CARBON DIOXIDE MANAGEMENT FOR PRODUCT SUPPLY CHAIN AND TOTAL SITE UTILISATION AND STORAGE

WAN NORLINDA ROSHANA BINTI MOHD NAWI

A thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy (Chemical Engineering)

School of Chemical and Energy Engineering Faculty of Engineering Universiti Teknologi Malaysia

OCTOBER 2018

To my beloved husband, Muhammad Faizal Umairah, Umaiza,Uzayr Ibu, Bapak, Mak, Abah and family members

ACKNOWLEDGEMENT

In the name of Allah, the Most Gracious and the Most Merciful

All praises to Allah for bestowing the health, strengths and opportunity for me to experience this valuable path in completing this thesis. The knowlegde and experiences gained throughout the process is aprecious treasure that will not be forgotten.

First and foremost, I would like to express my utmost appreciation and highest gratitude to my supervisor, Professor Ir. Dr. Sharifah Rafidah Wan Alwi and my cosupervisors, Professor Dr. Zainuddin Abdul Manan and Professor Dr. Jiří Jaromír Klemeš for their myriad constructive comments and unwavering support to the completion of this research. Their guidance and encouragement are gratefully acknowledged.

In addition, I would like to take this golden opportunity to thank my husband Muhammad Faizal Zainal Abidin, my children, my parents and family members for their unconditional continuous support and encouragements. Also, I wish to express my great appreciation for my fellow post-graduate friends and staffs at Process System Engineering Center (PROSPECT-UTM) or other unmentioned parties who have, directly and indirectly, providing their sincere guidance and support to the completion of this research.

I would also like to recognise the tremendous financial support granted by Universiti Malaysia Pahang (UMP) and Ministry of Education Malaysia through the SLAB-SLAI scheme scholarship. Above all, I thank Allah for the grace, mercy and guidance that enable the successful completion of this journey.

ABSTRACT

The development of insight-based graphical and algebraic techniques in process integration (PI) for carbon dioxide (CO₂) emission targeting, design, and planning based on pinch analysis (PA) has evolved in line with the developments of other PI tools for the conservation of resources including heat, mass, gas, power, and electricity. Complementary PA-based tools can provide graphical and visualisation insights that are vital for better conceptual understanding of problems, particularly at the onset of CO_2 emission systems planning and design, have been developed over the last ten years. Therefore, a comprehensive and systematic CO₂ emission reduction planning and management using PA-based methods are proposed in this research to provide a systematic and vital insights towards CO₂ emission reduction. This research proposes a methodology for CO₂ emission reduction throughout product supply chain and end-of-pipe management of CO₂ via total site integration. A palm cooking oil product is used to demonstrate the proposed methodology development. In the first step, CO₂ emission hotspot which contributes the highest emission phase in the supply chain is identified. Next, the most suitable and economically viable CO_2 reduction strategies are identified and screened by using CO₂ management hierarchy as a guide, and SHARPS as a cost screening technique. At this stage, a total of 1,077 tonnes per year (t/y) CO₂ emissions for a basis of 100 t/y of palm cooking oil production are successfully reduced to 402 t/y which is approximately 63% reduction based on the implementation of CO_2 emission reduction strategies that achieved target payback period (TPP ≤ 2 years) and investment cost (INV \leq USD 150,000). In the third step, the remaining CO₂ emission could be further reduced with end-of-pipe emission management considering multiple sites which can act as CO_2 sources or demands. A methodology for total site CO_2 integration is introduced to integrate and fully utilise the CO_2 emissions among industries and/or plants via single and multiple centralised header before being sent to storage to permanently store and zero CO₂ emissions can be achieved via single header. Finally, CO₂ purification and pressure drop are considered during CO₂ transportation in the total site CO₂ integration system's design. An algebraic approach called CO_2 utilisation and storage-problem table algorithm is proposed to obtain total site target for integration of CO_2 utilisation and storage. In conclusion, a new integrated methodology of CO₂ emission reduction for product supply chain and CO₂ end-of-pipe management has been successfully developed. This new methodology is expected to enable planners, policy makers or designers to plan and manage their CO_2 emissions reduction effectively as well as systematically planning for resource conservation.

ABSTRAK

Pembangunan proses bersepadu (PI) berdasarkan teknik grafik dan algebra untuk sasaran pelepasan karbon dioksida (CO₂), reka bentuk dan perancangan berdasarkan analisa jepit (PA) telah berkembang sejajar dengan perkembangan metodologi PI yang melibatkan pemuliharaan sumber termasuk haba, jisim, gas, kuasa dan elektrik. Metodologi pelengkap berasaskan PA yang telah dibangunkan sejak sepuluh tahun lepas menyediakan grafik dan pandangan visual yang mana penting untuk pemahaman konsep permasalahan reka bentuk dan perancangan bagi sistem pelepasan CO₂. Oleh itu, perancangan dan pengurusan pelepasan CO₂ yang komprehensif dan sistematik berasaskan PA dicadangkan dalam kajian ini bagi menyediakan pengamatan penting dan sistematik terhadap pengurangan pelepasan CO₂. Kajian ini memperkenalkan metodologi pengurangan pelepasan CO₂ menerusi produk rantai bekalan serta pengurusan akhir-paip pelepasan CO₂ melalui CO₂ seluruh tapak bersepadu. Pembangunan metodologi dilaksanakan menerusi produk minyak masak kelapa sawit. Pada mulanya, fasa titik panas pelepasan CO₂ iaitu fasa pelepasan CO₂ yang tertinggi dalam rantai bekalan dikenalpasti. Seterusnya, strategistrategi pengurangan CO₂ yang paling sesuai dan ekonomik dikenalpasti dan disaring berdasarkan hierarki pengurusan CO₂ sebagai panduan dan teknik penyaringan kos SHARPS. Pada peringkat ini, pelepasan CO₂ sebanyak 1,077 tan per tahun (t/t) dari 100 t/t asas produk minyak masak kelapa sawit telah berjaya dikurangkan kepada 402 t/t dengan anggaran pengurangan sebanyak 63% berdasarkan pelaksanaan strategi pengurangan pelepasan CO₂ yang mencapai sasaran tempoh pulangan balik (TPP ≤ 2 tahun) dan kos pelaburan (INV \leq USD 150,000). Pada langkah ketiga, baki daripada jumlah pelepasan CO₂ setelah metodologi pengurangan CO₂ dilaksanakan, dapat dikurangkan lagi dengan pengurusan akhir-paip pelepasan CO₂ yang mempertimbangkan tapak-tapak industri sebagai sumber pelepasan CO2 atau permintaan penggunaan CO₂. Metodologi CO₂ seluruh tapak bersepadu telah diperkenalkan untuk menyepadukan dan menggunakan pelepasan CO₂ dengan sepenuhnya di kalangan industri dan/atau loji-loji melalui sistem terusan tunggal dan pelbagai berpusat sebelum dihantar ke simpanan secara kekal dan sifar pelepasan CO_2 boleh dicapai menerusi sistem terusan tunggal. Akhirnya, proses ketulenan CO_2 dan susutan tekanan sepanjang pengangkutan CO₂ dalam reka bentuk sistem CO₂ seluruh tapak bersepadu telah dipertimbangkan. Pendekatan algebra penggunaan dan simpanan CO₂ masalah jadual algoritma telah diperkenalkan untuk mendapatkan sasaran seluruh tapak bagi penggunaan dan simpanan CO₂ bersepadu. Sebagai kesimpulan, kaedah bersepadu baru pengurangan pelepasan CO₂ untuk rantaian bekalan produk dan pengurusan akhir paip CO₂ telah berjaya dibangunkan. Metodologi baru ini dijangka dapat membolehkan perancang, pembuat dasar atau pereka untuk merancang dan mengurus pengurangan pelepasan CO₂ mereka dengan berkesan serta merancang pemuliharaan sumber dengan sistematik.

