
i 
 

MODIFIED RELIABILITY REASSESSMENT OF FIXED OFFSHORE 

STRUCTURES FOR MALAYSIAN WATER  

ZULKIPLI BIN HENRY 

A thesis submitted in fulfilment of the  

requirements for the award of the degree of  

Doctor of Philosophy (Mechanical Engineering) 

 

 

 

 

School of Mechanical Engineering 

Faculty Engineering 

Universiti Teknologi Malaysia 

 

 

 

 

NOVEMBER 2018 

 



iii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dedicated to my beloved family for their unfailing support 

 

 

 

 

 

 

 

 

 

 

 

 



iv 

ACKNOWLEDGEMENT 

 All praises to God Almighty, Allah S.W.T. for the blessing, mercy and 

guidance. Also peace and blessing be upon noble Prophet Muhammad S.A.W. 

Alhamdulillah with His permission, I am able to complete the thesis for the award of 

the Doctor of Philosophy within the given period of time.  In preparing and completing 

this thesis, I was in contact with supervisors, colleagues and friends.  They have 

provided direct or indirect guidance and contributions towards completing my research 

and thesis. Therefore, I would like to express my special appreciation to my main 

supervisor, Associate Prof Ir Dr Amran Bin Ayob, my co-supervisor Dr Mohd Foad 

Bin Abdul Hamid and Dr Iberahin Bin Jusoh for all their guidance, comments and 

assistance in order to complete this thesis. I have learned a lot from them and am very 

lucky to have them as my supervisors. 

 I would also like to extend my thanks and gratitude to Ms Nurul Uyun Binti 

Azman for the assistance and support she provided in completing my dissertation.  Last 

but not least, special acknowledgement and gratitude to my wife Dr Aida Binti Esa 

and my sons for their undivided and continuous moral support and understanding 

throughout the years of my commitment to complete the PhD program.  Without their 

presence, encouragement and continuous support, I would not be able to complete this 

study. Only God can repay all your kindness and favour. 

 

 

  	



v 

ABSTRACT 

Fixed offshore platform structures are subjected to external loadings such as 
gravity loads, environmental loads, hydrodynamic loads and accidental loads.  The 
structures continuously undergo modifications and upgrading in order to meet safety 
and production demands or due to structural damage on critical components.  The aim 
of this research is to propose an improved Structural Reliability Assessment (SRA) 
methodology for fixed offshore platforms in Malaysian waters by including the effect 
of wave-in-deck and to quantify the impact of key design parameters on overall 
platform structural response.  Case studies on the sensitivity of marine growth profile, 
current blockage factor, drag and inertia coefficients on overall structural loading are 
performed to quantify the overall impact of these key parameters.  The platform 
reliability based on proposed improved method is compared against an existing 
method, the Simplified Structural Reliability Assessment (SSRA).  For the case and 
sensitivity studies, the examples of existing fixed offshore jacket structures in 
Malaysian water region are used.  In structural integrity assessment of existing 
platforms, structural utilization factor is used to measure the level of stress on 
structural members and foundation.  The study on structural integrity assessment 
shows that the drag coefficient and current blockage factor have significant impact on 
the overall loading of jacket structures in Malaysian waters as compared to marine 
growth profile and inertia coefficient.  The sensitivity study on drag coefficient 
quantifies the percentage increases on base shear for operating and storm conditions, 
ranging from 17% to 72% and 18% to 70% respectively.  The current blockage factor 
sensitivity study for operating and storm conditions shows the base shear increase from 
10% to 16% and 6% to 9% respectively.  The existing platforms may not be able to 
meet today’s integrity requirement without performing costly strengthening.  
Therefore, a modified SRA method is proposed to demonstrate the fit-for-purpose of 
the platforms based on As Low As Reasonably Practical (ALARP) concept which has 
been proven to be a cost effective solution to non-compliant existing and ageing 
platforms.  The advantage of the method is its ability to estimate the magnitude of 
wave height that causes platform failure and takes into consideration the wave-in-deck 
in the calculation of platform Reserve Strength Ratio (RSR).  The study demonstrates 
that including additional loading contribution from wave-in-deck in the RSR 
calculation is more practical, realistic and accurate.  The case study demonstrates the 
platform RSR decreases from 4.13 to 3.40 which is equivalent to 17% reduction.  In 
the final phase, this study proposes a unique parameter Alpha, (ߙ)  which is used to 
calculate the wave height that causes platforms to collapse.  The ߙ depends on platform 
geometrical configuration.  The sensitivity study concludes the values of α for fixed 
offshore structures at Malaysian water ranging from.1.5 to 2.5.
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ABSTRAK 

