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Responses of stream water quality concentrations to vegetative cover
variation in Muar River watershed
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bDepartment of Water Resources and Environmental Engineering, Faculty of Engineering, Ahmadu Bello University, Zaria, Nigeria; cUTM
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ABSTRACT
Analysis of the historical land-cover of Muar River watershed has shown that forest and
agriculture are the dominant land-covers over the last three decades. This information was
used to evaluate the relationship between the vegetative landscape variation to stream water
quality concentrations which was to provide an insight for management of water quality
under humid tropical climate. Three out of the six water quality variables simulated using the
hydrological simulation program FORTRAN (HSPF) model are sensitive to change in vegeta-
tive land-covers which include; biochemical oxygen demand (BOD), nitrate-nitrogen (NO3-N),
and orthophosphate (PO4) concentrations. However, total suspended solids (TSS), dissolved
oxygen (DO), and ammonia-nitrogen (NH3-N) concentrations remain insensitive. Further
analysis shows that patch density (PD) has a little impact on BOD, NO3-N, and PO4 concen-
trations compared to edge density (ED), largest patch index (LPI), and landscape shape index
(LSI) under varied landscape conditions. However, large ED, LPI, and LSI indices in both forest
and agriculture will result to increase in BOD, NO3-N, and PO4 concentrations. Therefore,
adequate knowledge of the responses of the water quality concentrations to landscape
pattern and its dynamics can serve as an alternative solution to stream water quality
deterioration in an abundant rainfall region.
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1. Introduction

The concentrations of water quality constituents in the
runoff of a river determine the type and distribution of
the aquatic ecosystem (Chen et al., 2016). Since correla-
tion exists between pollution transport and vegetative
cover (Mouri, Takizawa, & Oki, 2011), its wields a sig-
nificant influence on runoff-pollution transportation
processes.Harnessing the relationship between vegetative
cover and stream concentrations is of practical signifi-
cance formanagement of densely vegetative watershed in
a tropical rainforest region (Uriarte, Yackulic, Lim, &
Arce-Nazario, 2011). Several studies have shown that
there is always a potential to improve water quality if
the role of different combinations of vegetative cover
conditions is known (Bu, Meng, Zhang, & Wan, 2014;
Li, Gu, Liu, Han, & Zhang, 2008). To understand the
responses of a watershed stream concentration from its
vegetative cover, it is essential to observe the changes in
their matric pattern due to regeneration or shift and
furthermore recognize their roles on the accumulation,
storage, and releases of pollutants. According to Zhou,
Shangguan, and Zhao (2006), this approach is one of the
most important techniques to improve water quality and
prevent soil erosion. Hence, changes in vegetative cover
indicate a change in some aspect of the river water quality

(Jiang et al., 2014). It is known that NPS pollution
accounts for the stream concentrations and plays a sig-
nificant role in the water quality problems. Assessment of
the streamwater quality status became an important issue
mainly due to anthropogenic activities resulting to differ-
ent pollutants inflows.

Numerous indicators have been developed to show
the impact of vegetative cover on water quality con-
dition in a watershed (King et al., 2005; Miserendino
et al., 2011; Zampella, Procopio, Lathrop, & Dow,
2007). Among them are spatio-temporal indicators,
in which one may refer as long-term vegetation land-
scape pattern on NPS pollution. It shows the impact
of vegetation cover on NPS loadings based on the
spatial changes in vegetative cover within the
watershed (Ouyang, Skidmore, Toxopeus, & Hao,
2010). However, it does not show the impact of the
vegetative changes on the stream concentrations
directly but rather illustrate how the spatial changes
affect the transport of the NPS pollution loads. There
is no argument regarding whether the changes in
vegetative cover is the most important in influencing
the water quality, if all other factors remaining con-
stant. Hall et al. (2014) shows that vegetation cover
status is a primary step in assessing stream
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degradation because it degrades first, followed by
channel morphology, and eventually water quality.

Therefore, assessment of the spatial arrange-
ment of vegetative cover landscape and their rela-
tionship to the stream concentrations will show
the functionality of each matric to influence the
assimilative capacity of a stream because of its
vegetative landscape. Most of the assimilative
capacity of a stream involves the relationships
among vegetative cover that controlled the struc-
ture of the channel and floodplain (Ahearn et al.,
2005). It is important to know the impact of the
vegetative cover changes on the stream water qual-
ity condition that is blended with the landform
and hydrology of the watershed because little is
known on how vegetative cover influences stream
nutrients fluctuation and ecosystem. Recent stu-
dies have attempted to show the relationship
between landscape characteristics to water quality
variables and how to utilize the outcome for
future water resources management in an urba-
nized watershed scale (Shen, Hou, Li, & Aini,
2014). However, a single land-cover was used to
demonstrate the impact of landscape matric to
stream water quality concentration variables. In
this study, we demonstrate how the historical pat-
tern of the landscape matrix is related to six water
quality variables. The specific objective of this
paper is to utilize the historical land-cover data
in evaluating the response of stream nutrient con-
centrations under varied spatial vegetative land-
scape configuration in Muar River watershed,
and to show the relationship between changes in
stream nutrients concentrations with vegetative
landscape metric pattern changes.