TABLE OF CONTENTS

CHAPTER	TITLE	PAGE
E	ECLARATION	ii
D	DEDICATION	iii
A	CKNOWLEDGEMENT	iv
A	BSTRACT	V
A	BSTRAK	vi
Т	ABLE OF CONTENTS	vii
L	IST OF TABLES	xii
L	IST OF FIGURES	xiv
L	IST OF ABBREVIATIONS	xvi
L	IST OF SYMBOLS	xix
I	IST OF APPENDIX	XX
1 I	NTRODUCTION	1
1	1 Introduction	1
1	.2 Problem Statement	6
1	.3 Research Objective	7
1	.4 Research Scope	8
1	5 Research Contribution	9
1	.6 Thesis Outline	10

2	LIT	ERAT	URE REV	VIEW	12
	2.1	Introd	luction		12
	2.2	Proce	ss Integra	tion based on Pinch Analysis	12
	2.3	CO ₂ H	Emission I	Management and Integration	16
		2.3.1	Supply	Chain for CO ₂ Management	18
		2.3.2	CO ₂ Mi	tigation in Industry	21
			2.3.2.1	Transportation Sector for CO ₂ Reduction	29
			2.3.2.2	Building CO ₂ Reduction Planning	30
			2.3.2.3	Process Plant for CO ₂ Reduction	31
			2.3.2.4	Industrial Site for CO2 Management	33
		2.3.3	End-of I	Pipe Solution for CO2 Management	35
			2.3.3.1	CO2 Capture and Storage Planning	36
			2.3.3.2	CO ₂ Utilisation	37
			2.3.3.3	Waste Management for CO ₂ Reduction	39
	2.4	PI-bas	sed on PA	CO ₂ reduction management	39
	2.5	Resea	urch Gap		44
3	ME	THOD	OLOGY		45
	3.1	Introd	luction		45
	3.2	Proble	em Backg	round	46
	3.3	Metho	odology D	Development	47
	3.4	Data	Collection	I	50
	3.5	Data	Analysis		51
4	CO	2 EMIS	SION RE	DUCTION FOR PRODUCT	
	SUI	PPLY C	CHAIN		52

4.1	Introduction	52	2

4.2	Problem background 52		
4.3	Metho	odology	53
	4.3.1	STEP 1: Specify Product Basis and Identify Supply Chain Phases	55
	4.3.2	STEP 2: Calculate CO ₂ Emission for Each Phases	55
	4.3.3	STEP 3: Draw CO ₂ Supply Chain Product Diagram and Identify Highest CO ₂ Emission Contributor	56
	4.3.4	STEP 4: Identify Potential CO ₂ Emission Reduction Strategy using CO ₂ Management Hierarchy	56
	4.3.5	STEP 5: Construct Investment versus CO ₂ Emission Reduction (ICO ₂ R) Plot	58
	4.3.6	STEP 6: Implement SHARPS to Select Cost- Effective Strategy	61
	4.3.7	STEP 7: Re-Draw CO ₂ Supply Chain Product Diagram	61
4.4	Case S	Study 1	62
	4.4.1	Palm Oil Product Supply Chain	62
	4.4.2	STEP 1: Specify Product Basis and Identify Supply Chain Phases	63
	4.4.3	STEP 2: Calculate CO ₂ Emission for Each Phases	65
	4.4.4	STEP 3: Draw CO ₂ Supply Chain Product Diagram and Identify Highest CO ₂ Emission Contributor	71
	4.4.5	STEP 4: Identify Potential CO ₂ Emission Reduction Strategy using CO ₂ Management Hierarchy	72
	4.4.6	STEP 5: Construct Investment versus CO_2 Emission Reduction (ICO ₂ R) Plot	75
	4.4.7	STEP 6: Implement SHARPS to Select Cost- Effective Strategy	81

ix

	4.4.8	STEP 7: Re-Draw CO ₂ Supply Chain Product Diagram	85
4.5	Case	Study 2	87
	4.5.1	Palm Oil Mill	87
	4.5.2	STEP 4: Identify Potential CO_2 Emission Reduction Strategy using CO_2 Management Hierarchy	87
	4.5.3	STEP 5: Construct Investment versus CO_2 Emission Reduction (ICO ₂ R) Plot	89
	4.5.4	STEP 6: Implement SHARPS to Select Cost- Effective Strategy	92
	4.5.5	STEP 7: Re-Draw CO ₂ Supply Chain Product Diagram	95
1.6	Concl	usion	96
р Lа 5.1	Introd	luction	99 99
5.1 5.2		em Background	99 100
5.3		odology	100
	5.3.1	Specify CUS Header for Allocation of CO_2 Sources and Demands	102
	5.3.2	Identify of CO ₂ Sources and Demands	104
	5.3.3	Construct CUS-PTA	105
5.4	Case	Study 3	110
	5.4.1	Scenario 1	111
	5.4.1 5.4.2	Scenario 1 Scenario 2	
			117
	5.4.2	Scenario 2	111 117 120 127

5

х

6	CO2 TOTAL SITE PLANNING WITH CONSIDERATION OF PURIFICATION AND			
	PRESSURE DROP			134
	6.1	Introductio	on	134
	6.2	Problem B	Background	135
	6.3	Methodolo	ogy	135
		6.3.1	STEP 1: Identify CO ₂ Sources and Demands	136
		6.3.2	STEP 2: Perform CUS-PTA	137
		6.3.3	STEP 3: Calculate Purification Process	137
		6.3.4	STEP 4: Calculate Pressure Drop and Identify Compressor	138
	6.4	Case Study	y 4	139
		6.4.1	STEP 1: Identify CO ₂ Sources and Demands	139
		6.4.2	STEP 2: Perform CUS-PTA	140
		6.4.3	STEP 3: Calculate Purification Process	141
		6.4.4	STEP 4: Calculate Pressure Drop and Identify Compressor	144
	6.5	Conclusion	n	146
7	CO	NCLUSION	AND RECOMMENDATION	148
	7.1	Summary		148
	7.2	Recommen	ndation	150
REFE	RENC	ES		152
Append	lix A			166-167

xi

LIST OF TABLES

TABLE NO	D. TITLE	PAGE
2.1	PI-based on PA methodology research area	15
2.2	Summary table for the publications in CO ₂ emission reduction	40
4.1	CO ₂ emission in palm plantation	66
4.2	Energy and materials used in palm oil mill	67
4.3	CO ₂ emission in palm oil mill	68
4.4	Energy utilisation in palm oil refinery	69
4.5	CO ₂ emission for transportation inter-phase supply chain	70
4.6	Summary of CO_2 emission at each of palm cooking oil supply chain phases	71
4.7	Fuel factor for steam production	73
4.8	Emission reduction strategies based on CO ₂ management hierarchy	74
4.9	Investment for each of reduction CO ₂ strategy	76
4.10	Investment and CO ₂ reduction for selected strategies	77
4.11	Gradient of each point in ICO ₂ R plot	80
4.12	Price and emission factor for energy source	80
4.13	Investment of strategies and payback period	81
4.14	TPP after strategy screening 2	82
4.15	Emission reduction strategies based on CO ₂ management hierarchy in palm oil mill	88
4.16	Potential CO ₂ reduction strategy for palm oil mill	89
4.17	Investment and CO ₂ reduction of the strategy	90
4.18	Gradient of each point in ICO ₂ R plot (case study 2)	92
4.19	TPP after strategies screening 1 (case study 2)	93
5.1	Illustrated CUS-PTA construction	107
5.2	Data for CO ₂ sources	110
5.3	Data for CO ₂ demands	111

5.4	CO ₂ sources and demands arrangement and header selection	112
5.5	CUS-PTA for Scenario 1	
		114
5.6	CUS-PTA for Scenario 2	118
5.7	CUS-PTA for CO_2 demand more than sources in H1	121
5.8	Final CUS-PTA for Scenario 3	124
5.9	CUS-PTA for CO_2 demand more than sources in H2	128
5.10	Final CUS-PTA for Scenario 4	129
6.1	Purity demand higher than purity header in CUS-PTA for	
	CO ₂ Total Site	141
6.2	CUS-PTA with purification	143
6.3	CUS-PTA with purification and pressure drop	145
6.4	Comparison CO ₂ Total Site with/without purification	147

LIST OF FIGURES

FIGURE NO.