Struktur pelantar tetap luar persisir sentiasa terdedah kepada berbagai daya 
luaran seperti daya graviti, alam sekitar, hidrodinamik and kemalangan. Struktur ini 
sentiasa melalui proses pengubahsuaian dan naiktaraf untuk memenuhi keperluan 
keselamatan, pengeluaran minyak dan gas atau disebabkan oleh kerosakan komponen 
kritikal struktur tersebut. Objektif utama penyelidikan ini adalah untuk mencadangkan 
kaedah baru dalam Penilaian Kebolehpercayaan Struktur (SRA) untuk pelantar tetap 
luar persisir perairan Malaysia dengan mengambil kira gelombang pada dek pelantar 
dan juga menyukat kesan perubahan parameter utama rekabentuk pelantar. Kajian kes 
kepekaan pertumbuhan marin, faktor hadangan arus, pekali seretan dan inersia 
terhadap keseluruhan daya tindakan ke atas struktur pelantar dilakukan untuk 
mengukur kesan keseluruhan parameter utama tersebut. Pengiraan kebolehpercayaan 
struktur pelantar yang menggunakan metodologi tambahbaik yang dicadangkan akan 
dibandingkan dengan kaedah sediada, Penilaian Mudah Kebolehpercayaan Struktur 
(SSRA). Contoh struktur pelantar yang digunakan adalah daripada pelantar yang 
beroperasi di persisir laut Malaysia. Dalam penilaian integriti struktur pelantar 
sediada, faktor penggunaan struktur digunakan untuk mengukur aras ketinggian 
tegasan di dalam komponen struktur serta cerucuk struktur. Kajian penilaian integriti 
struktur menunjukkan pekali seretan dan hadangan arus mempunyai kesan signifikan 
kepada daya tindakan keseluruhan ke atas struktur berbanding dengan profil 
pertumbuhan marin dan pekali inersia. Kajian kepekaan ke atas pekali seretan memberi 
peratusan kenaikan daya ricih asas untuk keadaan operasi dan ribut, masing-masing 
adalah sebanyak 17% hingga 72% dan 18% hingga 70%. Kajian kepekaan terhadap 
faktor hadangan arus ketika keadaan operasi dan ribut menunjukkan peningkatan daya 
ricih asas, masing-masing sebanyak 10% hingga 16% dan 6% hingga 9%. Pelantar luar 
persisir sediada berkemungkinan tidak dapat memenuhi keperluan integriti masakini 
jika pengukuhan struktur yang mahal tidak dijalankan. Oleh itu, kaedah 
penambahbaikan SRA yang dicadangkan akan dapat membuktikan rekabentuk fit-for-
purpose berteraskan konsep Serendah Munasabah DiPraktikan (ALARP). Konsep 
ALARP telah terbukti menjadi penyelesaian kos efektif terhadap pelantar sediada dan 
lama yang tidak mematuhi kod. Kebaikan kaedah baru SRA yang dicadangkan adalah 
ia berupaya menganggar magnitud ketinggian gelombang yang menyebabkan struktur 
pelantar runtuh dan seterusnya mengambil kira gelombang pada dek dalam pengiraan 
Nisbah Kekuatan Simpanan (RSR). Kajian menunjukkan dengan mengambil kira 
gelombang pada dek pelantar dalam pengiraan RSR adalah lebih praktikal, realistik 
dan tepat. Keputusan kajian menunjukkan RSR pelantar menurun dari 4.13 ke 3.40 
iaitu sebanyak 17%. Dalam fasa terakhir, penyelidikan ini mencadangkan parameter 
Alpha, (α) yang digunakan untuk mengira ketinggian gelombang yang menyebabkan 
struktur pelantar runtuh. Parameter α bergantung kepada bentuk geometri pelantar. 
Kajian kepekaan merumuskan nilai α yang bersesuaian untuk pelantar luar persisir di 
perairan Malaysia adalah dalam lingkungan 1.5 sehingga 2.5.
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 ଶ      -        Weigh of equipment or other objects that changeܦ

           from one mode of operation to another 

 Dynamic amplification factor        -      ܨܣܦ

 ௌ      -        DAF due to base shearܨܣܦ
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 ௬     -        Root mean square for dynamic conditionܵܯܴ

