Universiti Teknologi Malaysia Institutional Repository

Genomic analysis of a riboflavin- overproducing ashbya gossypii mutant isolated by disparity mutagenesis

Kato, T. and Azegami, J. and Yokomori, A. and Dohra, H. and El Enshasy, H. A. and Park, E. Y. (2020) Genomic analysis of a riboflavin- overproducing ashbya gossypii mutant isolated by disparity mutagenesis. BMC Genomics, 21 (1). ISSN 1471-2164

[img]
Preview
PDF
1MB

Official URL: http://www.dx.doi.org/10.1186/s12864-020-6709-7

Abstract

Background: Ashbya gossypii naturally overproduces riboflavin and has been utilized for industrial riboflavin production. To improve riboflavin production, various approaches have been developed. In this study, to investigate the change in metabolism of a riboflavin-overproducing mutant, namely, the W122032 strain (MT strain) that was isolated by disparity mutagenesis, genomic analysis was carried out. Results: In the genomic analysis, 33 homozygous and 1377 heterozygous mutations in the coding sequences of the genome of MT strain were detected. Among these heterozygous mutations, the proportion of mutated reads in each gene was different, ranging from 21 to 75%. These results suggest that the MT strain may contain multiple nuclei containing different mutations. We tried to isolate haploid spores from the MT strain to prove its ploidy, but this strain did not sporulate under the conditions tested. Heterozygous mutations detected in genes which are important for sporulation likely contribute to the sporulation deficiency of the MT strain. Homozygous and heterozygous mutations were found in genes encoding enzymes involved in amino acid metabolism, the TCA cycle, purine and pyrimidine nucleotide metabolism and the DNA mismatch repair system. One homozygous mutation in AgILV2 gene encoding acetohydroxyacid synthase, which is also a flavoprotein in mitochondria, was found. Gene ontology (GO) enrichment analysis showed heterozygous mutations in all 22 DNA helicase genes and genes involved in oxidation-reduction process. Conclusion: This study suggests that oxidative stress and the aging of cells were involved in the riboflavin over-production in A. gossypii riboflavin over-producing mutant and provides new insights into riboflavin production in A. gossypii and the usefulness of disparity mutagenesis for the creation of new types of mutants for metabolic engineering.

Item Type:Article
Uncontrolled Keywords:ashbya gossypii, disparity mutagenesis, heterozygous mutation
Subjects:Q Science > Q Science (General)
Divisions:Science
ID Code:87427
Deposited By: Narimah Nawil
Deposited On:08 Nov 2020 03:59
Last Modified:08 Nov 2020 03:59

Repository Staff Only: item control page