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ABSTRACT

Cells disruption for obtainment of targeted protein has increased the cost for
expression of recombinant protein in Escherichia coli. Cell surface display system is
one of the approaches to resolve this issue. The objective of this research is to study
expression and characterization of surface display cellulases on E. coli using ice
nucleation protein A (InA) anchor protein from Erwinia ananas. Cellulases such as
endoglucanase CelSA (EC 3.2.1.4), exoglucanase Cel9E (EC 3.2.1.91) and -
glucosidase BglC (EC 3.2.1.21) fused to the C-terminal of InA were expressed in E.
coli. InA-Cel5A and InA-BglC were shown to be displayed on the cell surface by
analyzing outer membrane protein on SDS-PAGE and Western blot. Enzyme assay
and immunofluorescence microscopy analysis showed that InA-CelSA and InA-BglC
were functionally expressed on the cell membrane. InA-Cel9E was not successfully
displayed on cell surface. The optimum temperature and pH of surface display InA-
Cel5A and InA-BglC were 60 °C and pH 7, respectively. Optimization of cultivation
conditions of InA-Cel5A and InA-BglC were carried out at different post induction
time, medium, post induction temperature and  isopropyl  B-D-1-
thiogalactopyranoside (IPTG) concentration. The optimized conditions obtained for
expression of InA-Cel5A were M9 medium, 15 °C induction temperature, 0.1 mM
IPTG and 14 hours, which gave endoglucanase activity of 0.6537 U/mL. The
optimized conditions obtained for expression of InA-BglC were M9 medium, 30 °C
induction temperature, 0.1 mM IPTG and 6 hours, which gave B-glucosidase activity
of 198.439 U/mL. InA-CelSA and InA-BglC were used for cellulose hydrolysis.
Surface display InA-Cel5A and InA-BglC were used to degrade 4 % (w/v) Avicel at
50 °C and 200 rpm, producing 0.204 mg/mL reducing sugars but with low glucose
concentration. The optimum ratio of InA-CelSA and InA-BglC used in the
hydrolysis was found to be 4: 1. Results indicated that InA-Cel5A and InA-BglC
were successfully displayed on E. coli using InA. Nevertheless, such recombinant E.
coli showed a low hydrolytic activity and only low glucose concentration can be
detected. The success of displaying enzyme on E. coli using ice nucleation protein
showed great potential to be used in whole-cell biocatalysis.



ABSTRAK

Pemusnahan sel untuk mendapatkan protein sasaran telah menyebabkan kos
penyataan protein rekombinan dalam Escherichia coli tinggi. Sistem paparan
permukaan sel adalah salah satu pendekatan untuk menyelesaikan isu ini. Objektif
kajian ini adalah untuk mengkaji penyataan dan pencirian selulase yang dipamerkan
di permukaan E. coli dengan menggunakan protein A nukleasi ais (InA) sebagai
protein penyangkut daripada Erwinia ananas. Selulase seperti endoglukanase Cel5A
(EC 3.2.1.4), eksoglukanase Cel9E (EC 3.2.1.91) and P-glukosidase BgIC (EC
3.2.1.21) yang digabung dengan terminal C InA dinyatakan dalam E. coli. Analisis
membran protein luar pada SDS-PAGE dan Western blot menunjukkan InA-Cel5A
dan InA-BgIC berada di permukaan sel. Analisis aktiviti enzim dan mikroskopi
immunofluoresen menunjukkan penyataan InA-Cel5A dan InA-BglC berfungsi di
atas membran sel. InA-Cel9E tidak berjaya dipamerkan di permukaan sel. Suhu dan
pH optimum bagi paparan permukaan InA-Cel5A dan InA-BgIC adalah masing-
masing pada 60 °C and pH 7. Pengoptimuman keadaan penanaman untuk InA-
Cel5A and InA-BgIC dilakukan pada masa selepas induksi, medium, suhu selepas
induksi dan kepekatan isopropil P-D-1-thiogalaktopiranosida (IPTG) yang berbeza.
Keadaan optimum bagi penyataan InA-Cel5A adalah medium M9, suhu induksi 15
°C, IPTG pada kepekatan 0.1 mM selama 14 jam dengan penghasilan aktiviti
endoglukanase sebanyak 0.6537 U/mL. Keadaan optimum bagi penyataan InA-BgIC
adalah medium M9, suhu induksi 30 °C, 0.1 mM IPTG selama 6 jam dengan
penghasilan aktiviti P-glukosidase sebanyak 198.439 U/mL. InA-Cel5A dan InA-
BgIC digunakan dalam hidrolisis selulosa. Paparan permukaan InA-Cel5A dan InA-
BglC digunakan untuk menghidrolisis 4% (w/v) Avicel pada 50 °C dan 200 rpm,
menghasilkan 0.204 mg/mL gula penurun dengan kepekatan glukosida yang sangat
rendah. Nisbah optimum InA-Cel5A dan InA-BglC yang digunakan dalam hidrolisis
adalah 4: 1. Keputusan ini menunjukkan bahawa InA-Cel5A dan InA-BgIC berjaya
dipamerkan di permukaan E. coli dengan menggunakan InA. Walaubagaimanpun, E.
coli rekombinan tersebut menunjukkan aktiviti hidrolitik yang rendah dan hanya
kepekatan glukosa yang rendah dapat dikesan. Kejayaan memaparkan enzim
menggunakan protein nukleasi ais di permukaan E. coli menunjukkan potensinya
untuk digunakan dalam pemangkinan-bio sel keseluruhan.
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CHAPTER 1

INTRODUCTION

1.1 Background

Microbes are favored sources for industrial enzymes because of several
advantages such as the ease of product modification and optimization, fast growth
rate and simpler cultivation on cheaper substrates (Gurung ef al., 2013).
Development of genetic engineering and protein engineering has led to the more
economical production of recombinant protein due to the producing organism could
be easily engineered to produce desired amount of enzymes. To date, the availability
of genetic tool has been developed for the high level production of proteins.
Production of recombinant protein involves cloning of desired DNA into vector and
the desired protein is amplified in appropriate expression system (Schumann and
Ferreira, 2004). The ability to grow rapidly at high cell density, easy manipulation
and low cost have made Escherichia coli to be one of the most frequently used
microorganism for recombinant production (Jong ef al., 2010; Sivashanmugam et al.,

2009).