  ௌ     -        Root mean square for dynamic condition due to	௬ܵܯܴ

        base shear 

  ை்ெ     -        Root mean square for dynamic condition due to	௬ܵܯܴ

        overturning moment 

ܯܴ ௌܵ௧௧     -        Root mean square for static condition 

ܯܴ ௌܵ௧௧	ௌ     -        Root mean square for static condition due to base  

        shear 

ܯܴ ௌܵ௧௧	ை்ெ     -        Root mean square for static condition due to  

        overturning moment 

ܴܴܵ      -        Reserve strength ratio of the system 

 Platform RSR calculated based on wave-in-deck        -     ܦܫܹ_ܴܴܵ
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 /௪      -        Current over wave velocity ratioݎ



xxxii 

ܵ      -        Elastic section modulus 

ܵ      -        Wave trough elevation above the bottom 
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CHAPTER 1 

INTRODUCTION 

1.0 Development of Oil and Gas Industry in Malaysia 

 The oil industry in Malaysia was started as early as 1910 with the construction 

of the first onshore oil rig at Canadian Hill, Miri, Sarawak (Sorkhabi, 2010).  In 

Peninsular Malaysia, the exploration activities of petroleum resources only started 

back in late 1960s on the east Peninsular Malaysia namely offshore Terengganu and 

Kelantan. 

 Up-to-date there are about 250 fixed offshore platforms installed in both 

Peninsular Malaysia and East Malaysia (Liu et al., 2016) with 85% of the total 

numbers being in West Malaysia (Courtesy of Shell and PETRONAS).  It is an 

increase of about 50 numbers of fixed offshore platforms installed in Malaysian water 

since 2011 (Azman, 2011).  These platforms are located on the continental shelf of the 

South China Sea.  These platforms are mainly operated by three main operators, 

namely Shell Malaysia Exploration and Production (SMEP), Petronas Carigali Sdn. 

Bhd. (PCSB) and ExxonMobil Exploration & Production Malaysia Inc.  SMEP is 

focusing its operation in West Malaysia and ExxonMobil Exploration & Production 

Malaysia Inc. operates in Peninsular Malaysia.  While being subsidiary of 

PETRONAS, PCSB is operating in both Peninsular Malaysia and East Malaysia and 

by default will inherit all these platforms.  
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 Historically, fixed offshore platforms were installed as early as 1960s and the 

total numbers is growing significantly since then.  The distribution of fixed offshore 

platforms in Malaysia water versus age and year of installation are shown in Figure 

1.1 and Figure 1.2: 

 

 

 

 

 

 

 

 

 

Figure 1.1: Fixed offshore platform in Malaysia versus age (Courtesy of Shell and 

PETRONAS) 

 

Figure 1.2: Number of fixed offshore platforms in Malaysia water versus installation 

year (Courtesy of Shell and PETRONAS) 

  

6

48

37

32

26

18
22

3
7

2

10
12

8

0

10

20

30

40

50

60

1960‐1969 1970‐1979 1980‐1989 1990‐1999 2000‐2011

N
u
m
b
er
 o
f 
P
la
tf
o
rm

s

Year Installed

Sarawak

Sabah

Peninsular Malaysis

41 ‐ 50 Yrs

31 ‐ 40 Yrs

21 ‐ 30 Yrs

11 ‐ 20 Yrs

0 ‐ 10 Yrs

18% 

20% 

30% 

29% 

3%
 



3 

 In general, the development of Oil and Gas industry in Malaysia can be 

summarized in Figure 1.3. 

Figure 1.3: Timeline in the development of Malaysia oil and gas industry (Narayanan 

and Kabir, 2009) 

1.1 Research Issue Identification 

 From Figure 1.1 and 1.2, there are about 250 fixed offshore platforms installed 

in Malaysian water in 2016.  Of these, 32% have exceeded their design life of 30 years 

while another 30% of platforms have been in operation for more than 20 years and 

several others are reaching 20 years of age.  Therefore, the reliability of offshore 

platforms has become a very important issue in the Malaysian oil and gas industry as 

a majority of the jacket platforms in Malaysian are about to exceed their design life 

(Kurian et al., 2014).  Reliability of fixed offshore platform can be assessed through 

platform probability of failure.  Non-linear pushover analysis which is used to 

calculate the reserve strength ratio (RSR) of existing platforms is crucial because the 

RSR is to be used in the reliability assessment to calculate the platform probability of 

failure.  RSR describes the level of structural redundancy and resistance of jacket 

structure to extreme weather condition (Singh et al., 2015).  Pushover analysis is 

widely used in current offshore standards such as American Petroleum Institute (API), 

International Organization for Standardization (ISO) and Det Norske Veritas (DNV) 

to evaluate the ultimate capacity of the platform against environmental loading 

(Golafshani et al., 2011).  In short, first, the gravity load is applied followed by the 

environmental load which is applied incrementally on the jacket structures until a 

failure mechanism is formed.  Figure 1.4 below shows the schematic on how the 
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environmental load is being applied on jacket structure until collapse mechanism is 

formed. 

