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ABSTRACT 

High voltage insulators play an important role in electrical power transmission 

systems. The insulators not only function as dielectric materials, but also need to meet 

other specifications, which includes mechanical, thermal and economic requirements. 

Most of the electrical insulators are made of glasses, porcelains and ceramics, but the 

insulators may fail to operate under large electrical fields due to electrical breakdown. 

Recently, nanocomposites have been developed as a novel insulation system that 

provide significantly improved electrical, thermal, mechanical and chemical 

properties. In terms of dielectric properties, the use of nanofillers leads to a high 

volume fraction of the interaction zones between the particles and polymer matrix 

called interphase. However, many studies of nanocomposites have assumed that 

nanofillers are homogeneously dispersed and their interphases are uniform in size. 

With the increasing availability and reducing cost of computers, numerical techniques 

in Finite Element Method Magnetics (FEMM) 4.2 software have become one of the 

popular tools for calculating electrical field distribution. To carry out a simulation 

study on the effect of nanoparticle interphase in polymer nanocomposites, the current 

work has considered an interphase model based on polymer and nanoparticle with 

fixed permittivity.  To determine the effects of electric field distribution in relation to 

the non-homogeneous nanoparticle dispersion, changes in the models have been 

determined by varying nanoparticles size, the interphase thickness, the permittivity 

values within interphase and the position of nanoparticles. 
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ABSTRAK 

Penebat voltan tinggi memainkan peranan yang penting dalam sistem 

penghantaran tenaga elektrik. Penebat bukan sahaja berfungsi sebagai material 

dielektrik namun perlu memenuhi spesifikasi lain dan ini termasuklah keperluan 

mekanikal, terma serta ekonomi. Kebanyakan penebat elektrik diperbuat daripada 

gelas, porselin dan seramik, tetapi penebat mungkin gagal berfungsi di bawah medan 

elektrik yang besar disebabkan kerosakan elektrik. Sejak kebelakangan ini, 

nanokomposit telah dibangunkan sebagai sistem penebat baru yang menyebabkan 

penambahbaikan yang signifikan dari segi elektrik, haba, mekanikal dan kimia. Dari 

segi sifat dielektrik, partikel nano menghasilkan zon interaksi antara partikel dan 

polimer yang dikenali sebagai ‘interphase’. Walau bagaimanapun, banyak kajian yang 

dijalankan mengenai nanokomposit mengandaikan bahawa partikel nano disebarkan 

secara homogen dan ‘interphase’ adalah bersaiz seragam. Dengan peningkatan 

ketersediaan dan pengurangan kos komputer, teknik berangka dalam perisian Finite 

Element Method Magnetics (FEMM) 4.2 telah menjadi salah satu perisian yang 

terkenal untuk mengira pengagihan medan elektrik. Untuk menjalankan kajian 

simulasi mengenai kesan ‘interphase’ partikel nano dalam polimer nanokomposit, 

model ‘interphase’ yang dipertimbangkan untuk simulasi ini adalah berdasarkan pada 

polimer dan partikel nano yang mempunyai nilai permitiviti yang malar. Untuk 

menentukan kesan pengagihan medan elektrik berhubung dengan pengagihan partikel 

nano yang tidak homogen, perubahan dalam model ditentukan oleh pelbagai saiz 

partikel nano, ketebalan dan nilai permittiviti dalam ‘interphase’ serta kedudukan 

partikel nano dalam polimer nanokomposit. 
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CHAPTER 1 

 

 

 

INTRODUCTION 

1.1  Background of Project  

Dielectric materials with high breakdown strength are beneficial for high 

voltage and large capacity as well as miniaturized power equipment and electronic 

devices. The interest in polymer nanocomposites at engineering level started when 

polyamide 6/clay nanocomposite was manufactured as engineering plastics on a 

commercial basis in 1990. This achievement initiated research and development 

efforts to investigate the possibility of combination of various polymers with various 

nano-inorganic fillers. While nanotechnology has been utilized in the semiconductor, 

biological and sensor arenas, utilization of the technology in insulation system has 