2. Materials and methods

2.1. Study area

The Muar River watershed is a vegetative watershed
located in between two states in the Malaysia penin-
sular: Johor and Negeri Sembilan. It sprays between
102°30′11.68″ E and 102°32′46.08″ E longitude and 2°
04′01.80″ N and 2°57′51.67″ N latitude (Figure 1)
with a total drainage area of 6045 km2. The rivers
flow from southeast at the upstream to the southwest
at the downstream and discharge into Malaka strait.
Average annual rainfall is 2470 mm over a period of
1972 to 2017, while the mean air temperature is
25.6ºC. It falls in the region of abundant rainfall
and seasons are differentiated by change in wind
direction to either Southwest Monsoon from April
to September, and the Northeast Monsoon from
October to March. Local topography varies from
253 m of altitude to as low as 1 m above sea level.
The current land cover of the watershed consists of
49.4% forest, 40.8% agriculture (which include 82%
rubber, 15% oil palm, and other crops 3%), 8.2%
urban, and 1.6% wetlands.

2.2. Study design

The study flow chart is illustrated in Figure 2. The
first step was to produce four historical land-cover
images utilizing remote sensing data obtained from
United States Geological Survey (USGS) Global
Visualization Viewer (https://glovis.usgs.gov). Then
the watershed model of the study area was developed
using HSPF model. The third step was to simulate
each swapped land-covers maintaining the same cali-
bration parameters and the water quality variables for

Figure 1. Map of the study area showing the location, soil property, and hydroclimatic station distribution.
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each simulation was obtained. In each result a statis-
tical analysis was used to compare the water quality
variables under the four land-cover conditions.
Finally, the landscape matric patterns for the two-
dominant vegetative cover (forest and agriculture)
were computed using FRAGSTAT program and cor-
related with stream nutrients concentrations.

2.3. Input data and analysis

The weather data used in this study were obtained
from Department of Irrigation and Drainage of
Malaysia (DID), and they include precipitation and
evaporation data while the remaining data such as
wind speed, dew-point temperature, cloud cover, and
solar radiation were obtained from Malaysia
Meteorological Department (MMD). These data
were used to build an input database for model
runs. Hourly streamflows of the watershed were
obtained from the DID, and monthly water quality
data (total suspended solids––TSS, biochemical oxy-
gen demand––BOD, dissolved oxygen––DO, ammo-
nia nitrogen––NH3-N, nitrate nitrogen––NO3-N,
orthophosphate––PO4, and water temperature) from
the Department of the Environment of Malaysia
(DOE). The soil map of the study area was obtained
from the Department of Agriculture and Fisheries
(DOA). Elevation data from the Global Data
Explorer (https://gdex.cr.usgs.gov/gdex/) were used
for the watershed delineation and development of
hydrological response units. The land-cover data
were developed from remote-sensing data derived
from the USGS Global Visualization Viewer. All the

imageries were captured either by Landsat 4–5 (1988
and 1996 imageries), 7 (2009 imagery) and 8 OLI/
TIRS (2016 imagery) operational land imager sensors
and were used to produce historical land-cover data
of the study area. The remote sensed data were ana-
lysed using geometric correction, image classification
(utilizing 135 controlled points derived from the site-
based maps and google earths), and accuracy assess-
ment adopting the methodology used by Millard and
Richardson (2015). Result of the accuracy assessment
shows more than 82.7% precision and 84.1% sensi-
tivity between the four land-covers produced for the
year 1988, 1996, 2009, and 2016 (Figure 3). Analysis
of the land-covers shows that the vegetative covers in
the watershed do not change rapidly while forest and
agriculture (oil palm and rubber) are the dominant
land-cover class, although they tend to change their
landscape configuration and structure over the years.
For example, the forest land reduced from 71.2% in
1988 to 49.4% in 2016, but agriculture increased from
23.4% in 1988 to 40.8% in 2016.