 

Figure 1.4: Pushover analysis - increasing environmental loading until the structure 

collapses (Kurian et al., 2014) 

The gap identified in the current pushover analysis procedure is the application 

of the environmental load which does not consider the possibility of wave-in-deck 

scenario.  Thus, the calculated base shear at platforms collapse condition is unrealistic.  

With the inclusion of wave-in-deck, the actual load on the structure will increase 

because of the wave reaching the deck and the calculated base shear will be larger than 

what is modelled in the typical RSR analysis (Singh et al., 2015 & Golafshani et al., 

2011).  The more accurate and realistic RSR should take into account of wave-in-deck 

loading contribution toward platform failure.  The question on the impact of wave-in-

deck to the platform reserve strength ratio will be discussed and answered in this thesis.  

Throughout the service life of the offshore platforms, modifications and 

upgrading activities with the purpose to enhance the efficiency of the system as well 

as to increase production capacity are becoming continuous activities.  These 

modifications and upgrading activities can be in the form of facilities 

upgrading/modification, new equipment installation and increase in total number of 

people on board.  All these changes and improvement contribute to increase in 
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platform loading system.  Therefore, structural integrity reassessment needs to be 

carried out to determine their fitness for purposes to accommodate the abovementioned 

changes.  API (2002) and ISO (2007) (e.g. Section 17 and Section 24 respectively) 

provide general guidelines for the reassessment of existing fixed offshore platforms.  

In performing the structural integrity reassessment of fixed offshore platforms in 

Malaysian water several issues are to be investigated and answered such as: 

(i) Key parameters that affect the overall structural response of fixed offshore 

structures in Malaysian water.  

(ii) Are fixed offshore platforms in Malaysian water drag or inertia dominant 

or both drag and inertia dominant structures? 

(iii) Methodology to perform structural reliability reassessment for existing 

platforms at Malaysian water by taking into account wave-in-deck. 

1.2 Research Objectives 

 Due to the business needs to continue production, modification to 

accommodate additional loadings, damage due to extreme weather and deteriorations 

due to ageing effect, requalification of existing platforms become necessary and 

important subject or area to research.  The aim of this research is to improve the 

structural reassessment of existing fixed offshore structures in Malaysian water.  To 

achieve this aim, the following objectives are to be observed: 

(i) To quantify the impact of key design parameters which are drag and inertia 

coefficients, marine growth, current blockage factors and current profile 

toward structural response of fixed offshore platforms in Malaysian water 

through sensitivity analysis. 

(ii) To propose improved Structural Reliability Assessment (SRA) 

methodology for fixed offshore structures in Malaysian water by including 

the effect of wave-in-deck in calculating the platform Reserve Strength 

Ratio (RSR).  
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1.3 Significance of the Study 

There are several potential benefits and contributions from this research work 

toward oil and gas industry in Malaysia.  The study to quantify the contribution of drag 

and inertia coefficients toward overall hydrodynamic loading of fixed offshore 

platform in Malaysian water will provide information whether the fixed offshore 

platforms in Malaysian water are drag or inertia dominants.  The conclusion from this 

study can be used to justify the significant contribution of marine growth toward 

overall hydrodynamic loading of the fixed offshore platforms in Malaysian water.  

Marine growth is known to give adverse effects to the performance of offshore 

structure through increases the surface roughness of the structure and hence increase 

the drag coefficient (Jusoh & Wolfram, 1996).  Therefore, if the fixed offshore 

platforms in Malaysian water are drag dominant and sensitive to changes on drag 

coefficient, then by removing the marine growth will significantly reduce the platforms 

hydrodynamic loading.  With this reduction, the hydrodynamic loading for the fixed 

offshore platforms as calculated by Morison equation will be significantly reduced.  

The potential practical application of this finding is to mitigate overstressed members 

by reducing overall hydrodynamic loading through the removal of the marine growth 

especially at the splash zone area of the jacket structure instead of performing physical 

strengthening such as installing a new bracing. 