TITLE

PAGE

1.1	Global GHG emission according to gas type (IPCC, 2014)	1
1.2	Proportion of CO_2 emission from energy sources (2014)	2
2.1	Composite Curves for minimum energy targeting (Klemeš et al., 2010)	13
2.2	Development of PI based on PA methodology in CO ₂ emission reduction	17
2.3	Energy Supply and Demand Composite Curves (Tan and Foo, 2007)	21
2.4	Energy supply composite curve for maximise coal usage (Lee et al., 2009)	23
2.5	The estimated total annual energy consumed for generating electricity in New Zealand in 2011 including the additional energy required for CCS operations to achieve zero carbon emissions (Walmsley et al., 2014)	25
2.6	Graphical procedure to determine compensatory renewable energy requirement (Tan et al., 2009)	26
2.7	RRMCC for minimised carbon emissions footprint (Lam et al., 2010)	28
2.8	Combined emissions Composite Curve for freight and passenger transport demand according to transport purpose and class in New Zealand for 2012, targeting up to 2050 (Walmsley et al., 2015)	29
2.9	Carbon footprint composite curves (Tjan et al., 2010)	32
2.10	Carbon management hierarchy (Munir et al., 2012)	33
2.11	Source Demand Curve to facilitate CO ₂ exchange and minimisation	34
2.12	CO ₂ utilisation by sectors	38
3.1	Process flow of the research	46
3.2	Framework of the study	49
4.1	CO ₂ emission reduction of a product supply chain	54
4.2	CO ₂ management hierarchy	57
4.3	Generic plot of ICO ₂ R	60
4.4	The Malaysia palm oil industry supply network (Choong and McKay, 2014)	63

4.5	Boundary system for palm cooking oil product supply chain	65
4.6	In and out diagram for palm oil mill (Kasivisvanathan et al., 2012)	67
4.7	In and out diagram for palm oil refinery (Haslenda and Jamaludin, 2011)	69
4.8	CO_2 emission palm cooking oil supply chain diagram	72
4.9	ICO_2R plot for potential CO_2 reduction strategies	78
4.10	The ICO_2R plot screening 1	83
4.11	The ICO_2R plot screening 2	84
4.12	The CO_2 reduction in palm oil refinery phase	86
4.13	ICO_2R plot for CO_2 reduction potential strategies in palm oil mill	91
4.14	The ICO ₂ R plot for palm oil CO ₂ reduction strategy screening	94
4.15	The CO ₂ reduction in palm oil mill phase	95
4.16	CO ₂ reduction in palm cooking oil supply chain after implemented CO ₂ reduction management	96
4.17	Reduced CO ₂ emission in palm cooking oil supply chain	97
5.1	Illustration of CO ₂ Total Site	101
5.2	Process flow for CUS-PTA methodology	103
5.3	Optimal network for CO ₂ Total Site Scenario 1	116
5.4	Optimal network for CO ₂ Total Site Scenario 2	119
5.5	Optimal network for CO ₂ Total Site Scenario 3	126
5.6	Optimal network for CO ₂ Total Site Scenario 4	131
6.1	Process flow of CO ₂ Total Site planning with parameters consideration	136
6.2	Block diagram for purification process	137
6.3	Location of CO ₂ sources and demand from furthers to nearest head to storage	140
6.4	Mass balance of the purification process	142
6.5	CUS design network with purifier and installation of compressor	146

LIST OF ABBREVIATIONS

Set	
i	- Index for supply chain phase
j	- Index for CO_2 reduction strategy
k	- Index for CO ₂ source
q	- Index for CO ₂ demand
Variable	
CO_2^{R}	- Value of CO ₂ emission reduction
ES_{CO2}	- CO_2 emission
F_{CO2}	CO_2 flowrate
FC-D	- Fresh CO ₂ flowrate to demand
FC-H1	- Fresh CO ₂ flowrate to header 1
F^D_{α}	- After purified flowrate
F^G	- Tail gas flowrate
F_{OG}	- Other gas flowrate
FP_{in}	- Feed flowrate to purify
F_T	- Flue gas flowrate
INV ^{after}	- Investment after SHARPS
$INV^{initial}$	- Investment before SHARPS
INV^{set}	- Desired investment
$INV^{strategy}$	- Individual investment for each of the strategy
m	- Gradient of strategy
P_{CO2}^{HI}	- CO ₂ purity of the header 1
P_{CO2}^{H2}	- CO ₂ purity of the header 2
$P^{ u}$	- Purified product purity
${\it Q}^{{\it base\ case}}$	- CO ₂ emission before reduction
$\widetilde{R}^{strategy}$	- Individual contribution of CO ₂ emission reduction for each of
	the strategy
$S^{implement}$	- CO ₂ emission reduction when a strategy is implemented
$TPP^{initial}$	- Initial total payback period
TPP^{set}	- Desired TPP
TPP^{after}	- Total payback period after SHARPS
Demonstern	
Parameter	Estimated conital cost (UCD/amit)
CC	- Estimated capital cost (USD/unit)
D Dt	- Demand
Dt	- Distance
Ε	Utilised amount of strategy proposed (result in CO ₂ emission
FF	reduction)
EF	- Emission factor

H1	-	Header 1
H2	-	Header 2
H1 - D	-	Header 1 to demand
H2-D	-	Header 1 to demand
H2-H1	-	Header 2 to Header 1
H1-H2	-	Header 1 to Header 2
$P_{CO2} R^{ER}$	-	CO ₂ purity
\mathbf{R}^{ER}	-	Recovery efficiency
S	-	Source
Х	-	Consumption activity
Other		
CC	_	Composite curve
CCC	_	Cost composite curve
CCS	-	Carbon capture and storage
CCU	-	Carbon capture and utilisation
CCUS	-	Carbon capture, utilisation and storage
CECR	-	Cost effective carbon reduction
CEPA	_	Carbon emission Pinch Analysis
CMH	-	Carbon management hierarchy
CO_2CC	-	Carbon dioxide composite curve
CO ₂ CC CSCA		Carbon storage cascade analysis
	-	č
CSCC	-	Carbon storage composite curve
CSPO	-	Certified sustainable palm oil
CUM	-	Cumulative
CUS-PTA	-	CO ₂ Utilisation and Storage–Problem Table Algorithm
EOR	-	Enhanced oil recovery
EROI	-	Energy return on energy investment
FiT	-	Feed-in-Tariff
GCA	-	Gas cascade analysis
GCC	-	Grand composite curve
GCCA	-	Generic carbon cascade analysis
GHG	-	Greenhouse gas
HEN	-	Heat exchanger network
HI	-	Heat integration
ICO ₂ R	-	Investment versus CO ₂ reduction
LCoE	-	Levelised cost of electricity
LIES	-	Locally integrated energy system
LP	-	Linear programming
MED	-	Ministry of Economic Development
PI	-	Process integration
PTA	-	Problem table algorithm
RCN	-	Resource conservation network
RE	-	Renewable energy
REC	-	Regional energy clustering
RESDC	-	Regional energy surplus deficit curve
RSPO	-	Roundtable on Sustainable Palm Oil
RRMCC	-	Regional resource management composite curve
SDC	-	Source demand curve
SHARPS	-	Systematic hierarchical approach for process screening
		2,200 mer an en eur approacht for process sereening

	٠	٠	٠
XV	1	1	1

SUGCC	-	Site utility grand composite curve
TS	-	Total site
TSCI	-	Total site CO ₂ integration
WAMPA	-	Waste management Pinch Analysis

LIST OF SYMBOLS

%	-	Percentage
ΔP_d	-	Pressure drop
°C	-	Degree celcius
D	-	Pipe diameter
ε	-	Roughness value
EF	-	Emission factor
$\mathbf{E}_{\mathbf{s}}$	-	Utilised amount
f	-	Friction factor
in	-	Inch
kg	_	Kilogram
km	-	Kilometre
kW	-	Kilowatt
L	_	Pipe length
m	-	Mass flow rate
Μ	-	Million
m^3	-	Meter cubic
m _n	-	Slope for each strategy
MPa	-	Megapascal
MWh	-	Megawatt hour
Re	-	Reynolds number
t	-	Tonne
TJ	-	Terajoule
у	-	year
П	-	Pi
ρ	-	Fluid density
Σ	-	Summation

LIST OF APPENDIX

APPENDIX

А

TITLE Publication PAGE

166

CHAPTER 1

INTRODUCTION

1.1 Introduction

Greenhouse gas (GHG) emission contributes the main cause of global climate warming and has received much attention in recent years due to its environmental, social, and economic impacts. Power plants, petroleum refineries, cement factories, steel plants, and chemical process industries are major contributors of GHG emission. Heightened global warming issues have led the governments, industries, businesses, and consumers becoming increasingly aware the importance of environmental conservation. Figure 1.1 indicates the global GHG emissions according to various types of gas in 2010 (IPCC, 2014).

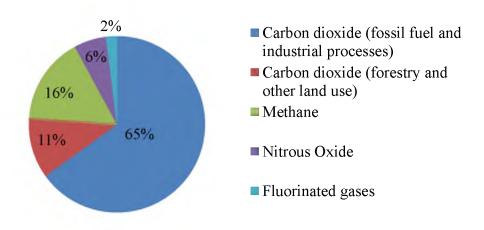


Figure 1.1: Global GHG emission according to gas type (IPCC, 2014)

 CO_2 emission contributed 76% of total GHG worldwide, mainly from the consumption of fossil fuel and industrial processes. Rapid economic growth increases the energy consumption, hence increases the emission. In 2014, China and The United States (US) ranked the top CO_2 emitters globally that includes CO_2 emissions from fossil fuel burning, cement production, and gas flaring (Boden et al., 2016). Yang and Chen (2014) have reported different proportions of CO_2 emission based on various energy sources as illustrated in Figure 1.2.

