
UTILIZATION OF STACKED NEURAL NETWORK FOR PORE SIZE PREDICTION 251

Jurnal Teknologi, 49(F) Dis. 2008: 251–260
© Universiti Teknologi Malaysia

UTILIZATION OF STACKED NEURAL NETWORK FOR PORE
SIZE PREDICTION OF ASYMMETRIC MEMBRANE

KHAIRIYAH MOHD. YUSOF1 & ANI IDRIS2

Abstract. This study, investigates the possibility of applying stacked artificial neural network
(ANN) as an alternative method to estimate the pore size of the asymmetric hollow fiber membranes.
ANN, a connectionist-based (black box) model, consists of layers of nodes with nonlinear basis
functions and weighted connections that link the nodes. Using the nodes and weights, the inputs
are mapped to the outputs after being trained with a set of training data. The input data needed for
training the ANN model, the solute rejection and the permeation rate, are obtained from permeation
experiments. Since the number of experimental data points needed for training the ANN model is
limited, stacked neural network is utilized instead of the more common and simple feedforward
ANN. With the development of this ANN model, the procedure to estimate membrane pore size
was found to be easier and faster with a testing error of less than 2% compared to the experimental
data.
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Abstrak. Kajian ini menyiasat kemungkinan itu menggunakan susunan rangkaian saraf buatan
(ANN) sebagai satu kaedah alternatif untuk mentaksir saiz liang membran serat berongga tak
simetri. ANN, iaitu sebuah model kotak hitam, terdiri daripada lapisan-lapisan nodus dengan
fungsi asas tak linear dan pemberat yang menjadi sambungan antara nodus. Input dipetakan
kepada output dengan menggunakan nodus dan pemberat, selepas dilatih oleh satu set data latihan.
Data input yang diperlukan untuk latihan model ANN, iaitu penolakan bahan terlarut dan kadar
penelapan, diperoleh dari eksperimen penelapan. Oleh sebab bilangan data eksperimen yang
boleh diperoleh untuk tujuan melatih model ANN adalah terhad, susunan rangkaian saraf buatan
telah digunakan. Dengan pembangunan ini model ANN, prosedur mentaksir liang membran
didapati menjadi lebih mudah dan lebih cepat dengan ralat ujian kurang daripada 2% berbanding
data eksperimen.

Kata kunci: Membran tak simetri; susunan rangkaian; rangkaian saraf buatan; saiz liang
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1.0 INTRODUCTION

Neural networks have been attracting great interest as predictive models, as well as
for pattern recognition [1]. For the past two decades, neural networks are a rapidly
growing field of artificial intelligence that has found many applications in process
modeling especially for nonlinear systems [2].

Artificial neural networks (ANN) have the ability to map non-linear relationships
without prior information about the process or system model. Their advantages
over the classical mathematical models are the simultaneous identification of structure
parameters as well as the ability to “learn” and adapt by examples. ANN modelling,
however, is no replacement for a good understanding of process behaviour but it
makes possible to develop quickly models of complex reactions [3]. The success in
obtaining reliable and robust network depends strongly on the choice of process
variables involved, as well as the available set of data and the domain used for
training purposes [1].

Various methods have been used to characterize the pore size and pore size
distribution of hollow fiber membranes. The 3 general methods generally used are
(i) microscopy observation method, (ii) thermoporometry method and (iii) permeation
experiments. In cases of asymmetric hollow fiber membranes, due to the very small
pore sizes, microfiltration characterization techniques such as microscopy observation
method cannot be used for asymmetric membranes [4]. Generally, the last method
is used, based on permeation and rejection performance using reference molecules
and particles. In order to characterize the pore size and pore size distribution from
permeation experiments, quantitative transport model and the so called “pore model”
or hydrodynamic model has been used. In recent years the surface force pore flow
model has been developed to correctly characterize the pore size and pore size
distribution [5]. It contained the interfacial force parameters and friction force
parameters and the effect of concentration polarization and operating conditions.
However, the mathematical solutions involved in the determining the pore size and
pore size distribution involved complicated equations, with trial and error calculations
that is complicated and tedious. Thus, in this study, artificial neural network is applied
as an alternative method to estimate the pore size of the asymmetric hollow fiber
membranes. The raw data needed for the artificial neural network are obtained
from permeation experiments, that is the solute rejection and the permeation rate.
With the development of this neural network model, the procedure to estimate
membrane pore size could be made easier and faster with an output error of less
than 2% compared to experimental data.