However, E. coli is incapable in secreting proteins into extracellular medium
and it is unlikely to produce protein that require post-translational modification
(Mergulhao et al., 2005). Intracellular enzyme system protects enzyme from toxic
and inhibitory reaction conditions. Despite of that, expression of intracellular protein
in E. coli often results in the formation of insoluble aggregates or inclusion bodies
(Mergulhao ef al., 2005). Intracellular system requires substrate or product to pass
through the membrane for the reaction to occur inside the cell which increases
downstream cost. Targeting the proteins into culture medium overcomes the

problems of intracellular production and improves downstream processes, enabling



the secretion of folded protein at a lowered cost (Chot and Lee, 2004). However, cell
free system requires freshly enzyme preparation and the preparation can only be used
for once and then turns to waste, and thus leading to the increase of cost production

(Schuurmann et al., 2014).

To overcome these limitations, cell surface display is a technology that allow
the protein of interest to be anchored on the outer surface of cell and freely access to
the molecules or substrates in the exterior environment of the cell. This technology
overcomes some drawbacks of using whole-cell biocatalysts that expressed enzyme
intracellularly or secrete enzyme extracellularly such as laborious purification and
transport limitations of substrate cross membrane for reaction to occur. Several
different anchoring motifs available for Gram-negative bacteria including
autotransporters (Sun et al., 2015), outer membrane proteins (Lee ef al., 2013) and
ice nucleation protein (INP) (Zhang et al., 2016). Generally, surface display system
consists of two main features such as a signal peptide to initiate the translocation of
protein toward secretory pathway and a surface anchor protein that enables anchoring

of the target protein on cell membrane.

Although surface display system have many advantages and a wide range of
systems for display of heterologous protein on E. coli have been developed, size
limitation of insert that can be expressed on cell membrane remains a considerable
bottleneck (Han and Lee, 2015). Occasionally, large size of foreign protein has
significant effect on cell membrane integrity which can result in growth inhibition
and instability of outer membrane stability. Display efficiency of surface display
system often related to the inefficient expression and secretion of target protein

(Tanaka and Kondo, 2015).

Previously, ice nucleation protein A (InA) has been studied for its property of
ice-nucleating when it was expressed in E. coli host (Abe et al, 1989). Ice
nucleation protein is an anchor protein consists of N- and C- terminal that has been
used to display protein on cell surface. In this study, the truncated InA from Erwinia

ananas was studied for its role as a surface display anchor. Cellulases were used as



the reporter proteins. The process of breaking down cellulose requires at least three
cellulases including endoglucanase CelSA (EC 3.2.1.4), exoglucanase Cel9E (EC
3.2.1.91), and B-glucosidase BgIC (EC 3.2.1.21). The multi-step hydrolysis process
has been hampered by the lack of efficient expression platforms in E. coli that allow
a cost-effective production of cellulases. Therefore, in this study cellulases were
displayed on E. coli using InA as the anchor protein, enabling direct application of
whole-cell biocatalyst to the cellulose biomass, thereby reducing the high operation

cost associated with cellulases production.

1.2 Problem Statement

Biocatalysts, especially enzymes are beneficial as they have high catalytic
efficiency, high product selectivity and the ability to catalyze reactions under mild
conditions. These characteristics make enzymes preferable to be used in industry
compared to chemical catalysts. In the biocatalytic production process, recombinant
enzyme preparation is time-consuming and often requires the additional process of
cell disruption and purification, which causes enzyme loss, denaturation, and
increased cost of production. E. coli has been known to be an efficient
microorganism that has the ability to ferment sugars. However, E. coli cannot
secrete saccharolytic enzymes outside its cell to hydrolyze polysaccharide.
Therefore, it is crucial to conduct a study on developing whole-cell biocatalyst that
can display enzymes on cell surface. Although surface display systems have many
advantages and a wide range of systems for display of heterologous protein on E. coli
have been developed, the stability of displayed enzyme and surface display
efficiency of display system remains a considerable obstacle. Thus, it is interesting

to study the surface display of saccharolytic enzymes such as cellulases on E coli.



1.3

1.4

Objectives of Study

The objectives of this study are:

To characterize surface displayed InA-CelSA, InA-Cel9E and InA-BglC
on E. coli.

To study effect of cultivation conditions on the activity of surface
displayed InA-Cel5SA and InA-BglC.

To study the performance of surface displayed InA-Cel5A and InA-BglC

on degradation of cellulose.

Scopes of the Study

The following scopes were outlined to achieve the objectives stated:

Analyzing and characterization of surface displayed InA-CelSA, InA-
Cel9E and InA-BglC.

Optimization of cultivation conditions including post induction time,
expression medium, post induction temperature and inducer concentration
of surface displayed InA-Cel5A and InA-BgIC.

Optimization of cellulose hydrolysis including cell ratio, agitation speed

and substrate loading using surface displayed InA-CelSA and InA-BgIC.
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