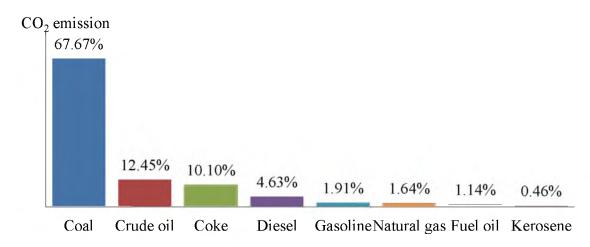


Figure 1.2: Proportion of CO₂ emission from energy sources (2014)

Energy source from burning coal contributed to the highest of total global CO_2 emission. The most widely used source for electricity production is coal due to its high energy content as well as its low price compared to others (Yang and Chen, 2014). However, electricity generation in Malaysia is mostly fossil-based, in particular natural gas and crude oil. In 2013, Malaysia's primary energy supply is natural gas (65.5%), crude oil (29.1%), hydropower (2.7%), coal and coke (1.9%), biodiesel (0.5%) and biomass (0.3%) (Suruhanjaya Tenaga, 2015). Electricity generation and industrial sectors that used coal as an energy source has contributed more than half (52%) of total GHG emissions in 1990 to 2013 (US EPA, 2015). The high energy consumption however, is mainly contributed from major losses in electricity generation, transmission, and distribution (US DOE, 2015) meanwhile about 70% of total electricity production has been used to satisfy the industrial demand that is being attributed for steel industries, chemicals, cement, and automobiles production (Olivier *et al.*, 2014).

Due to Malaysia's CO₂ emission scenario, Renewable Energy Act 2011 and Sustainable Energy Development Authority Act 2011 have been introduced to encounter this. On top of that, the Feed-in-Tariff (FiT) system was initiated in 2011 as one of the sustainable policy and act as a supporting measure to accelerate renewable energy growth (Aghamohammadi *et al.*, 2016). Under a FiT, utilities are legally contracted to purchase electricity generated from any renewable sources such as biomass, small hydro, biogas and solar power at a fixed rate and period as outlined in the law. Therefore under this scheme, every kilowatt-hour (kWh) exported to the main grid, a guaranteed payment is made to the FiT energy developer.

The development and implementation of various methodologies and strategies through Process Integration (PI) could provide a sustainable alternative to control the rising emissions. PI is a set of methodologies used for the conservation of resources and reduction of harmful emissions via integration of several parts of processes, coupled processes, and processes within Total Sites (Klemeš *et al.*, 1997) or industrial areas within a region (Perry *et al.*, 2008). PI-based on Pinch Analysis (PA) has emerged as an insight-based tool for the design of energy efficient process system during the oil crisis of the 1970s (Linnhoff and Flower, 1978). PA was first developed for the optimal design of heat exchanger networks (HEN) by Hohmann (1971) and further developed by Linnhoff and Flower (1978) – see Klemeš *et al.* (2014) for detail description.

The term 'Pinch' represents the thermodynamic limit for the maximum heat recovery of a process. PA has successfully emerged as an effective design tool for various resource conservation systems, such as optimal hydrogen system (Alves and Towler, 2002), heat and power (Perry *et al.*, 2008), extended Water Pinch and wastewater minimisation networks (Wan Alwi *et al.*, 2008), design gas network (Wan Alwi *et al.*, 2009), Total Site Heat Integration (TSHI) (Varbanov and Klemeš, 2010), biomass supply chain (Lam *et al.*, 2010) and Power Pinch (Wan Alwi *et al.*, 2012). Over forty-five years, PI-based on PA methodology has a remarkable progress and has evolved into a suite of graphical, algebraic, and numerical tools used in the conservation of various types of resources.

Increasing CO₂ emission reduction in energy generation and utilisation has received growing attention due to its negative environmental impacts and there is a need to address global sustainability challenges for future works. To date, extensive researches have been done on the development of conceptual methodologies and optimisation tools for efficient energy management, sustainable process design and retrofit addressing the environmental concerns. These are aimed to increase the profitability and sustainability of industrial activities. Systematic planning and management of emissions are one of the sustainable potential alternatives to address the increasing anthropogenic CO₂ emissions from various major industries, including power plants, chemical plants, refineries, cement production factories, and iron and steel industries (Kravanja *et al.*, 2015). This issue has led to extensive research into proper planning and policy formulation for the past decades and remains a need for effective approaches that can systematically plan CO₂ emission reduction through PI-based on PA methodology.

Palm oil production is among the biggest vegetable oil production contributing to 35.5% of total annual production in the world, and Malaysia is the second largest producer and exporter of palm oil (Hosseini *et al.*, 2013). According to Reijnders and Huijbregts (2008) the CO₂ emissions contributed by palm oil industry is estimated in the range of 2.8 to 19.7 kg CO₂ equivalent per kg palm oil. The main sources were from land conversion (60%), methane emissions from palm oil mill effluent treatment via anaerobic digestion (13%), fossil-fuel combustion (13%) and fertilizer use (4%) (Hassan et al., 2011). Roundtable on Sustainable Palm Oil (RSPO) has developed a set of environmental and social criteria which palm oil supply chain companies must comply in order to produce Certified Sustainable Palm Oil (CSPO). It is important to ensure the credibility of the sustainability claim at the end of the palm oil supply chain. Based on CSPO, there is a need to develop systematic tools to evaluate CO₂ emissions throughout palm oil supply chain, from raw materials, until the transport to consumer. There are numerous graphical, algebraic, and numerical tools that have been used for PI-based on PA CO₂ emission reduction and planning. Tan and Foo (2007) were the first who proposed PI-based on PA for CO₂ emission reduction planning. They introduced a graphical Carbon Emission Pinch Analysis (CEPA) approach to satisfy both regional energy demand and region-specified emission limits in the power sector. The CEPA methodology was extended to include CO₂ emission reduction for region electricity sector (Atkins *et al.*, 2010), chemical processes (Tjan *et al.*, 2010), industrial park CO₂ planning (Munir *et al.*, 2012), CO₂ emission reduction for New Zealand transport sector (Walmsley *et al.*, 2015), waste management Pinch Analysis (Ho *et al.*, 2015), and Greenhouse Emission Pinch Analysis (Kim *et al.*, 2016). It has also been further extended for end-of-pipe CO₂ reduction management and planning through carbon capture and storage (CCS) planning (Ooi *et al.*, 2013) and CO₂ storage planning problems (Diamante *et al.*, 2014).

Despite numerous methodologies have been developed for CO_2 emission planning and management, yet the optimal strategies to plan and manage CO_2 emissions efficiently have not been adequately investigated. Therefore, this study proposes a comprehensive and systematic CO_2 emission reduction planning and management methodologies using PI-based on PA to provide systematic, visualisation advantages as well as introduce a coherent planning and management strategies for CO_2 emission reduction from the view of product supply chain and end-of-pipe CO_2 emission solution. Product supply chain that consists of multiple levels of product development may contribute a myriad amount of CO_2 emission. On top of that, growing power and fuel usage due to increasing industrial demands could also contribute to the largest share of emissions if there is no systematic planning or management implemented in future.

1.2 Problem Statement

Product supply chain involved multiple processes in a product development, which emitted a lot of CO_2 emission throughout several phases starting from material acquisition phase to product disposal phase. It is crucial to reduce CO_2 emission for all phases of the supply chain, but this is optional and yet to be determined either the options are economically feasible or infeasible. Established methodologies of PI-based on PA have contributed substantial reduction in CO_2 emission, however most of the methodologies proposed focussing on a single process without aiming for the emission hotspot phase of the supply chain. Furthermore, the cost-effective screening technique to prioritise emission reduction options as to reduce CO_2 emission within a set of economic criteria such as investment limit target or payback period are not yet explored.

Meanwhile, CO_2 capture, utilisation, and storage have emerged as an end-ofpipe solution for CO_2 emission. Remaining CO_2 emission from any process in product supply chain would be further reduced by integrating CO_2 sources and demand in Total Site CO_2 utilisation and storage. The integrated methodology for end-of-pipe CO_2 emission is still limited and most of the works concentrated on CCS development. The emission reduction planning to maximise the recovery of CO_2 capture as well as to minimise the CO_2 to be sent for storage via centralise header system has not yet been considered.

The overview of the problem statement for this research can be summarised as below.

Given that CO_2 emission are being produced throughout a product supply chain. It is desired to determine which phase of the product supply chain that contributes to the highest CO_2 emission (hotspot) and design suitable strategies based on CO_2 emission management hierarchy consisting of conservation, source switching, and sequestration to reduce the CO_2 emissions based on economic criteria. In addition, there is a need to develop new targeting technique to determine the maximum amount of CO_2 emitted by the industries (CO_2 sources) which can be captured, purified and utilised by certain industries as CO_2 demands. The remaining CO_2 which is not possible to be utilised will be send to the storage reservoir as a final end-of-pipe solution. The exchange of CO_2 will be done via centralised headers with the end of the header is the CO_2 storage. The goal is to minimise as much as possible the amount of CO_2 send to the storage by maximising CO_2 utilisation, and at the same time this can also lead to the reduction of pure CO_2 requirement.