2.4. Brief model description and set-up

HSPF is a dynamic model that performs a continuous
simulation of hydrologic and water-quality processes
using a set of modules organised in a hierarchical
structure (Duda, Hummel, Donigian, & Imhoff,
2012). In this study, HSPF version 12.4 (Aqua-
Terra, 2015) was used because the model framework
consists of a top–down uniform data structures
defined by a well programming pacts that are only
used for a large-scale modelling efforts. Shenk, Wu,

Figure 2. Methodology flow chart.
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and Linker (2012) and Watts and Maidment (2007)
explained the details of the model structure, config-
uration, and enhancement over the years. It utilized
some add-in programmes that facilitate the modelling
process, and the most important are the Better
Assessment Science Integrating Point and Nonpoint
Sources (BASINS), weather data management utility
(WDMUtil), and HSPEXP+ program.

BASIN Arcview version 4.1 was used to input
spatial data (land use, elevation, and soil data) that
define the physical structure of the watershed. This
programme also interlinked other add-in pro-
grammes required to run HSPF such as Climate
Assessment Tool (CAT) (Imhoff, Kittle, Gray, &
Johnson, 2007) and WDMUtil.

We developed the hydrological model of the Muar
River watershed using the measured streamflow data
from 2014 to 2017 (4 years simulation). In addition,
seven water quality variables were modelled which
makes up of total suspended solid (TSS), water

temperature (Tw), dissolved oxygen (DO), BOD,
ammonia nitrogen (NH3-N), nitrate nitrogen (NO3-
N), and orthophosphate (PO4) were also calibrated
and validated. The final modelling results comparing
the observed and simulated values for both stream-
flow and water quality variables were represented
using graphical plots. Model performance checks
were conducted using the usual quantitative statistical
test. These test are the coefficient of determination
(R2), Nash–Sutcliffe coefficient (NSE), and percentage
bias (PBIAS) (Moriasi et al., 2007)).

2.5. Development and selection of landscape
pattern indicators

Landscape pattern metrics show the measurements of
landscape structure which can be used to define the
spatial and temporal distribution of land-covers.
However, researchers are sceptical on their relevance
in on ecological processes and influence on the real

Figure 3. Land-covers of the Muar River watershed as derived from remote sensing data.
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landscape function (Kupfer, 2012). Yet a lot of studies
have shown the correlation between landscape indices
and ecological condition of an area, though some are
considered as redundant and insignificant (Uuemaa,
Antrop, Roosaare, Marja, & Mander, 2009).
Therefore, in this study four landscape pattern
indices were selected based on their proven correla-
tion to water quality status of a watershed (Table 1).
This is to ensure that less significant indices were
removed and information redundancy are properly
managed. The four land-covers produced (Figure 3)
were prepared using ArcGIS v 10.3 and transferred in
to FRAGSTATS software to calculate their landscape
metrics (Feng & Liu, 2015).

2.6. Statistical analysis of the results

The changes in the stream water quality concentra-
tions (TSS, DO, BOD, NH3-N, NO3-N, and PO4-P)
under the different vegetative landscape conditions
were analysed using non-parametric test statistics
as the simulated results are not normally distribu-
ted (Ghasemi & Zahediasl, 2012). For this study,
the Jonckheere–Terpstra test was chosen because it
tests the null hypothesis of no difference in
response magnitude across scenarios against an
ordered alternative, so that the response magnitude
increases over a pre-specified ordering of the sce-
narios (Vock & Balakrishnan, 2011). Hence, it is
used to determine whether there is a statistically
significant relationship between the vegetative land-
scape changes and the simulated outputs of the
stream water quality concentrations. We employed
the hypothesis that the distributions of the stream
water quality concentrations are the equal under
each vegetative landscape considered (1988, 1996,
2009, and 2016 land-covers), and SPSS software
was used for the analysis. However, in case of the
null hypothesis is rejected, a post hoc analysis of the
streams water quality data will be used to show
how the water quality variables changes under
each vegetative cover condition. The aim was to
see to what extent the stream water quality con-
centrations vary and how their statistical values can

be distinguished (Lunneborg, 2005). Furthermore,
the water quality variables that significantly varied
statistically due to the changes in the vegetative
cover in Muar River watershed were selected.

The interaction between the statistically significant
changes in water quality variables and the two vege-
tation landscapes metric indices were analysed using
multiple linear regression. According to Shen et al.
(2015), this method was long been used to relate
water quality with landscape pattern metrics. The
idea of correlating them is to understand how both
the selected landscape metrics and stream water qual-
ity concentrations are related under densely vegeta-
tive settings that were derived from tropical
rainforest.