been slow to be developed. However, the year 1994 becomes a turning point in 

dielectrics and electrical insulation field, when John Lewis published a revolutionary 

theoretical paper, ‘Nanometric Dielectrics’ in the IEEE Transactions on Dielectrics 

and Electrical Insulation as future research area of dielectrics. The tendency toward 

nanodielectric research attracted worldwide interest after Nelson et al. highlighted new 

experimental work in 2002 with the emerging need of power engineers to design new 

electrical insulation systems that are capable of withstanding higher voltage levels, 

such as those for HV alternating current (HVAC) and HV direct current (HVDC) 

applications [1].   
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The incorporation of nanoparticles into polymer is an effective approach to 

improve its electrical breakdown performance. Recent studies showed that the use of 

nanofillers in polymeric insulating materials can lead to enhanced properties compared 

to microfilled and unfilled materials. The use of nanoscale filler in polymers can 

improve electrical breakdown strength and possesses  a higher resistance to surface 

discharges and treeing, a reduction of accumulation of space charge, a higher 

resistance to electrical treeing, a higher resistance to water treeing, an improved 

thermal endurance and an improved thermal conductivity [1]. Besides, nanofillers 

provide advantages over microfillers because they provide resistance to degradation 

and improvement in thermo-mechanical properties without causing a reduction in 

dielectric strength [8].  

Polymer nanocomposites can be distinguished from microcomposites in three 

major aspects. First, the difference in filler content. Conventional micro-sized filler 

composites usually consist of a large amount of more than 50wt% of fillers hence 

mixture of polymer with mineral filler resulting in a tremendous change of polymer 

properties. Meanwhile, nanocomposites contains much smaller amount of filler which 

is 10wt% or less so that some intrinsic polymeric properties remain almost unchanged 

even after becoming resulting material of the nanocomposites. Second, the size of the 

filler itself, where micro-sized fillers are used in micro composites and nanofiller sized 

fillers are used in nanocomposites. Third, nanocomposites have larger area surface 

compared to microcomposites. These differences are summarized in Table 1.1. 

Table 1.1 Comparison between microcomposites and nanocomposites  

Parameters Microcomposites Nanocomposites 

Filler size (m) 10-6 10-9 

Filler content (wt%) > 50 < 10 

Filler surface area Small Large 
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On the other hand, the enhancement properties due to the use of nanoparticle 

filler lead to a modification of macroscopic material properties which is attributed to 

the high volume fraction of the interaction zones between the particles and the polymer 

matrix called interphase. In addition, these interaction areas can have different 

structures and properties compared to the surrounding polymer and the filler particles. 

Nevertheless, polymer nanocomposites will also suffer from breakdown 

failures, which is the similar mechanism that leads to failure in the pure polymers and 

microcomposites. With the aim to clearly understand the role of the interphase in 

nanocomposites, it is significant to study the effect of the interphase behavior on the 

electric field distribution in nanocomposites. Many models have been proposed to 

explain the interphase areas since these interphase areas play a dominant role in 

determining the unique dielectric properties of the nanocomposites. The permittivity 

usually increases, if polymers are filled with inorganic fillers of micrometer size by 

several tens wt%. It is because the fillers have higher permittivity by nature than 

unfilled polymers.  Conversely, the permittivity is found to decrease in many cases, if 

polymers are filled with fillers of nanometer size by several wt% [8]. But increase 

values also available in nanocomposites. It is possibly due to any accidental inclusion 

of the imperfection of nanocomposites such as inhomogeneous dispersion and 

agglomeration of nanofillers that are technically difficult to avoid, impurities 

unintentionally mixed in during manufacturing processes, residual curing agents and 

diluting agents (dispersants) if used.   
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1.2 Problem Statement  

As mentioned earlier, the use of nanofillers is promising to enhance dielectric 

properties such as improved partial discharge resistance, suppressed space charge 

formation and reduced treeing progression. Recent research claimed the enhancement 

of properties is attributed to the presence of large interphase area which is the 

interaction zone between the particles and the matrix. Many studies modelled the 

polymer with assumptions that all nanoparticles were dispersed homogeneously in 

nanocomposites. However, ensuring that particles are dispersed homogeneously 

distributed in the polymer matrix is still challengeable.  