1.3 Research Objective

The main objective of this research is to develop PI-based on PA methodologies for CO_2 emission reduction planning and management. The developed methodologies are insight-based graphical and algebraic approaches. The research objectives are as follows:

(1) To develop a holistic framework for CO_2 emission reduction planning and management throughout a product supply chain and CO_2 Total Site.

(2) To develop a systematic cost screening technique for CO_2 emission reduction strategy in a supply chain phase.

(3) To develop a targeting methodology for maximising CO_2 utilisation in an industrial site and minimise fresh CO_2 consumption and emission by considering with and without CO_2 purification and transportation.

1.4 Research Scope

The scope of this research includes:

- Developing a holistic framework for CO₂ emission reduction planning and management:
 - (i) Identify supply chain phases of a product target and set a boundary for CO₂ emission analysis.
 - (ii) Estimate CO₂ emission of each of the supply chain phase
 - (iii) Develop a graphical tool to identify the product supply chain emission hotspot phase.
 - (iv) Test the methodology on the case study
- (2) Developing a systematic screening technique for CO₂ emission reduction strategies:
 - (i) Identify available CO₂ emission reduction strategies and cost of investment.
 - (ii) Estimate potential CO₂ reduction for each of the strategy.
 - (iii) Construct a plot of selected emission reduction strategies with hierarchical guideline combination for heat and electrical energy source to meet desired investment limit or payback period (cost effective).
 - (iv) Perform cost-effective screening using Systematic Hierarchy Approach for Resilient Process Screening (SHARPS).
- (3) Developing a targeting methodology for Total Site CO₂ utilisation and storage:
 - (i) Introduce a new concept of centralising header system to integrate
 CO₂ sources and demands within a certain area.
 - (ii) Identify data needed to be collected for the analysis.
 - (iii) Develop targeting methodology for Total Site CO₂ utilisation and storage.
 - (iv) Test the methodology on a case study.

- (4) Developing a targeting methodology for maximising CO₂ utilisation considering purification and transportation.
 - (i) Study the purification technology of CO_2 and the important parameter for CO_2 transportation.
 - (ii) Identify data needed to be collected for the analysis.
 - (iii) Develop targeting methodology for Total Site CO₂ utilisation and storage considering purification and pressure drop.
 - (iv) Test the methodology on a case study.

1.5 Research Contribution

Four main contributions have emerged from this work. A new methodology for CO_2 reduction planning throughout product supply can equip product planners, designers or policymakers with valuable insights into CO_2 emission reduction. A combination of cost-effective screening graphical approach and a hierarchical guideline can systematically plan the CO_2 emission reduction options and emission can be managed whilst still keeping within the investment and emission reduction target.

Besides, remaining CO_2 emission from any process throughout the supply chain can be further reduced in CO_2 Total Site planning. This methodology could integrate CO_2 emission sources (supply) with CO_2 demands (CO_2 utilisation) using a centralised header system before it is being sent into storage permanently. As an overview, this research involves CO_2 emission reduction planning and management from the beginning of CO_2 emission of product development to CO_2 end-of-pipe solution (e.g CO_2 storage).

1.6 Thesis Outline

This thesis consists of seven chapters. Chapter 1 provides an introduction to the research background including an overview of global emissions, research problem statements, research objectives, and scope of research. A review on the development of PI-based on PA in CO_2 emission planning and management involving previous works is presented in Chapter 2, which ends with a highlight on state-of-the-art PI-based on PA in CO_2 emission reduction planning and management.

Chapter 3 presents an overall framework for the study. Subsequent chapters describe the step-wise methodology construction used to develop the CO_2 emission reduction planning and management methodologies in this study.

Chapter 4 describes a methodology development for CO_2 emission planning and management throughout a product supply chain. A combination of graphical and heuristic approaches that extend upon SHARPS was proposed to evaluate the CO_2 emissions of a product throughout its supply chain and to select the most suitable, and economically viable CO_2 reduction strategies. The methodology was developed within the desired investment criteria that could still yield economic and environmental benefits to improve the profitability and sustainability. Case Study 1 and 2 were demonstrated with modified data from literature study to validate the developed methodology.

In Chapter 5, methodology development of CO_2 integration targeting technique for optimal targeting CO_2 utilisation and storage was developed. The methodology involved the integration of CO_2 captured to utilise across industries and/or plants that are linked via centralised headers before the remaining CO_2 are permanently stored. This methodology was demonstrated throughout Case Study 3.

Chapter 6 describes methodology development for targeting CO_2 transportation via pipeline header system. Purification process for high purity CO_2 demand and pressure drop along CO_2 transportation were considered to further

improve the design of a centralised header system for CO_2 utilisation, and storage. This methodology was further demonstrated in Case Study 4.

Finally, Chapter 7 concludes overall findings for this study and proposed a few recommendations for future works.

REFERENCES

- Acquaye, A. A., Wiedmann, T., Feng, K., Crawford, R. H., Barrett, J., Kuylenstierna, J., Duffy, A. P., Koh, S. C. L. and McQueen-Mason, S. (2011). Identification of 'Carbon Hot-Spots' and Quantification of GHG Intensities in the Biodiesel Supply Chain Using Hybrid LCA and Structural Path Analysis. Environmental Science & Technology, 45, 2471-2478.
- Aghamohammadi, N., Reginald, S., Shamiri, A., Zinatizadeh, A., Wong, L. and Nik Sulaiman, N. (2016). An Investigation of Sustainable Power Generation from Oil Palm Biomass: A Case Study in Sarawak. *Sustainability*, 8, 416.
- Al-Mayyahi, M. A., Hoadley, A. F. A. and Rangaiah, G. P. (2013). A Novel Graphical Approach to Target CO₂ Emissions for Energy Resource Planning and Utility System Optimization. *Applied Energy*, 104, 783-790.
- Alves, J. J. and Towler, G. P. (2002a). Analysis of Refinery Hydrogen Distribution Systems. Ind. Eng. Chem. Res., 41, 5759-5769.
- Alves, J. J. and Towler, G. P. (2002b). Analysis of Refinery Hydrogen Distribution Systems. *Industrial & Engineering Chemistry Research*, 41, 5759-5769.
- Andiappan, V., Tan, R. R., Aviso, K. B. and Ng, D. K. S. (2015). Synthesis and optimisation of biomass-based tri-generation systems with reliability aspects. *Energy*, 89, 803-818.
- Atkins, M. J., Morrison, A. S. and Walmsley, M. R. W. (2010). Carbon Emissions Pinch Analysis (CEPA) for Emissions Reduction in The New Zealand Electricity Sector 2010. *Applied Energy*, 87, 982-987.
- Aziz, N. A., Wahab, D. A., Ramli, R. and Azhari, C. H. (2016). Modelling and optimisation of upgradability in the design of multiple life cycle products: a critical review. *Journal of Cleaner Production*, 112, 282-290.
- Bandyopadhyay, S. (2015). Careful with Your Energy Efficiency Program! It May 'Rebound'! *Clean Technologies Environmental Policy*, 17, 1381-1382.

- Bandyopadhyay, S., Chaturvedi, N. D. and Desai, A. (2014). Targeting Compression Work for Hydrogen Allocation Networks. *Industrial & Engineering Chemistry Research*, 53, 18539-18548.
- Bandyopadhyay, S. and Desai, N. B. (2016). Cost Optimal Energy Sector Planning: A Pinch Analysis Approach. *Journal of Cleaner Production*, 136, Part B, 246-253.
- Boden, T., Andres, B. and Marland, G. (2016). Global, Regional, and National Fossil-Fuel CO₂ Emissions. Oak Ridge, Tenn., U.S.A.: Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory.
- Boix, M., Montastruc, L., Azzaro-Pantel, C. and Domenech, S. (2015). Optimization Methods Applied to The Design of Eco-Industrial Parks: A Literature Review. *Journal of Cleaner Production*, 87, 303-317.
- Cengel, Y. A. and Cimbala, J. M. (2006). *Fluid Mechanics. Fundamental and Applications.* (1st ed). New York, USA: McGraw Hill.
- Chaturvedi, N. D. and Bandyopadhyay, S. (2012). Minimization of Storage Requirement in A Batch Process using Pinch Analysis. *Computer Aided Chemical Engineering*, 31, 670-674.
- Chaturvedi, N. D. and Bandyopadhyay, S. (2015). Targeting Aggregate Production Planning for an Energy Supply Chain. *Industrial & Engineering Chemistry Research*, 54, 6941-6949.
- Chew, I. M. L. and Foo, D. C. Y. (2009). Automated Targeting for Inter-Plant Water Integration. *Chemical Engineering Journal*, 153, 23-36.
- Chin, M. J., Poh, P. E., Tey, B. T., Chan, E. S. and Chin, K. L. (2013). Biogas from palm oil mill effluent (POME): Opportunities and challenges from Malaysia's perspective. *Renewable and Sustainable Energy Reviews*, 26, 717-726.
- Chiodo, V., Maisano, S., Zafarana, G. and Urbani, F. (2017). Effect of pollutants on biogas steam reforming. *International Journal of Hydrogen Energy*, 42, 1622-1628.
- Choong, C. G. and McKay, A. (2014). Sustainability in the Malaysian palm oil industry. *Journal of Cleaner Production*, 85, 258-264.
- Crilly, D. and Zhelev, T. (2008). Emissions Targeting and Planning: An Application of CO₂ Emissions Pinch Analysis (CEPA) to The Irish Electricity Generation Sector. *Energy*, 33, 1498-1507.