3. Results

3.1. Model of Muar River watershed

The hydrological model of the watershed was devel-
oped by parameter adjustment based on the BASIN
technical notes 6 and 8 (USEPA, 2015, 2000) and
other relevant literatures. A sensitivity analysis of
the hydrological and water quality parameters were
done (Liu, Godrej, & Grizzard, 2011), and sensitive
parameters were identified to reduce the uncertainty
of the model results (Jia & Culver, 2008) prior to final
calibration of the model. Afterward, the model results
(Figure 4) show that it was able to capture the tem-
poral variability of the streamflow under different
flow conditions (PBIAS values for calibration and
validation were −2.174 to −7.125, respectively).
However, HSPF model is considered as one of the
best model that simulates hydrological behaviour of a
watershed relatively well when compared with other
similar models (Singh, Knapp, Arnold, & Demissie,
2005; Xie & Lian, 2013). The statistical performance
of the water quality model was satisfactory consider-
ing the amount of data used for the calibration and
validation process (Fonseca, Botelho, Boaventura, &
Vilar, 2014). In general, the model was able to cap-
ture the water quality processes in the watershed as
the coefficient of determinant (R2) and percentage

Table 1. Selected landscape metrics and their significance on water quality of a watershed.

Landscape
index Description Influence on water quality variables

Patch density
(PD)

Number of patches per unit area It influences nonpoint source (NPS) nutrients load especially nitrogen or its
constituents (Ouyang et al., 2010).

Largest patch
index (LPI)

The sum of the landscape boundary divided by
the square root of the total landscape area

Controls sediment flow and nutrients from NPS essentially under rainfall
condition (Shen et al., 2015).

Edge density
(ED)

Total length of all the edge segment per hectare
for the considered landscape or class metric

It affects the distribution of NPS at the sub-catchment and influences the
soluble nutrients elements in the stream (Ouyang et al., 2010; Shen et al.,
2015).

Landscape
shape index
(LSI)

The area of the largest patch in the landscape
divided by total landscape area

Significance to soluble phosphorus, dissolved oxygen under rainfall conditions
(Bu et al., 2014)
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bias (PBIAS) values for both calibration and valida-
tion fall within the range of 0.153 to 0.585 and
−31.463 to 41.612, respectively (Figure 4 and
Table 2).

3.2. Description of vegetative landscape
characteristics in the watershed

It is a well-known fact that tropical humid climates
influence rapid succession of pasture, plantations,
and forest which result to changes in the ecosystem
characteristics and vegetative patterns within a few
years of regrowth (DeWalt, Maliakal, & Denslow,
2003). Therefore, it will result to varied metric pat-
tern as the land-cover changes over the years. Our
finding shows that the vegetative (both forest and
agricultural) landscape areas consistently decrease
and increase, respectively, except for the year 2016
which indicates an opposite result (Table 3). The
reason for this inconsistency is that some of the
agricultural areas (oil palm and rubber plantation)
were mixed with secondary forest because of micro-
climatic influence (Hardwick et al., 2015) and poor
maintenance or deserting the agricultural areas due to

Figure 4. Graphical plots of model calibration and validation results: (a) streamflows, (b) total suspended sediment (TSS), (c)
water temperature (Tw), (d) dissolved oxygen (DO), (e) biochemical oxygen demand (BOD), (f) ammonia nitrogen (NH3-N), (g)
nitrate nitrogen (NO3-N), and (h) orthophosphate (PO4).

Table 2. Statistical model performance result for Muar River
watershed.

Calibration Validation

Constituents R2 PBIAS R2 PBIAS

Streamflow 0.750 −2.174 0.645 −7.125

TSS 0.438 −2.941 0.316 8.584
Tw 0.512 11.402 0.499 26.622

DO 0.585 7.650 0.446 22.114
BOD 0.492 −3.035 0.385 −10.510

NH3-N 0.370 −26.511 0.346 −31.463
NO3-N 0.198 34.837 0.153 41.612
PO4 0.472 −25.455 0.395 −16.259
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the shift in socioeconomic activities of the people
(Siddiqui, 2012). Furthermore, the changes in the
vegetative landscape pattern follow the variation in
the landscape areas. The forest had a lower patch
density (PD) when compared with agriculture from
1988 to 2016 except for the year 2009 which indicates
higher PD for forest than agricultural landscape. But
forest shows a higher large patch index (LPI) than
agriculture, although the indices show a variability
among the four-historical land-covers. Agriculture
had a higher edge density (ED) than forest and
increases steadily with increased landscape area
except for the year 2016 which it decreases with
decreased landscape area. Also, the landscape shape
index (LSI) follows the same pattern with that of ED
as shown in Table 3. In general, the results showed
the direct links between the size of a vegetative land-
scape and their indices in the study area while their
values depend on how they are spatially distributed.

