on the increase in
the region and the condition may soon become unsustainable
[43]. Drought-related issues are closely related to the balance
between temperature and precipitation [44]. In the Tigris, the
annual rainfall ranges from 400 to 600 mm; however, the
range from the downstream to the upstream reaches is about
it ranges from 150 to 800 mm, respectively. According to
the Iraqi meteorological monitoring stations, there have been
high rates of evaporation in Mosul and Baghdad. From 1960-
2009, Baghdad has recorded a mean July temperature range
of 23.5 to 44◦C while the rate of annual rainfall has been
244 mm; the annual evaporation rate has been 3200 mm.
Regarding Mosul, the observed July temperature range has
been from 24.8 to 43◦C, with annual precipitation rate of 729
mm and evaporation rate of 3900 mm.

In this research, multiple hydrometeorological variables
including sunshine radiation (SS), rainfall (Rnf), minimum air
temperature (Tmin), maximum air temperature (Tmax), evapo-
ration (ET) and relative humidity (RH) to predict the monthly
wind speed (WS), were used to build the proposed predic-
tive model. Historical data over 1977-2013 with monthly
scale data without any missing data at Baghdad and Mosul
meteorological station were used in this investigation (Figure
1). The statistical characteristics of the used historical data
are reported in Table 1. The selection of this region was
due to the lake of advanced technologies that support the
hydrologist and climatologist and thus the proposed advanced
soft computingmodel can provide a remarkable assistance for
simulating the WS. It is highly essential for energy sources
management, monitoring and assessment. Also, the studied
Iraq region is considered as developing country with a high
potential sources of wind energy for exploitation. Meanwhile
the region is one of the primary sources of dust generation
and emissions with the resulting dust affecting the neigh-
boring countries [45]. Hence such an inspection can pro-
duce high aspect of benefit for environmental engineering
projects, e.g., the risk analysis of the dust storms as well as
prediction of the future wind energy sources is available for
exploitation.

III. METHODOLOGY
A. THE RANDOM FOREST MODEL
Bootstrapping is principally an ensemble modelling approach
which provides prediction using decision trees [32], [33].
The RF algorithm is a decision tree-based machine learn-
ing approach which developed ensembles using a random
bagging technique [47]. Every node is connected randomly
by selecting well-known predictors to increase predictive
performance and avoid overfitting [48]. The RF model can
be constructed using the following steps:
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TABLE 1. The statistical characteristics of meteorological data used in this study.

FIGURE 1. The location of the investigated meteorological station.

i. Embedding the inputs to generate n-number of trees (i.e.
ntrees) using bootstrapping.
ii. Select the maximum number of split predictors using a

random sample of inputs (mtry) based on unpruned regression
tree.

iii. Combine the estimates of ntrees in terms of aggregations
to predict WS.

B. THE MEMD APPROACH
The multivariate empirical mode decomposition (MEMD) is
a self-adaptive method capable of handling the hurdles of
mode alignment. The mathematical structure of MEMD is an
improved variant of EMD which is defined as:

8(α) = <l (α)+
l∑

k=1

Ck (α) (1)

In Eq. (1), 8(α), Ck (α) and Rl (α) are the input variable,
the k th Intrinsic Mode Functions (IMF) and residue factor
respectively. The MEMD designed by [37] demarcates the
multiple inputs into IMFs using White Gaussian noise [50].
The mean ℵ (α) can computed as:

ℵ (α) =
1
t

t∑
s=1

eθs (α) (2)

The term eθs (α) is called the envelope curves with t:

< (α) = 8(α)− ℵ (α) (3)

In Eq. (3), R (α) is a multivariate IMF. The application of
MEMD can be found in signal processing [46], [47] and solar
radiation [53].