  Since the marine growth distribution on structural members vary according to 

several factors such as geographical location, water depth, water temperature and 

season, ocean current, platform design and operation (Jusoh & Wolfram, 1996), the 

international codes and standards are silent in providing guideline on the marine 

growth distribution to be adopted on the design or reassessment of fixed offshore 

platforms.  Therefore, each locality has its own local design guidelines or requirements 

on the matter.  As for fixed offshore platform at Malaysian water, one of the local 

design guideline on marine growth distribution is tabulated on Table 2.3.  However, 

the marine growth distribution at water depth (-) 21.0 meter and below is always 

different from what been reported from the actual marine growth measurement during 

underwater inspection.  This research will study the contribution of marine growth at 

elevation below (-) 21.0 meter toward the overall global loading of the platforms and 
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to determine if the existing platforms in the Malaysian water that were designed based 

on this guideline were under designed or otherwise.  Furthermore, the practical 

application from the outcome of this study will be providing recommendation if the 

local design guidelines require any update. 

Another primary objective and also the strength of this research is to propose 

improvement to close that identified gap in structural reliability assessment of fixed 

offshore platform in Malaysia water.  The identified gap in performing structural 

reliability assessment of fixed offshore platforms in Malaysian water is that the 

nonlinear pushover analysis is performed through progressive increment of the 

environmental load until structure collapse without considering the increment in wave 

height (Singh et al., 2015).  For example, the wave-in-deck that potentially occurs is 

not considered in the analysis.  This approach is considered unrealistic and 

underestimating the platform collapse load because the contribution of wave-in-deck 

can be very significant.  Therefore, the proposed structural reliability assessment 

provides improvement by considering the contribution of wave-in-deck in the 

calculation of platform reserve strength ratio and also to provide formulation to 

determine the wave height that causes platform collapse.  This allows the effect of 

wave-in-deck which significantly increases the total base shear load of the platform 

structures to be accounted in the calculation of platform RSR and the calculated RSR 

is become more realistic and accurate. 

1.4 Scope of Research 

 In this research, four (4) existing fixed offshore platforms in Malaysian water 

are used as the samples/subjects in the study of the effect of marine growth profile, 

drag coefficient, inertia coefficient, current blockage factor and current profile toward 

fixed offshore platforms response.  In the study on the application of the proposed 

Structural Reliability Assessment (SRA) methodology, two (2) existing platforms in 

Malaysian water are used as samples.  These platforms are located in different regions 

in Malaysian water such as Sarawak water and Sabah water where most of fixed 
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offshore platforms were installed.  Furthermore, the platforms are also selected based 

on platform configuration and water depth. 

The research objective is achieved through literature and information search, 

conducting case study and sensitivity study and performing structural integrity 

assessment by using proposed SRA methodology.  The literature and information 

search are carried out to gather information on the requalification of existing platforms, 

design of fixed offshore platforms, key design parameters that affecting the magnitude 

of environmental loading on the fixed offshore platforms and ultimate strength 

analysis of fixed offshore platforms.  Through the literature and information search, 

the latest development and area of improvement are identified.  The literature review 

includes technical reports, published and conference papers, previous research 

document, international standards or guidelines and text books. 

This thesis covers several types of studies such as case study and sensitivity 

study.  For the case study, structural integrity reassessment of fixed offshore platform 

which covers stress check, foundation check, joint check and deflection allowable 

check has been performed.  For the sensitivity study, the effect of platform design 

parameters such as drag and inertia coefficients, marine growth distribution and 

current blockage factors toward global response of the fixed offshore structures will 

be investigated.  Furthermore, sensitivity study on the Alpha parameter is also 

conducted to investigate the influence of fixed offshore platforms configuration.  The 

results and outcomes of the case study and sensitivity study are discussed in Chapter 

4 and Chapter 6. 

Structural Reliability Assessment (SRA) methodology for fixed offshore 

structures in Malaysian water has been proposed by including the effect of wave-in-

deck in calculating the platform RSR The wave-in-deck load is calculated based on 

simplified silhouette method as per ISO (2007), Section A.24.7.3.  The ultimate 

strength assessment based on proposed SRA methodology and the calculation of the 

Reserve Strength Ratio (RSR) of the platform have been carried out.  The governing 

failure mode of the structure is also discussed.  The platform probability of failure 



9 

based on the proposed SRA methodology is then calculated and compared against 

existing method such as Simplified Structural Reliability Assessment (SSRA). 
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