3.3. Responses of stream water quality variables
to changes in vegetative cover

The statistical analysis of the simulated water quality
concentrations using Jonckheere–Terpstra non-para-
metric test shows that (Table 4) the water quality
variables have different response to changes in vege-
tative landscape over the years in Muar River
watershed. For example, TSS, DO, and NH3-N con-
centrations do not significantly change over the four-
historical vegetative landscape. A value of p > 0.05
indicates a rejection of the null hypothesis, thus
implying that the concentrations of TSS, DO, and
NH3-N had no significant difference under varied
vegetative covers in the watershed.

However, the other simulated water quality con-
centrations show different responses, with BOD,
NO3-N, and PO4 varying as the vegetative landscape
changes. The value of p < 0.05 affirms the null
hypothesis and indicates that there is a difference
between each stream water quality concentrations as
the vegetative landscape varies. Further analysis of the
statistical results using post-hoc test, shows that the
outliers are more obvious for TSS, BOD, NH3-N, and
PO4 as compared to DO and NO3-N concentrations
(Figure 5). The median values of BOD, NO3-N, and
PO4 show a variability along the four vegetative land-
scapes. In each case, the statistical result shows that
the changes in vegetative landscape in the watershed
have different impacts on the water quality variables.
The reasons for the varied responses are that each
variable is controlled by different biochemical pro-
cesses that are influenced by factors such as slope, soil
type, weather conditions, etc. Our focus is only to
evaluate how changes in vegetative covers affect the
responses of different water quality variables if all
other conditions are constant. In this regard, the
water quality variables (BOD, NO3-N, and PO4) that
respond to changes in vegetative landscape in the
Muar River watershed are defined as sensitive water
quality variables, while those (TSS, DO, and NH3-N)
that do not respond to the vegetative cover variability
are referred to as insensitive water quality variables.

3.4. Interactions of the selected water quality
variables with vegetative landscape metrics

We select the sensitive water quality variables that
respond to vegetative cover variation in the
watershed and further evaluate their interaction to

Table 3. Landscape metric patterns of vegetative cover in Muar River watershed.

Landscape Forest Agriculture

Years 1988 1996 2009 2016 1988 1996 2009 2016

Area (%) 71.2 51.1 43.0 49.4 23.4 40.9 48.9 40.8
Patch density (PD) 1.5 8.6 20.6 5.7 14.6 17.9 11.5 12.9

Largest patch index (LPI) 74.9 42.2 8.6 35.8 2.5 14.3 43.9 2.4
Edge density (ED) 57.5 136.8 157.7 97.7 64.9 141.9 164.7 114.1

Landscape shape index (LSI) 108.5 321.0 403.2 209.0 296.9 372.5 388.3 367.9

Table 4. Jonckheere–Terpstra test for stream concentrations under different land-use.

Statistical parameters

Stream concentrations

TSS DO BOD NH3-N NO3-N PO4

Number of levels in SCENARIOS 4 4 4 4 4 4
N 5304 5304 5304 5304 5304 5304
Observed J–T statistic 5,236,486 5,236,486 5,424,943 5,193,014 4,409,483 4,863,510.5

Mean J–T statistic 5,274,828 5,274,828 5,274,827.5 5,274,828 5,274,827.5 5,274,827.5
Std. deviation of J–T statistic 62,342.95 62,343.01 62,343.10 62,342.98 62,342.02 62,342.97

Std. J–T statistic −0.615 −0.693 2.408 −1.312 −13.881 −6.598
P-values (two tailed) 0.539 0.488 0.016 0.189 0.000 0.000
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the landscape pattern metrics. This is to evaluate how
the identified sensitive water quality variables are
correlated to the landscape pattern as the watershed
vegetative land-cover changes over time.

3.4.1. Correlation between BOD and vegetative
landscape metrics
The interaction between vegetation landscape indices
and BOD concentrations from the correlation results
are summarized in Table 5. All the correlating models
show a negative correlation between variability of BOD
concentrations with vegetative landscape indices except
for forest LPI which shows a positive correlation with
changes in BOD concentrations, meaning that forest was

the major sources of BOD concentrations in the
watershed. Its significance was further observed from
the R2 values of the correlation models derived between
forest vegetation landscape indices and BOD concentra-
tions. They all have a higher R2 values when compared
with agriculture landscapes metrics. Also, the results
indicate that the flow of organic nutrients which deter-
mines the BOD level in the stream ismostly controlled by
forest landscape, while the LSI is mostly significant fol-
lowed by ED and then LPI index. For agriculture, it was
observed that ED and LPI correlate well with BOD con-
centrations as compared with LSI, while PD shows the
lowest R2 value (Table 5). The results show that the
movement of organic pollutants from agriculture land-
scape was resulted by the large ED and LPI landscape
conditions and lower PD index. Low correlation between
agriculture and PD shows that small amount of agricul-
ture patches with large amount of agriculture edge and
shape are linked to movement pf organic nutrients into
the streams of Muar River watershed. In addition, since
both forest and agriculture ED, LPI, and LSI landscape
indices influence the movement of organic nutrients
which results to changes in BOD concentrations. The
likely alternative to control the flow of organic nutrient
in the watershed is to reduce the edge and shape of the
patches in both forest and agricultural vegetative land-
cover while keeping the PD for agriculture unaltered.