- Crilly, D. and Zhelev, T. (2010). Further Emissions And Energy Targeting: An Application of CO₂ Emissions Pinch Analysis to The Irish Electricity Generation Sector. *Clean Technologies Environmental Policy* 12, 177-189.
- Čuček, L., Klemeš, J. J., Varbanov, P. S. and Kravanja, Z. (2015). Significance of Environmental Footprints for Evaluating Sustainability and Security of Development. *Clean Technologies and Environmental Policy*, 17, 2125-2141.
- Cuéllar-Franca, R. M. and Azapagic, A. (2015). Carbon Capture, Storage and Utilisation Technologies: A Critical Analysis and Comparison of Their Life Cycle Environmental Impacts. *Journal of CO₂ Utilization*, 9, 82-102.
- Dakota Gasification Company. (2016). CO₂ Pipeline. USA. Retrieved on 03.06.2016, from www.dakotagas.com/Gas Pipeline/CO₂ Pipeline
- Dhole, V. R. and Linnhoff, B. (1993). Total Site Targets for Fuel, Co-Generation, Emission and Cooling. *Computers & Chemical Engineering*, 17, 101–109.
- Diamante, J. A. R., Tan, R. R., Foo, D. C. Y., Ng, D. K. S., Aviso, K. B. and Bandyopadhyay, S. (2013). A Graphical Approach for Pinch-Based Source– Sink Matching and Sensitivity Analysis in Carbon Capture and Storage Systems. *Industrial & Engineering Chemistry Research*, 52, 7211-7222.
- Diamante, J. A. R., Tan, R. R., Foo, D. C. Y., Ng, D. K. S., Aviso, K. B. and Bandyopadhyay, S. (2014). Unified Pinch Approach for Targeting of Carbon Capture and Storage (CCS) Systems with Multiple Time Periods and Regions. *Journal of Cleaner Production*, 71, 67-74.
- Dong, H., Geng, Y., Xi, F. and Fujita, T. (2013). Carbon footprint evaluation at industrial park level: A hybrid life cycle assessment approach. Energy Policy, 57, 298-307.
- El-Halwagi, M. M., Gabriel, F. and Harell, D. (2003). Rigorous Graphical Targeting for Resource Conservation via Material Recycle or Reuse Networks. *Industrial* & Engneering Chemistry Research, 42, 4319-4328.
- El-Halwagi, M. M. and Manousiouthakis, V. (1989). Synthesis of Mass Exchange Networks. *AIChE Journal*, 35, 1233-1244.
- Fais, B., Sabio, N. and Strachan, N. (2016). The Critical Role of The Industrial Sector in Reaching Long-Term Emission Reduction, Energy Efficiency and Renewable Targets. *Applied Energy*, 162, 699-712.
- Fenghour, A., Wakeham, W. A. and Vesovic, V. (1998). The Viscosity of Carbon Dioxide. Journal of Physical and Chemical Reference Data, 27, 31-44.

- Foo, C. Y. and Manan, Z. A. (2006). Setting The Minimum Utility Gas Flowrate Targets using Cascade Analysis Technique. *Industrial & Engineering Chemistry Research*, 45, 5986-5995.
- Foo, C. Y., Manan, Z. A., Yunus, R. M. and Aziz, R. A. (2004). Synthesis of Mass Exchange Network for Batch Processes—Part I: Utility Targeting. *Chemical Engineering Science*, 59, 1009-1026.
- Foo, D. C. Y. (2015). Automated targeting model for aggregate planning in production and energy supply chains. *Clean Technologies and Environmental Policy*, 18, 1405-1414.
- Foo, D. C. Y., Tan, R. R., Lam, H. L., Abdul Aziz, M. K. and Klemeš, J. J. (2013). Robust Models for The Synthesis of Flexible Palm Oil-Based Regional Bioenergy Supply Chain. *Energy*, 55, 68-73.
- Foo, D. C. Y., Tan, R. R. and Ng, D. K. S. (2008). Carbon and Footprint-Constrained Energy Planning using Cascade Analysis Technique. *Energy*, 33, 1480-1488.
- Fox, R. W. and McDonald, A. T. (1992). *Introduction to Fluid Mechanics*. (4th ed). New York: Wiley.
- Friedler, F. (2010). Process Integration, Modelling and Optimisation for Energy Saving and Pollution Reduction. *Applied Thermal Engineering*, 30, 2270-2280.
- Fu, R., Feldman, D., Margolis, R., Woodhouse, M. and Ardani, K. (2017). U.S. Solar Photovoltaic System Cost Benchmark: Q1 2017. Retrieved on 12.02.2018 2018, from https://www.nrel.gov/docs/fy17osti/68580.pdf
- Geerlings, H. and Zevenhoven, R. (2013). CO₂ Mineralization—Bridge Between Storage and Utilization of CO₂. Annual Review of Chemical and Biomolecular Engineering, 4, 103-117.
- Gharaie, M., Panjeshahi, M. H., Kim, J.-K., Jobson, M. and Smith, R. (2015).
 Retrofit Strategy for The Site-Wide Mitigation of CO₂ Emissions in The Process Industries. *Chemical Engineering Research and Design*, 94, 213-241.
- Ghorbani, A., Rahimpour, H. R., Ghasemi, Y., Zoughi, S. and Rahimpour, M. R. (2014). A Review of Carbon Capture and Sequestration in Iran: Microalgal Biofixation Potential in Iran. *Renewable and Sustainable Energy Reviews*, 35, 73-100.
- Giannoulakis, S., Volkart, K. and Bauer, C. (2014). Life Cycle and Cost Assessment of Mineral Carbonation for Carbon Capture and Storage in European Power Generation. *International Journal of Greenhouse Gas Control*, 21, 140-157.

- Global CCS Institute (2014). The Global Status of CCS: 2014, Summary Report. Melbourne, Australia.
- GPSA. (1998). Fluid Flow and Piping. Gas Processing Supplier Association Engineering Data Book. (11 ed). Tulsa, OK, USA: GPSA.
- Harkin, T., Hoadley, A. and Hooper, B. (2010). Reducing The Energy Penalty of CO₂ Capture and Compression using Pinch Analysis. *Journal of Cleaner Production*, 18, 857-866.
- Hasan, M. M. F., Boukouvala, F., First, E. L. and Floudas, C. A. (2014). Nationwide, Regional, and Statewide CO₂ Capture, Utilization, and Sequestration Supply Chain Network Optimization. *Industrial & Engineering Chemistry Research*, 53, 7489-7506.
- Haslenda, H. and Jamaludin, M. Z. (2011). Industry to Industry By-products Exchange Network towards zero waste in palm oil refining processes. *Resources, Conservation and Recycling*, 55, 713-718.
- Hassan, M. N. A., Jaramillo, P. and Griffin, W. M. (2011). Life cycle GHG emissions from Malaysian oil palm bioenergy development: The impact on transportation sector's energy security. *Energy Policy*, 39, 2615-2625.
- Hassiba, R. J., Al-Mohannadi, D. M. and Linke, P. (2017). Carbon dioxide and heat integration of industrial parks. *Journal of Cleaner Production*, 155, 47-56.
- Hidayat, S. and Marimin. (2014). Agent Based Modeling for Investment and operational risk considerations in palm oil supply chain. *Int. J Sup. Chain. Mgt*, 3, 34-60.
- Ho, W. S., Hashim, H., Lim, J. S., Lee, C. T., Sam, K. C. and Tan, S. T. (2017).
 Waste Management Pinch Analysis (WAMPA): Application of Pinch Analysis for greenhouse gas (GHG) emission reduction in municipal solid waste management. *Applied Energy*, 185, 1481-1489.
- Ho, W. S., Khor, C. S., Hashim, H., Macchietto, S. and Klemeš, J. J. (2013). SAHPPA: a novel power pinch analysis approach for the design of off-grid hybrid energy systems. *Clean Technologies and Environmental Policy*, 16, 957-970.
- Ho, W. S., Tan, S. T., Hashim, H., Lim, J. S. and Lee, C. T. (2015). Waste Management Pinch Analysis (WAMPA) for Carbon Emission Reduction. *Energy Procedia*, 75, 2448-2453.