C. PARTICLE SWARM OPTIMIZATION (PSO)
PSO meta-heuristic algorithm introduced by [54] is a soft
computing optimization method that is theorized to optimize
a problem through the searching for the best candidate solu-
tion. The PSO algorithm is invented by replicating the social
behavior of animals in a bunch e.g., birds and fishes [55]. In
this algorithm, a bunch of creatures, that are called particles,
spread in the search area [56]. Every single particle approx-
imates its situation relative to the target position. They fine-
tune their location and velocity using the current situation and
the best position they were already in and the situation of the
best particles in the bunch [57]:

V t
id = wV t−1

id + c1r1
(
Ptid − X

t
id
)
+ c2r2

(
Ptgd − X

t
id

)
d = 1, 2, 3 . . . ,D (4)

where X tid indicates the location of the particle i in iteration
t , V t

id is the velocity of particle i in iteration t , Ptid is the
best location of the particle i, Ptgd is the global best position
of particle i, w expresses the inertia weight, c1 expresses
the cognitive learning factor, c2 expresses the social learning
factor, and r1 and r2 denote the random values in [0,1].
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The basic steps for implementing the algorithm are as
follow: Step 1: Generate the initial swarm and assessing it.

Step 2: Evaluation of fitness of every single particle within
the bunch.

Step 3: Update velocity of every single particle according
to Eq. 4.

Step 4:Update the position for each particle by the follow-
ing equation:

X t+1id = X tid + V
t
id (5)

Step 5: The algorithm is stopped when the termination
criterion is satisfied or returned to Step 2.

D. THE KRR MODEL
TheKernel Ridge Regression (KRR) is a kernel-based regres-
sion technique [58] that handle the over-fitting problems
by adopting regularization and the kernel procedure in non-
linear input variables. Mathematically, The KRR is described
using the following mathematical structure:

arg min
1
r

r∑
s=1

‖gs − hs‖2 + β ‖g‖2H (6)

gs =
r∑
l=1

βl9 (zl, zs) (7)

In Eq. (6), ‖.‖H represents the Hilbert normed space [58].
Eq. (7) can be rewritten in the following form:

(3+ λrI ) = w (8)

w̃ =
r∑
s=1

βl9 (zl, z̃) (9)

3 can be designed using3l,s= 9 (zl, zs)which is max kernel
matrix and y is the input rx1 regress and vector, and β is
the rx1 unknown solution vector. In training phase, KRR is
estimated β using Eq. (9) which utilized later in validation
to calculate the regression of unidentified sample z̃ in Eq. (9).
Different kinds of kernels (for example linear, polynomial and
Gaussian) can be used to achieve better performance [59],
[60]. The mathematical formulation of these kernels can be
expressed a following:

9 (zl, zs) = zTl .zs (10)

9 (zl, zs) =
(
zTl .zs + R

)D
(11)

9 (zl, zs) = exp

(
−‖zl − zs‖2(

2ρ2
) )

(12)

E. THE PERFORMANCE METRICS
The performance of MEMD-PSO-RF and other models were
measured using statistical metrics. The mathematical repre-
sentation of these metrics [61]–[63] and [64]–[69] is given
below:

I. Correlation coefficient (r):

r=

 ∑N
i=1

(
WSo−WSo

) (
WSp−WSp

)√∑N
i=1

(
WSo−WSo

)2√∑N
i=1

(
WSp−WSp

)2

(13)

II. Willmott’s Index (EWI ):

EWI =1−

[ ∑N
i=1

(
WSp −WSo

)2∑N
i=1

(∣∣WSp −WSo∣∣+ |WSo −WSo|)2
]
,

0 ≤ EWI ≤ 1 (14)

III. Nash-Sutcliffe efficiency (ENS) agreement:

ENS=1−

[∑N
i=1

(
WSo−WSp

)2∑N
i=1

(
WSo−WSp

)2
]
, 0≤ENS≤1 (15)

IV. Root mean square error (RMSE):

RMSE =

√
1
N

∑N

i=1

(
WSp −WSo

)2 (16)

V. Mean absolute error (MAE):

MAE =
1
N

∑N

i=1

∣∣(WSp −WSo)∣∣ (17)

VI. Legates and McCabe’s (ELM):

ELM =1−

[∑N
i=1

∣∣WSp−WSo∣∣∑N
i=1

∣∣WSo−WSo∣∣
]
, 0 ≤ ELM ≤ 1

(18)

VII. Relative root mean squared percentage error (RRM-
SPE; %):

RRMSPE =
1
N

∑N

i=1

∣∣∣∣∣
(
WSp −WSo

)
WSo

∣∣∣∣∣× 100 (19)

VIII. Relative mean absolute percentage error (RMAPE; %):

RMAPE =
1
N

∑N

i=1

∣∣∣∣∣
(
WSp −WSo

)
WSo

∣∣∣∣∣× 100 (20)

In Eqs. (13)-(20), WSo and WSp indicate the observed and
predicted values of WS, WSo and WSp are the observed and
predicted averageWS andN is the total value of data records.