In reviewing literature on membrane characterization, so far there has not been
any work found that uses ANN for modeling. A hindering factor is the small number
of data points available for training from permeation experiments. In this research,
this obstacle is overcome by utilizing stacked network instead of the more commonly
used feed forward ANN.
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1.1 Conventional Methods to Estimate Pore Size

Asymmetric membrane can be considered as porous where the thin top layer of the
membrane supported by a porous sub layer, with the resistance to mass transfer
being almost completely determined by the top layer. For this reason, the
characterization of asymmetric membranes involves the characterization of the top
layer such as its thickness, pore size distribution and surface porosity. Because of the
small pore sizes, microfiltration characterization techniques cannot be used for
asymmetric membranes. The resolution of an ordinary scanning electron microscope
is generally too low to determine the pore sizes in the top layer accurately.
Furthermore, mercury intrusion and bubble-point methods cannot be used because
the pore sizes are too small, so that very high pressures would be needed, which will
destroy the polymeric structure.

Two general methods to estimate pore sizes of asymmetric membrane are briefly
discussed here [4]:

(i) Thermoporometry
(ii) Permeation experiments

1.1.1 Thermoporometry

Thermoporometry is based on the calorimetric measurements of a solid-liquid
transition (e.g. of pure water) in a porous material and can be applied to determine
the pore size in porous membranes. This may be the pores in the skin of an asymmetric
membrane, the temperature at which the water in the pores freezes (the extent of
undercooling) depending on the pore size. As the pore size decreases the freezing
point of water decreases. Each pore (pore size) has its own specific freezing point.

For cylindrical pores containing water, the following equation for melting can be
derived:
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∆
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where rp is the pore radius (nm) and ∆T the extent of undercooling (°C). It can been
seen from equation (i) that as the pore radius becomes smaller the extent of
undercooling increases.

1.1.2 Permeation Experiments

This method is based on permeation and rejection performance using reference
molecules and particles. In order to characterize the pore size and pore size distribution
for permeation experiments, quantitative transport model such as the surface force
pore flow (SF-PF) model has been used by many researchers [5 – 6]. The SF-PF
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model was first suggested by Matsuura and Sourirajan [6] and since then it has been
used by many researchers to describe and predict the performance of reverse osmosis
type membranes. Matsuura and Sourirajan [6] developed general expressions based
on the preferential sorption-capillary flow mechanism, taking into account the surface
forces acting on the solute to analyse experimental reverse osmosis data. The two
main equations used for this model, the solute separation equation and momentum
balance equation are shown below:
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These two complicated equation have to be solved by trial and error, which is
rather complicated and lengthy. Although this problem can be solved using
conventional simulation method it involved many iterations before the final solution
obtained. Thus in this study, artificial neural network is applied as an alternative
method to estimate the pore size of the asymmetric hollow fibre membranes.

2.0 METHODOLOGY

2.1 Artificial Neural Network Model Architecture

Artificial neural networks (ANN) are made up of individual models of biological
neuron that are connected together to form a network. Unlike the human brain
which consists of between 1011 to 1014 neurons, the number of artificial neurons in
an ANN is relatively very small. The connections within ANN are much more
simplified than that of the brain [7]. However, despite the simplicity, an ANN designed
using only a few neurons can be trained to learn information pattern recognition
and systems indentification.

An ANN is constructed of interconnected basic elements called neurons or nodes.
A typical feedforward neural network model constitutes three types of layers of
nodes. The first layer is known as input layer. This layer receives information from
an external source and passes the information to the second layer of nodes, which is
known as the hidden layer. There can be more than one hidden layer. However,
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one hidden layer is normally sufficient for chemical and biochemical processes. The
last layer of nodes, the output layer, receives processed information from the network
and sends the results an external receptor [8]. Figure 1 illustrates a typical three-layer
network with 4 nodes in the hidden layer.