Figure 5. Box and whiskers distribution of the simulated water quality concentrations (in mg/L) under the four-historical land-covers.

Table 5. Correlation between vegetation landscape metrics
with BOD concentrations.

Model R2 p-value F-statistics

BODconc = −0.002ForestPD+1.195 0.750 0.134 5.995
BODconc = −0.00013AgricPD+1.183 0.011 0.968 0.002

BODconc = 0.00014ForestLPI+1.164 0.525 0.275 2.210
BODconc = −0.0012AgricLPI+1.191 0.765 0.125 6.515

BODconc = −0.00032ForestED+1.217 0.881 0.062 14.758
BODconc = −0.00035AgricED+1.219 0.800 0.106 7.988

BODconc = −0.00011ForestLSI+1.210 0.903 0.049 18.717
BODconc = −0.00027AgricLSI+1.276 0.519 0.280 2.156

PD, patch density; LPI, largest patch index; ED, edge density;
LSI, landscape shape index.
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3.4.2. Correlation between NO3-N and vegetative
landscape metrics
Analysis of the correlation of nitrate nitrogen (NO3-N)
with vegetative land-covers shows varied interactions
between forest and agriculture (Table 6). The results
show that both agriculture and forest landscape patterns
are closely related to the changes in NO3-N concentra-
tions in the streams ofMuar River watershed. However,
only two out of the eight correlation models are posi-
tively correlated. Unlike BOD, the NO3-N concentra-
tions are more closely linked to agriculture landscape
pattern indices than forest. The R2 value of agriculture
ED and LSI withNO3-Nwere higher than that of forest.
It means that the significant changes in NO3-N concen-
trations were influenced by the large edge and shape of
the patches in agriculture landscape. On the other hand,
based on the R2 values the forest ED and LPI have more
influence on NO3-N variability than PD and LSI
indices. It implies that higher ED and LPI values in
forest landscape with higher values of ED and LSI in
agriculture landscape areas will increase NO3-N con-
centrations in the streams. The results indicate that the
sources of NO3-N concentrations from the two vegeta-
tive covers are produced under different landscape
metric conditions. Based on the R2 values in all the
correlation models (Table 6), LPI index in agriculture
is the major contributor to the changes in NO3-N con-
centrations. To control the amount of NO3-N concen-
trations that was derived from agriculture landscape,
the edge and the shape of the patches might have to be
reduced, while allowing the density and extend of the
patches to increase. But for forest landscape areas, the
reduction of the edge and extent of the patches might
reduce the sources of NO3-N in the watershed by
allowing ED and LSI to varied.

3.4.3. Correlation between PO4 and vegetative
landscape metrics
The results of the correlation models showed that the
orthophosphate (PO4) concentrations and landscape
pattern varied under the two-vegetative land-covers
(Table 7). In comparison, the regression equations
between agriculture and forest landscape metrics with

PO4 concentration mostly indicate a negative correla-
tion. Except for the correlation between PO4 concentra-
tions and agriculture ED and between PO4

concentrations and forest LPI. In contrast, agriculture
landscape is the major contributor of PO4 concentra-
tions in the watershed as compared with forest. The R2

values are higher in agriculture than in the forest across
the correlation models (Table 7). However, forest land-
scape also influences the movement of PO4 pollution
into the streams, as the R2 values indicate. The ED and
LSI indices were the main sources of PO4 pollution in
the agricultural area, while ED and LPI controls form
forest areas. It indicates that ED influences PO4 pollu-
tion in both the two-vegetative land-covers which was
like the responses of NO3-N concentrations. In both
agriculture and forest landscape, the PD index shows
the lowest R2 values in correlation with PO4 concentra-
tions, meaning that the density of the patches in both
land-covers has no significant on PO4 pollutant flows in
the watershed. The control of PO4 concentrations in the
streams of the watershed involved the reduction of
forest and agriculture ED and LSI indices.
Furthermore, if largest patch index (LPI) from forest
is control, it might also reduce the amount of PO4

pollution from nonpoint sources (NPS) areas which in
turn will reduce PO4 concentrations in the rivers.