F. MEMD-PSO-RF MODEL DEVELOPMENT
The MEMD-PSO-RF model was implemented using
MATLAB R2016b (The Math Works Inc. USA) program-
ming language. The simulations were performed in operating
Pentium 4, 2.93 GHz dual-core Central Processing Unit. The
datasets are divided straight into training 70% and testing
30% periods. Climate information including SS), Rnf, Tmin,
Tmax, ET and RH were incorporated to design MEMD-PSO-
RF for WS prediction as described in the following phases.

VOLUME 8, 2020 83351



H. Tao et al.: Newly Developed Integrative Bio-Inspired Artificial Intelligence Model for WS Prediction

TABLE 2. Parameters used in selecting IMFs for training period using PSO
method.

1) THE MEMD PHASE
The MEMDmodel is applied to demarcate the predictor data
into respective IMFs and residuals. Additionally, the prede-
fined parameters include the ensemble number (N = 500)
and the amplitude of the added white noise (ε) between -0.2
and 0.2. Total fifty-four IMFs (Table 1) for WS in station1&2
were demarcated where every single predictor has IMFs= 9.
It is worth to highlight that the MEMD is subjected with
several tuning parameters including tolerance and threshold
values, stop vector, stopping criteria and total projection, as
reported in Table 2 to attain the equal IMFs for both training
and testing subsets.

2) THE PSO PHASE
The PSO algorithm is used for the selection of the utmost
suitable IMFs for the only training set. The predefined set of
parameters includes maximum iterations (=10) and popula-
tion size (=20). The number of fix selected IMFs is retained
to 16 that were pre-defined before executing the PSO algo-
rithm. The same number of IMFs are adopted for the testing
set following the training IMFs.

3) THE NORMALIZATION PHASE
The training and testing sets are normalized between 0 and
1 using Eq. (20) [70] to overcome large differences in the
data [70]:

2norm =
(2−2min)

(2minmax)
(21)

In Eq. (20), 2 denotes the input/output, 2min is the smallest
and 2max is the largest magnitude of the data, and 2norm is
the desired normalized point.

4) THE RF PHASE
The last modelling phase is the employment of RF algorithm
to predict WS and investigate its ability in WS prediction
in the monthly timescale. The designated IMFs (for train-
ing period) were embedded in RF model. Some pre-defined
parameter set (i.e., 1000 trees and 5 predictors) needs to
establish using hit and trial approach in both training and
testing stages. The equivalent number of IMFs are used for the
testing set to validate the MEMD-PSO-RF model. Further,

the MEMD-PSO-RF, standalone RF and standalone KRR
models were also benchmarked. Figure 2 demonstrates the
diagrammatic presentation of MEMD-PSO-RF model.

IV. APPLICATION RESULTS AND ANALYSIS
In this study, a new hybrid intelligence framework for wind
forecasting is proposed. The relative performance of different
models was evaluated to validate the performance of the
proposed model.

Tables 4 and 5 provide a summary of the overall perfor-
mance of themodels in predictingWS at two locations in term
of eight statistical measures during training and testing stages.
A general inspection reveals all of the investigated models
have reasonably good performance in reproducing the WS of
Station1 compared to Station2. For instance, the RMSEvalues
at Station1 were in the range of 0.175−270 and 0.186−408
during the training and testing phases respectively, while
those were 0.282-0.609 and 0.216-0.451 at Station2. This
reflects the complexity of the relationships among the cli-
mate variables at Station1 compared to that at Station2 which
increases the uncertainty of WS predictions at Station2.