At present, the most commonly used ANN is the feedforward backpropagation
network, which accounts for most neural network applications [2]. Multilayer
feedforward ANN were mathematically proven to be a universal approximator [9].

To develop a neural network model, three phases are required; training phase,
recall phase and generalization phase. In the training phase, a set of training data is
repeatedly presented to the neural network model to teach it. The weights between
the nodes are optimised until the specified input yields the desired output. Through
these adjustments, the neural network “learns” the correct input-output behavior. In
the recall phase, input patterns from the training data will be used to test the networks
and adjustments will be made to make the system more reliable and robust. During
the generalization phase, input patterns that have not been seen in training will
subjected to networks model in order to monitor the system performance [8].

2.2 Stacked Neural Network

Using a single basic neural network with few experiment data points, it is difficult to
guarantee that a good predictive model will be obtained in the complete experimental
domain [10]. To improve the accuracy of a model when only a limited number of
experimental data points in the training data set is available, stacked neural network
is recommended [11]. In stacked neural networks, several different neural network
models are combined in order to improve model performance. Since each neural
network representation can behave differently in different regions of the input space,
representational accuracy over the entire input-output space can be improved by

Figure 1 A feedforward network with 4 nodes in the hidden layer
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combining several neural network models [12]. A sample architecture for a stacked
neural network is shown in Figure 2.

Starting from the identical training data set, a large number of different neural
network models can be obtained, using each time a different set of initial weights or
using a different subset of the training data set [10]. The outputs of these networks,
called the level-0 models outputs, along with the original input data, are then used as
inputs to other models, at a higher level in the stacking structure. The second level
of model, called the level-1 model, is developed using the results of level-0 model
[13].

A set of training data set is needed in order to develop the stacked neural network.
Firstly, let us denote level-0 and level-1 data set as DL0 and DL1 respectively. For
level-0, a few networks models have to be developed using data set DL0. Next, one
experimental data point is removed from DL0. This subset is known as D1. By using
the same method, more different subset of data Di can be obtained by removing
different data points. Each of these subsets is then used as training data for the
candidate ANN models that has been developed earlier. The output predicted by
these models is combined with the actual output to develop level-1 models.

There exist numerous types of level-1 model to produce the output stacked model.
A simple approach is to take equal weights for the individual networks [12]. A
second way is to obtain a weighted sum of each prediction, the weight corresponding
to inverse of the contribution of each level to the sum of squares of the errors
calculated which is known as weighted output [10]. The third way is to combine the
models is by using principal component analysis (PCA). Wolpert [11] an alternative
method, where the outputs from level-0 models are used as training data to train a
new level-1 ANN model. The output from this model is the final output for the
stacked network.

Figure 2 Architecture of a stacked network
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2.3 Model Development

In this work, all ANN models were developed in MATLAB environment and utilized
MATLAB neural network toolbox. All ANN models had one hidden layer with the
sigmoid function as the activation function. The models were trained using
backpropagation algorithm with the Levenberg-Marquardt method used to optimize
the weights and biases. To develop the ANN models, the number of nodes in the
hidden layer and the maximum acceptable error during training were varied. The
number of training and testing data was also varied. The results given in this paper
are the best found during the study.

Evaluations of the models are based on root mean squared (RMS) error from
each model prediction of the test data. Error is defined as the difference between
desired (or actual value provided by the testing data) output value and the predicted
output value.

Ten individual neural network models had been developed to estimate pore size
with different subset of training data and network architecture. There were 6 raw
experimental data, as shown in Table 1. Data number 5 was used for the overall
stacked model validation, and the rest were used for the individual ANN model
development in level-0. To create the training subset for level-0 models, 4 data
points were assigned as the training data, while 1 point was used as testing data to
validate the individual model. For example, ANN1, which has 4 nodes in the hidden
layer, was trained using data number 2, 3, 4 and 6 until the weights and biases have
been optimised to give an acceptable training error. It was then validated with the
test data in the generalization phase for ANN1 using data number 1. ANN2, which
has 6 nodes in the hidden layer, had the same training and testing data as ANN1.
Each odd-numbered network has 4 nodes and each even numbered network has 6
nodes in the hidden layer. Each pair of network from ANN3 to ANN10 was similarly
formulated, except different training and testing subsets were utilised.