4. Discussion

4.1. Variability of stream concentration to
changes in vegetative cover

Different responses were observed for the stream water
quality concentrations under varied vegetative covers.
After statistical comparison of the stream water quality
concentrations (Table 4), it shows that not all water
quality variables change their status due to variation in
the vegetative cover of their catchment area. As observed,
three out of the six water quality variables produced
different concentrations that are statistically significant.
The temporal variation of some of the water quality
variables indicates that vegetative land-covers have little
influence on the water quality condition of the streams in
Muar River watershed. Several studies have shown that

Table 6. Correlation between vegetation landscape metrics
with NO3-N concentrations.

Model R2 p-value F-statistics

NO3-Nconc = −0.027ForestPD+1.636 0.358 0.402 1.113
NO3-Nconc = 0.016AgricPD+1.159 0.014 0.881 0.029

NO3-Nconc = 0.012ForestLPI+0.919 0.705 0.160 4.776
NO3-Nconc = −0.008AgricLPI+1.516 0.182 0.573 0.446

NO3-Nconc = −0.007ForestED+2.152 0.644 0.197 3.621
NO3-Nconc = −0.007AgricED+2.295 0.734 0.143 5.526

NO3-Nconc = −0.002ForestLSI+1.964 0.579 0.239 2.746
NO3-Nconc = −0.009AgricLSI+4.581 0.941 0.030 31.771

PD, patch density; LPI, largest patch index; ED, edge density;
LSI, landscape shape index.

Table 7. Correlation between vegetation landscape metrics
with PO4 concentrations.

Model R2 p-value F-statistics

PO4conc = −0.002ForestPD+0.206 0.473 0.312 1.794
PO4conc = 0.001AgricPD+0.176 0.011 0.893 0.002

PO4conc = 0.001ForestLPI+0.159 0.772 0.122 6.759
PO4conc = −0.001AgricLPI+0.199 0.288 0.464 0.808

PO4conc = −0.00046ForestED+0.240 0.775 0.120 6.873
PO4conc = −0.00049AgricED+0.249 0.849 0.079 11.203
PO4conc = −0.00015ForestLSI+0.228 0.714 0.155 5.001

PO4conc = −0.00056AgricLSI+0.389 0.984 0.008 120.038

PD, patch density; LPI, largest patch index; ED, edge density;
LSI, landscape shape index.
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the changes in stream water quality concentrations lar-
gely depend on the sources of pollution from the land-
covers (Miserendino et al., 2011; Ngoye & Machiwa,
2004). Also, the vegetative distribution determines the
hydrological behaviour of the watershed which controls
the mechanism for pollution transport processes. In
Muar River watershed, the major vegetative covers (agri-
culture and forest land-covers) were identified as the
influential variables for stream water quality concentra-
tions. The increase in agricultural areas was linked to
increase in organic nutrients transport (Ouyang et al.,
2010), which is similar to the results obtained in this
study. Hence, the sensitivity of the BOD concentrations
to vegetative land-cover variation in the watershed. Since
the organic pollution in an aquatic system is measured
using BOD level, and indicates the increase in the
amount of bio-degradable organic matter in the streams
which promote more of heterotrophic process in the
water column that results in the depletion of DO con-
centrations (low DO responses to vegetative cover as
shown in Table 4 and Figure 5) and the variability
BOD levels (Singh, Basant, Malik, & Jain, 2009).

Although for NO3-N and PO4 concentrations, the
changes in agriculture land area influence their high
responses to change in vegetative land-cover.
According to Yu, Xu, Wu, and Zuo (2016), agricultural
land-cover affects the nutrient variables, implying that
agricultural vegetative landscape had negative impact on
stream water quality concentrations due to flow of nutri-
ents from fertilization sources. Similar effects were
noticed by the variability of NO3-N and PO4 concentra-
tions in Muar River watershed. As the climatic condi-
tions of the tropical watershed warrant abundant rainfall
throughout the year (Makaremi, Salleh, Jaafar, &
GhaffarianHoseini, 2012), the change in nitrate concen-
trations might influence it (Bussi, Janes, Whitehead,
Dadson, & Holman, 2017), coupled with the expansion
of agricultural areas in the watershed as noticed in Figure
3. The same condition applied to PO4, as the vegetative
land-cover varies, its concentrations changes (Figure 5),
indicating the influence of the forest and agricultural
land-covers on the soluble inorganic phosphorous trans-
port into the streams (Vuorenmaa, Rekolainen, Lepistö,
Kenttämies, & Kauppila, 2002). While for NH3-N con-
centrations, it tends to remain unaltered (as shown by the
outliers in Figure 5) despite the variability of nitrate and
orthophosphate concentrations (as shown by the outliers
in Figure 5). This might be connected to the sources of
the pollution. Unlike NO3-N and PO4 pollutants, NH3-N
is a volatile substance that is converted either nitrate or
nitrite via nitrification process (Bottomley et al., 2004)
especially if the sources of the NH3-N are limited to
vegetative land-covers.