The results presented in Tables 4 and 5 showed that the
highest determination coefficient (R2) in WS prediction dur-
ing both training (R2

= 0.94) and testing (R2
= 0.944) periods

by MEMD-PSO-RF model at Station1. The MEMD-PSO-RF
model also attained the best results in terms of the rest of the
performance evaluation measures during training (RMSE =
0.1860, MAE= 0.1480, WI= 0.92, NSE= 0.88) and testing
(RMSE = 0.17533, MAE = 0.13943, WI = 0.94, NSE =
0.90). TheMEMD-PSO-RFmodel was also found to perform
best in WS prediction at Station2. The performance metrics
of MEMD-PSO-RF at Station2 during both training (RMSE
= 0.281, MAE = 0.2227, R= 0.971, WI = 0.9197, NSE
= 0.888) and testing (RMSE = 0.216, MAE = 0.169, R =
0.971, WI= 0.920, NSE= 0.893) revealed best performance
of the model in WS prediction.

The Standalone RF and MEMD-PSO-KRR hybrid model
also showed competitive results to the MEMD. PSO-RF
model inWS prediction at both the study locations. However,
the Standalone KRR model was not found to perform well.
The Standalone RF model showed better performance in
predicting WS at Station2 compared to MEMD-PSO-KRR
model during both of the training (R = 0.954, WI = 0.896,
NSE= 0.862, RMSE= 0.312, MAE= 0.243, ELM = 0.633,
RRMSPE = 9.807, RMAPE = 8.776) and testing periods
(R = 0.947, WI = 0.882, NSE = 0.849, RMSE = 0.257,
MAE = 0.192, ELM = 0.633, RRMSPE = 8.30, RMAPE
= 6.59). The standalone RF model also showed a slightly
better performance compared to MEMD-PSO-KRR model
during the training phase at Station1. The Standalone KRR
model was found as the worst model in predicting the WS at
both Station1(R = 0.778, WI = 0.562, NSE = 0.461, RMSE
= 0.408, MAE = 0.321, LM = 0.297, RRMSPE = 26.19,
RMAPE = 26.25) and Station2 (R = 0.770, WI = 0.607,
NSE = 0.535, RMSE = 0.451, MAE = 0.353, LM = 0.326,
RRMSPE = 14.56, RMAPE = 11.89). The best prediction
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FIGURE 2. Schematic view of the newly developed MEMD-PSO-RF model.

TABLE 3. Design parameters involved to decomposed IMFs and residuals for training and testing period using MEMD method.

of WS after MEMD-PSO-RF model was achieved using the
standalone RF model.

TheMEMD-PSO-KRRmodel was found to perform better
compared to standalone RF during testing in term of MSE,

RMSE and NSE, while standalone RF model was found to
perform better compared to MEMD-PSO-KRR during train-
ing. Standalone KRR model performed worst in term of all
metrics at both the station. However, it was found to perform
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TABLE 4. The training modeling performance of the both investigated stations.

TABLE 5. The testing performance of models in both the investigated stations.

slightly better at Station1 with respect to (MSE = 0.167,
RMSE = 0.408, MA E = 0.321, R = 0.778, WI = 0.562,
and NSE = 0.461).
Figures 3a and b present the results using violin plots [71]

obtained for all the models during testing phase at Station1
and Station2 respectively. A violin plot is a kind of box plot
combined with kernel density plots to illustrate the probabil-
ity distribution of a given data time series. It can be seen that
MEMD-PSO-RF,MEMD-PSO-KRR and StandaloneRF per-
formed the best while standalone KRR performed worst. The
figures also show thatMEMD-PSO-RFmodel reproduced the
shape of the density mass function of observed WS better in
testing phase compared to training phase.

Figures 4a and b demonstrate the results obtained by the
four models at Station1 and Station2 through the scatter plots
of actual and predicted WS during testing phase. The fig-
ures show a very good agreement between the actual and
predicted WS values for MEMD-PSO-RF model. Nonethe-
less, the overall performance of the evaluated models at both
the stations revealed MEMD-PSO-RF model provides better
accuracy during both training and testing, while the stan-
dalone KRR model performed worst during both the phases.
It is important to note that the practicality of MEMD method
in prediction ofWS to increase the forecasting capacity of the
RF model is a key development of this paper.