- Hohmann, E. (1971). *Optimum Networks for Heat Exchange*. PhD Thesis, University of Southern California, Los Angeles.
- Hosseini, S. E., Wahid, M. A. and Aghili, N. (2013). The scenario of greenhouse gases reduction in Malaysia. *Renewable and Sustainable Energy Reviews*, 28, 400-409.
- Hsu, C.-W., Kuo, T.-C., Chen, S.-H. and Hu, A. H. (2013). Using DEMATEL to develop a carbon management model of supplier selection in green supply chain management. *Journal of Cleaner Production*, 56, 164-172.
- Huaman, R. N. E. and Jun, T. X. (2014). Energy Related CO₂ Emissions and The Progress on CCS projects: A Review. *Renewable and Sustainable Energy Reviews*, 31, 368-385.
- Ilyas, M., Lim, Y. and Han, C. (2012). Pinch Based Approach to Estimate CO₂ Capture and Storage Retrofit and Compensatory Renewable Power for South Korean Electricity Sector. *Korean Journal of Chemical Engineering*, 29, 1163-1170.
- IPCC (2014). Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, USA.
- Jia, X., Wang, S., Li, Z., Wang, F., Tan, R. R. and Qian, Y. (2018). Pinch analysis of GHG mitigation strategies for municipal solid waste management: A case study on Qingdao City. *Journal of Cleaner Production*, 174, 933-944.
- Jia, X. P., Liu, C. H. and Qian, Y. (2010). Carbon Emission Reduction using Pinch Analysis. *IEEE*, 8-11.
- Kaewmai, R., Aran, H.-K. and Musikavong, C. (2012). Greenhouse Gas Emissions of Palm Oil Mills in Thailand. *International Journal of Greenhouse Gas Control*, 11, 141-151.
- Kasivisvanathan, H., Ng, R. T. L., Tay, D. H. S. and Ng, D. K. S. (2012). Fuzzy Optimisation for Retrofitting A Palm Oil Mill into A Sustainable Palm Oil-Based Integrated Biorefinery. *Chemical Engineering Journal*, 200-202, 694-709.
- Khan, M. A., Khan, M. Z., Zaman, K. and Naz, L. (2014). Global Estimates of Energy Consumption and Greenhouse Gas Emissions. *Renewable and Sustainable Energy Reviews*, 29, 336-344.

- Kim, M., Kim, M., Pyo, S., Lee, S., Ghorbannezhad, P., Foo, D. C. Y. and Yoo, C. (2016). Greenhouse Emission Pinch Analysis (GEPA) for Evaluation of Emission Reduction Strategies. *Clean Technologies and Environmental Policy*, 18(5), 1381–1389.
- Klaarenbeeksingel, F. W. (2009). Greenhouse Gas Emissions From Palm Oil Production Literature Review and Proposals from The RSPO Working Group on Greenhouse Gases. Brinkmann Consult 39. Retrieved on 21 October 2013, from http://www.rspo.org/sites/default/files/Report-GHG-October2009.pdf
- Klemeš, J. J., Dhole, V. R., Raissi, K., Perry, S. J. and Puigjaner, L. (1997).
 Targeting and Design Methodology for Reduction of Fuel, Power and CO₂ on Total Site. *Applied Thermal Engineering*, 7, 993–1003.
- Klemeš, J. J., Friedler, F., Bulatov, I. and Varbanov, P. S. (2010). Sustainability in The Process Industries: Integration and Optimization. New York, USA: McGraw-Hill
- Klemeš, J. J., Varbanov, P. S., Wan Alwi, S. R. and Manan, Z. A. (2014). Process Integration and Intensification. Saving Energy, Water and Resources. Berlin, Germany: de Gruyter.
- Kongsager, R., Napier, J. and Mertz, O. (2012). The carbon sequestration potential of tree crop plantations. *Mitigation and Adaptation Strategies for Global Change*, 18, 1197-1213.
- Kostevšek, A., Petek, J., Čuček, L., Klemeš, J. J. and Varbanov, P. S. (2015). Locally Integrated Energy Sectors Supported by Renewable Network Management within Municipalities. *Applied Thermal Engineering*, 89, 1014-1022.
- Kravanja, Z., Varbanov, P. S. and Klemeš, J. J. (2015). Recent Advances in Green Energy and Product Productions, Environmentally Friendly, Healthier and Safer Technologies and Processes, CO₂ Capturing, Storage and Recycling, and Sustainability Assessment in Decision-Making. *Clean Technologies and Environmental Policy*, 17, 1119-1126.
- Lam, H. L., How, B. S. and Hong, B. H. (2015). *Green supply chain toward* sustainable industry development. (409-449).
- Lam, H. L., Varbanov, P. and Klemeš, J. J. (2010). Minimising Carbon Footprint of Regional Biomass Supply Chains. *Resources, Conservation and Recycling*, 54, 303-309.

- Lambert, M. (2017). Biogas A significant contribution to decarbonising gas markets. Oxford Institute for Energy Studies. Retrieved on 12.01 2018, from https://www.oxfordenergy.org/wpcms/wp-content/uploads/2017/06/Biogas-Asignificant-contribution-to-decarbonising-gas-markets.pdf
- Lawal, M., Wan Alwi, S. R. and Manan, Z. A. (2012). A Systematic Method for Cost Effective Carbon Emission Reduction in Buildings. *Journal of Applied Sciences*, 12, 1186-1190.
- Lee, K.-H. (2011). Integrating carbon footprint into supply chain management: the case of Hyundai Motor Company (HMC) in the automobile industry. *Journal of Cleaner Production*, 19, 1216-1223.
- Lee, S. C., Sum Ng, D. K., Yee Foo, D. C. and Tan, R. R. (2009). Extended Pinch Targeting Techniques for Carbon-Constrained Energy Sector Planning. *Applied Energy*, 86, 60-67.
- Leung, D. Y. C., Caramanna, G. and Maroto-Valer, M. M. (2014). An Overview of Current Status of Carbon Dioxide Capture and Storage Technologies. *Renewable and Sustainable Energy Reviews*, 39, 426-443.
- Li, Q., Chen, Z. A., Zhang, J. T., Liu, L. C., Li, X. C. and Jia, L. (2016a). Positioning and Revision of CCUS Technology Development in China. *International Journal of Greenhouse Gas Control*, 46 282-293.
- Li, Q., Wei, Y.-N. and Chen, Z.-A. (2015). Water-CCUS nexus: challenges and opportunities of China's coal chemical industry. *Clean Technologies and Environmental Policy*, 10.1007/s10098-015-1049-z.
- Li, Z., Jia, X., Foo, D. C. Y. and Tan, R. R. (2016b). Minimizing Carbon Footprint using Pinch Analysis: The Case of Regional Renewable Electricity Planning in China. *Applied Energy*, 184, 1051-1062.
- Liew, P. Y., Wan Alwi, S. R., Varbanov, P. S., Manan, Z. A. and Klemeš, J. J. (2013). Centralised Utility System Planning for A Total Site Heat Integration Network. *Computers & Chemical Engineering*, 57, 104-111.
- Linnhoff, B. and Dhole, V. R. (1993). Targeting for CO₂ emissions for Total Sites. *Chemical Engineering & Technology* 16, 252-259.
- Linnhoff, B. and Flower, J. R. (1978). Synthesis of Heat Exchanger Networks: I. Systematic Generation of Energy Optimal Networks. *AIChE Journal*, 24, 633-642.