For the level-1 model, three main techniques have been used in this study to
combine the individual level-0 neural network models. They are output averaging,
weighted average, and a level-1 ANN model.

Table 1 Experimental data for the system NaCl-H2O using porous cellulose acetate membrane
[14]

Permeate Rate, Solute Membrane pore size,
PR × 1010kg/hr  Separation, f  R × 1010m

1 69.45 0.978 6.9
2 69.63 0.965 8.2
3 90.19 0.885 12.7
4 112.13 0.857 13.2
5 133.67 0.827 13.7
6 156.94 0.679 18.2
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3.0 RESULT AND DISCUSSION

Table 2 gives the calculated root mean square error (RMSE) for single network
predictions based on different training and testing data. The first column shows the
training data number that was used for training. For example, when data numbers 2,
4 and 6 were used for training, data numbers 1, 3 and 5 were used for testing (the
RMSE for this testing set is 0.3208).

The RMSE of the individual ANN models in level-0 of the stacked network are
given in Table 3. RMSE for stacked network with different methods of combination
are shown in Table 4.

Table 2 Single network prediction

Training data set Testing data set RMSE

2, 4, 6 1, 3, 5 0.3208
1, 2, 4, 6 3, 5 0.2563

1, 2, 3, 4, 6 5 0.1469

Table 3 RMSE of level-0 ANN models

ANN RMSE

ANN 1 0.57576
ANN 2 0.70199
ANN 3 0.34749
ANN 4 0.01156
ANN 5 0.90903
ANN 6 0.27073
ANN 7 0.26749
ANN 8 0.81604
ANN 9 0.27714
ANN 10 0.61566

Table 4 Stacked network prediction with different level-1 models

Method RMSE

ANN 0.0078
Average 0.3877
Weighted average 0.1384

From Table 2, the results show that the best single network prediction, 0.1469,
was obtained when 5 data points were used for training and 1 for testing. For the
stacked network model results shown in Table 4, although the level-0 model
predictions were unsatisfactory, the generalized stacked network (ANN in level-1)
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provided the best performance with an error of less than 1%. This is a big improvement
in predicting the test data compared to the individual single network models.

Among the three level-1 models, using a straight-forward average gave the worst
prediction. The prediction RMSE is also greater than the single network predictions.
However, the weighted average level-1 model prediction is better than the single
network prediction. This is expected, because taking a simple average does not give
priority to the level-0 model with the better prediction. The weighted average
performed better because the connection weights from the corresponding network
output was taken into account. Using another ANN in level-1 gave the best prediction
because the network was able to learn and improve the prediction further during
the learning phase.

4.0 CONCLUSION

In this study, limited experimental data are insufficient for development of ordinary
feedforward network model. Ten networks have been developed in order to provide
more data to increase the accuracy of stacked network. The combination of the ten
models has shown a better result compared to the performance of individual neural
networks. A general conclusion form this study is that the stacked networks developed
is able to predict the size of pore size with low percentage of error. Although the
network can only be verified with one testing datum out of the six raw experimental
data available, the results show that ANN is able to model the pore size prediction.
Based on the results obtained, the networks are reliable and could be an alternative
to estimate pore sizes in the future.

For future work, estimation of pore size can be carried out for other types of
membrane besides asymmetric membrane. In addition, a higher number of data
points is desirable to obtain a better model and verification of the model.

NOMENCLATURE

CA dimensionless solute concentration at the pore outlet
′f true value of solute separation by membrane pore

r radial distance, m

Greek Letters

ρ dimensionless quantity defined by eqn. (a)
α(ρ) dimensionless solution velocity profile in the pore
β1 dimensionless solution viscosity
β2 dimensionless operating pressure:
α activity coefficient
Φ(ρ) dimensionless potential function:
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φ potential in the interfacial force field
b(ρ) dimensionless friction function

Subscripts

1 bulk feed solution on the high pressure side of membrane
2 concentrated boundary solution on high pressure side of membrane

Subscripts

1 bulk feed solution on the high pressure side of membrane
2 concentrated boundary solution on high pressure side of membrane
3 membrane permeated product solution on the low-pressure side of membrane
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