The predictive accuracy confirmed that MEMD-PSO-RF
model can deliver healthier predictions of WS compared to
other models in the study regions. The results also revealed
that MEMD-PSO-RF is effective in extracting features from
climatological variables in a tangible way. The performance
of MEMD-PSO-RF also revealed that the PSO algorithm has

FIGURE 3. Estimated wind speed for observed, MEMD-PSO-KRR,
MEMD-PSO-RF, Standalone KRR and Standalone RF models over the
testing phase at a) Station1 and b) Station2.

advantages in indicating the pertinent features to assist the RF
in predictingWS time-series. In addition to the overall perfor-
mance of MEMD-PSO-RF also confirmed the appropriate-
ness of PSO in sorting out relevant IMFs with the assessment
criteria of MEMD-PSO-RF method (i.e., Tables 1-2).
Therefore, it remarkably improved the performance of
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FIGURE 4. The scatter plots between the observed and estimated wind speed for all applied models over the testing period a) Station1 and b)
Station2.

MEMD-PSO-RF compared to MEMD-PSO-KRR and stan-
dalone counterpart models.

Since the artificial intelligence models exclusively depend
on past data that may significantly affect the ‘learn-
ing’ and forecasting process, the outcomes of the present
study established that an appropriate feature selection
should be performed carefully before implementation of
data-driven models. The MEMD is successfully classi-
fied and segregate the relevant features inside the clima-
tological inputs to establish a more consistent physical
foundation for a particular artificial intelligence method.
The usefulness of MEMD in the present study is the
concurrent data pre-processing of numerous climatologi-
cal predictors. The MEMD can identify concurrently the
signal’s main frequency to capture the respective features.
This finding collaborates with the findings in [72]–[76].
Another key perception is that a smaller number of predictors
with competitive accuracy is a parsimonious and compu-
tationally good model which is possible to achieve using
MEMD-PSO-RF.

The feasibility of the MEMD method to predict WS is a
major progression in this study. It improved the predicting
ability of the RF and KRR models. It is apparent that better
understandings of the physical procedure were given to the
hybrid model, mainly by the MEMD method to the artificial
intelligence model effectively capture the information in the
meteorological variables in modelling WS.

The primary purpose of implementingMEMD in this study
is its self-adaptive nature which involves minor human effort
in factorizing IMFs. The MEMD conducts the data-driven
based time-frequency investigation of multiple inputs by con-
sidering nonlinear behaviours via dynamical process [49].
Other major advantages of MEMD is its ability to handle
themode alignment concerns very efficiently [77]. Therefore,

the MEMD-PSO-RF has the potential for WS prediction and
management systems. The proposed MEMD-PSO-RF model
can be used as a WS modelling system for improving the
efficiency of wind energy farm.

V. CONCLUSION
This study provided new insights into environmen-
tal modelling by introducing the innovative integrative
intelligent-based data-driven models, MEMD-PSO-RF and
MEMD-PSO-KRR for WS modelling. The proposed models
with enhanced short- and medium-term prediction accuracy
were applied for modelling monthly WS at Baghdad and
Mosul of Iraq. Several meteorological variables were used
to build four models, MEMD-PSO-RF, MEMD-PSO-KRR,
and standalone RF and standalone KRR. Predictive accuracy
of the proposed models was evaluated using several perfor-
mance measures.

Results indicated the superiority of MEMD-PSO-RF
model in reproducing theWS time series in both the Baghdad
and Mosul stations. The MEMD-PSO-KRR and standalone
RF models also showed good performance. However, the
standaloneKRRwas found to perform unsatisfactorily at both
the stations. Since most of the meteorological variables used
in this study as input are readily available in most regions,
WS prediction using MEMD-PSO-RF model is feasible for
practical applications. The results of these models can aid the
practitioners to determine the windy areas for deployment of
wind energy systems. Iraq often suffers from dust storms; the
use of such models can also help in dust storm risk manage-
ment. The models can help the authorities to determine the
dust storm-prone areas and to adopt the appropriate strategies
for dust storm mitigation. It future, the models developed in
this study can be employed with a geographical information
system for spatial prediction of WS over the whole country.
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