On the other hand, the increased inflow of organic
pollution from the vegetative land-cover reduces the
inflow of sediment due to the climatic condition (that
promote rapid regrowth of pasture and intrusion of

grasses in an exposed soil), and agricultural practices
which reduced the soil exposure to direct runoff (Park
& Cameron, 2008). The low responses of sediment con-
centrations (TSS) with change in vegetative covers affirm
the earlier assertion that tropical rainforest discourages
sediment export due to rapid vegetative cover regenera-
tion (Chazdon, 2014), except under intensive agricultural
practices (Guardiola-Claramonte et al., 2010) and defor-
estation (Ehigiator & Anyata, 2011). In our case, the
vegetative cover in Muar River watershed do not experi-
ence aggressive deforestation neither much agricultural
expansion except between the years of 1988 to 1996
(Figure 3). Yet, it does not alter the TSS concentrations
when compared with the subsequent years (Table 4).
However, the TSS of the year 1988 shows higher concen-
trations from the outliers (Figure 5), which indicates the
influences of forest land-cover to TSS concentration than
agriculture.

4.2. Significance of vegetative landscape matric
to stream water quality concentrations

Landscape pattern metrics are considered as an indicator
that shows the significance of spatial distribution of land-
cover to stream water quality (Bu et al., 2014). Impacts of
vegetation landscape pattern on stream water quality
concentrations under varied vegetative land-cover con-
ditions were highlighted in this study. The correlation
between the landscape indices and the sensitive stream
water quality variables (BOD, NO3-N, and PO4) under
varied vegetative landscape shows that three out of the
four indices considered have direct influences on the
selected water quality concentrations in Muar River
watershed. in which ED exerts much influence on the
variability of BOD, NO3-N, and PO4 concentrations
from the correlation results (Tables 5–7), followed by
LSI and then LPI with PD showing the least impact in
both the two-vegetative land-covers (agriculture and for-
est) contrary to other climatic regions that show the
significant of PD on water quality of a watershed (Shen
et al., 2015). However, these influences were more pro-
nounce under agriculture than with forest landscape. As
anticipated, agriculture landscape indices tend to have
more effects on the BOD, NO3-N, and PO4 concentra-
tions (Shen et al., 2015). Our findings suggest that
decrease in ED in both forest and agriculture will reduce
the stream water quality concentrations (BOD, NO3-N,
and PO4). However, the correlation results show that
increase in ED, LPI, and LSI will result to increase in
BOD concentrations in the streams. The result indicates
that less ED and LSI in both forest and agriculture will
result to decrease in both NO3-N and PO4 concentra-
tions. In general, ED and LSI had a better correlation
under both forest and agriculture landscape with BOD,
NO3-N, and PO4, implying that decreasing forest and
agriculture edge and shape might decrease stream water
quality concentrations. Understanding how the
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landscape pattern indicators are related to stream water
quality provides an insight on the prevention measures
to be taking in order to maintain the minimum water
quality standard in a watershed scale (Ouyang et al.,
2010; Turner &Rabalais, 2003). Some studies have recog-
nized the significance of vegetation land-cover as a buffer
in maintaining water quality standard in a watershed
(Shi, Zhang, Li, Li, & Xu, 2017). Therefore, utilizing the
relationship between the historical trends of vegetative
landscape metrics with stream water quality concentra-
tions will provide a resilience on the effects of pollution
that are derived from NPS areas into stream.

5. Conclusion

Historical land-cover of the Muar River watershed was
analysed using remote-sensing technique. The data
show that vegetative landscape of the watershed
changes over time with forest (both primary and sec-
ondary) and consistently remains the dominant land
cover. The response of the stream water quality con-
centrations under varied historical vegetative land-cov-
ers in Muar River watershed indicates that the
variability of the water quality concentrations largely
depends on the sources of pollution and the dominant
land-cover type. However, the landscape pattern
metrics derived from historical land-covers show that
the PD, LPI, ED, and LSI have varied influences on the
stream water quality. Further analysis of the results
shows that three out of the six water quality variables
were identified as sensitive due to their responses to the
historical land-covers. Correlating sensitive water qual-
ity variables with landscape pattern indicators shows
that decrease in ED, LSI, and LPI in both agriculture
and forest landscape might likely reduced the flow of
the pollutants (BOD, NO3-N, and PO4) into the
watershed streams. This study shows the influence of
change in landscape pattern indictors (due to change in
land-use) on the stream water quality concentrations,
which will allow an effective water quality control that is
significant to a sustainable natural ecosystem function.
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