1.3 Objectives of the Research  

The objectives of this research are:                                                                                                       

(a) To model the electric field distribution in nanocomposites containing 

non-homogeneously dispersed nanofillers. 

 

(b) To determine the effect of electric field distribution in relation to 

different nanofiller properties and their interphase. 

 

(c) To propose the mechanisms leading to the changes in dielectric 

properties based on the model nanocomposite systems.  
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1.4 Scope of the Research  

This project focuses on the effect of nanofillers and their interphase on the 

electric field distribution in polymer nanocomposites. The model of the electric field 

distribution in nanocomposites with the presence of nanofillers and their interphases 

was performed using the Finite Element Method Magnetics (FEMM) 4.2 software. In 

this project, the model was based on polymer (polyethylene) and spherical nanoparticle 

(silica) with assumed fixed permittivity values with nanoparticle distribution within 

nanocomposites is nonhomogeneous. Then, in order to determine the effects on 

electric field distribution in nanocomposite systems, changes in the models were 

determined by varying nanoparticles size, the interphase thickness, the permittivity 

values within interphase and position of nanoparticles.   

1.5 Timeline of the Project 

Table 1.2 and 1.3 shows the planned timeline for the project. 

 

 

 



 

 

6 

 

Table 1.2 Planned timeline for Project 1 

 

 

No. Project 1 Schedule SEMESTER 1 

1 2 3 4 5 6 7 8 9 1

0 

1

1 

1

2 

1

3 

1

4 

1

5 

1 Confirmation Letter                

2 Literature Review                

3 Project Synopsis 

Preparation 

               

4 Project Synopsis 

Submission 

               

5 FEMM-4.2 software 

familiarization 

               

6 Seminar Material 

Preparation 

               

7 Submission of Seminar 

Material 

               

8 Seminar Presentation                

9 Report Preparation and 

Submission 
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Table 1.3 Planned timeline for Project 2 

No. Project 2 Schedule SEMESTER 2 

1 2 3 4 5 6 7 8 9 1

0 

1

1 

1

2 

1

3 

1

4 

1

5 

1 Literature Review                

2 Modelling and 

Simulation on 

nanocomposites with the 

presence of nanofillers:  

a. Varying the interphase 

permittivity. 

b. Varying the size of 

nanoparticles and 

interphase. 

c. Varying the position 

and distance between 

adjacent of particles. 

               

3 Analyzed simulation 

results 

               

4 Discussion and 

conclusion 

               

5 Preparations for final 

seminar 

               

6 Thesis preparation and 

editing 

               

7 Thesis submission                
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1.6 Thesis Structure and Organization  

Chapter 2 is about literature review. It provides the background theories of 

previous work concerning on concept of nanocomposites, modelling and simulation, 

polymer structure and properties, nanoparticles and interphase region and electric field 

distribution analysis. 

Chapter 3 contains research methodology that explains in detail on how to 

achieve the objectives of this project which include methodology on modelling and 

simulation polymer nanocomposites system using FEMM 4.2 simulator. The 

parameters of model, including the size of particle, permittivity value, interphase 

diameter and type of particle dispersion are explained and presented in this chapter. 

The simulation results taken based on the models in Chapter 3 and data 

analyses are covered in Chapter 4. This chapter starts with a basic polymer model 

without particles, then with single microparticle and single nanoparticle with and 

without interphase. To investigate the effects of nanoparticle dispersion in electric 

fields distribution, there are four different particle dispersion cases that been simulated 

through FEMM 4.2 based on 110 nanosilica particles. The first case is homogenous 

and the other three cases are non-homogenous namely as centralised dispersion and 2 

cases of random dispersion. Other than particles dispersion factor, this chapter also 

discussed the effects of nanoparticles size, the interphase thickness and permittivity 

value within interphase to electric field distribution. 

Lastly, Chapter 5 summarizes all the results and discussions on the electric 

distribution in polymer nanocomposites. The outlook and aim of this work are again 

highlighted with recommendation for future research work. 
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