- Linnhoff, B., Townsend, D. W., Boland, D., Hewitt, G. F., Thomas, B. E. A., Guy, A. R. and Marsland, R. H. (1982). A User Guide on Process Integration for The Efficient Use of Energy. Rugby, UK: Inst Chem Eng.
- Liu, W. H., Alwi, S. R. W., Hashim, H., Muis, Z. A., Klemeš, J. J., Rozali, N. E. M., Lim, J. S. and Ho, W. S. (2017). Optimal Design and Sizing of Integrated Centralized and Decentralized Energy Systems. *Energy Procedia*, 105, 3733-3740.
- Majozi, T., Brouckaert, C. J. and Buckley, C. A. (2006). A Graphical Technique for Wastewater Minimisation in Batch Processes. *J Environ Manage*, 78, 317-29.
- Manan, Z. A., Wan Alwi, S. R., Sadiq, M. M. and Varbanov, P. (2014). Generic Carbon Cascade Analysis Technique for Carbon Emission Management. *Applied Thermal Engineering*, 70, 1141-1147.
- Manan, Z. A., Wan Alwi, S. R. and Ujang, Z. (2006). Water Pinch Analysis for An Urban System: A Case Study on The Sultan Ismail Mosque at The Universiti Teknologi Malaysia (UTM). *Desalination*, 194, 52-68.
- Matthew, B., Aman, S., Charlotte, W., Amy, H. and Jessica, L. (2011). Electricityspecific emission factors for grid electricity. Available: https://ecometrica.com/assets/Electricity-specific-emission-factors-for-gridelectricity.pdf.
- Melzer, L. S. (2012). *Carbon Dioxide Enhanced Oil Recovery (CO₂ EOR) Factors Involved in Adding Carbon Capture, Utilization and Storage (CCUS) in EOR.*
- Meylan, F. D., Moreau, V. and Erkman, S. (2015). CO₂ utilization in the perspective of industrial ecology, an overview. *Journal of CO*₂ Utilization, 12, 101-108.
- Middleton, R. S., Clarens, A. F., Liu, X., Bielicki, J. M. and Levine, J. S. (2014).
 CO₂ Deserts: Implications of Existing CO₂ Supply Limitations for Carbon Management. Environmental Science & Technology, 48, 11713-11720.
- Ministry of Economic Development (2013). Ministry of Economic Development (MED), New Zealand Energy Strategy.
- Mohammad Rozali, N. E., Wan Alwi, S. R., Abdul Manan, Z., Klemeš, J. J. and Hassan, M. Y. (2013a). Process integration of hybrid power systems with energy losses considerations. *Energy*, 55, 38-45.
- Mohammad Rozali, N. E., Wan Alwi, S. R., Abdul Manan, Z., Klemeš, J. J. and Hassan, M. Y. (2014). Optimal sizing of hybrid power systems using power pinch analysis. *Journal of Cleaner Production*, 71, 158-167.

- Mohammad Rozali, N. E., Wan Alwi, S. R., Ho, W. S., Manan, Z. A. and Klemeš, J. J. (2016). Integration of diesel plant into a hybrid power system using power pinch analysis. *Applied Thermal Engineering*, 105, 792-798.
- Mohammad Rozali, N. E., Wan Alwi, S. R., Manan, Z. A., Klemeš, J. J. and Hassan, M. Y. (2013b). Process Integration techniques for optimal design of hybrid power systems. *Applied Thermal Engineering*, 61, 26-35.
- Muhammad, A., Takuya, O. and Takao, K. (2015). Design and Analysis of Energy-Efficient Integrated Crude Palm Oil and Palm Kernel Oil Processes. *Journal of the Japan Institute of Energy*, 94, 143-150.
- Munir, S. M., Abdul Manan, Z. and Wan Alwi, S. R. (2012). Holistic Carbon Planning for Industrial Parks: A Waste-To-Resources Process Integration Approach. *Journal of Cleaner Production*, 33, 74-85.
- Ng, D. K. S. (2010). Automated Targeting for The Synthesis of an Integrated Biorefinery. *Chemical Engineering Journal*, 162, 67-74.
- Noothout, P., Wiersma, F., Hurtado, O., Roelofsen, P. and Macdonald, D. (2013). *CO*₂ *Pipeline Infrastucture*. UK: IEAGHG.
- NRE. (2014). *MYCarbon GHG Reporting Guidelines*. Malaysia: Ministry of Natural Resources and Environment (NRE) Malaysia
- United Nations Development Programme (UNDP) Malaysia. Retrieved on 8.02.2018, from http://www.mycarbon.gov.my/web/ugc/attachment/1/MYCarbonGHGGuidelin esVer15-535468959cea5.pdf
- Olivier, J. G. J., Janssens-Maenhout, G., Muntean, M. and Peters, J. A. H. W. (2014).
 Trends in Global CO₂ Emission. The Hague: PBL Netherlands Environmental Assessment Agency; Ispra: European Commission, Joint Research Centre.
- Ooi, R. E. H., Foo, D. C. Y., Ng, D. K. S. and Tan, R. R. (2013). Planning of Carbon Capture and Storage wth Pinch Analysis Techniques. *Chemical Engineering Research and Design*, 91 2721–2731.
- Patthanaissaranukool, W., Polprasert, C. and Englande, A. J. (2013). Potential Reduction of Carbon Emissions from Crude Palm Oil Production Based on Energy and Carbon Balances. *Applied Energy*, 102, 710-717.
- Pearce, J. K., Kirste, D. M., Dawson, G. K. W., Farquhar, S. M., Biddle, D., Golding,S. D. and Rudolph, V. (2015). SO₂ Impurity Impacts on Experimental and

Simulated CO₂–Water–Reservoir Rock Reactions at Carbon Storage Conditions. *Chemical Geology*, 399, 65-86.

- Pereira, L. G., Chagas, M. F., Dias, M. O. S., Cavalett, O. and Bonomi, A. (2014). Life cycle assessment of butanol production in sugarcane biorefineries in Brazil. *Journal of Cleaner Production*, 10.1016/j.jclepro.2014.01.059.
- Perry, S., Klemeš, J. and Bulatov, I. (2008). Integrating Waste and Renewable Energy to Reduce The Carbon Footprint of Locally Integrated Energy Sectors. *Energy*, 33, 1489-1497.
- Popa, V., Ion, I. and Popa, C. L. (2016). Thermo-Economic Analysis of an Air-to-Water Heat Pump. *Energy Proceedia*, 85, 408-415.
- Prakash, R. and Shenoy, U. V. (2005). Targeting and Design of Water Networks for Fixed Flowrate and Fixed Contaminant Load Operations. *Chemical Engineering Science*, 60, 255-268.
- Prasit, B. and Maneechot, P. (2014). Performance of Steam Production by Biomass Combustor for Agro-industry. *Energy Procedia*, 56, 298-308.
- Priya, G. S. K. and Bandyopadhyay, S. (2013). Emission Constrained Power System Planning: A Pinch Analysis Based Study of Indian Electricity Sector. *Clean Technologies and Environmental Policy*, 15, 771-782.
- Reijnders, L. and Huijbregts, M. A. J. (2008). Palm oil and the emission of carbonbased greenhouse gases. *Journal of Cleaner Production*, 16, 477-482.
- Rubin, E. S., Davison, J. E. and Herzog, H. J. (2015). The cost of CO₂ capture and storage. *International Journal of Greenhouse Gas Control*, 40, 378-400.
- Saari, M. Y., Dietzenbacher, E. and Los, B. (2016). The impacts of petroleum price fluctuations on income distribution across ethnic groups in Malaysia. *Ecological Economics*, 130, 25-36.
- Sahu, G. C., Bandyopadhyay, S., Foo, D. C. Y., Ng, D. K. S. and Tan, R. R. (2014). Targeting for Optimal Grid-Wide Deployment of Carbon Capture and Storage (CCS) Technology. *Process Safety and Environmental Protection*, 92, 835-848.
- Shenoy, U. V. (2010). Targeting and design of energy allocation networks for carbon emission reduction. *Chemical Engineering Science*, 65, 6155-6168.
- Shi, Q. and Lai, X. (2013). Identifying the underpin of green and low carbon technology innovation research: A literature review from 1994 to 2010. *Technological Forecasting and Social Change*, 80, 839-864.

- Singhvi, A. and Shenoy, U. V. (2002). Aggregate Planning in Supply Chains by Pinch Analysis. *Chemical Engineering Research and Design*, 80, 597-605.
- Srivastava, S. K. (2007). Green supply-chain management: A state-of-the-art literature review. *International Journal of Management Reviews*, 9, 53-80.
- Stichnothe, H. and Schuchardt, F. (2011). Life cycle assessment of two palm oil production systems. *Biomass and Bioenergy*, 35, 3976-3984.
- Sulaiman, M. A., Oni, A. O. and Fadare, D. A. (2012). Energy and Exergy Analysis of a Vegetable Oil Refinery. *Energy and Power Engineering*, 04, 358-364.
- Suruhanjaya Tenaga (2015). Malaysia Energy Statistics Handbook Putrajaya, Malaysia: Suruhanjaya Tenaga (Energy Commission).
- Tan, R. R. and Foo, D. C. Y. (2007). Pinch Analysis Approach to Carbon-Constrained Energy Sector Planning. *Energy*, 32, 1422-1429.
- Tan, R. R., Sum Ng, D. K. and Yee Foo, D. C. (2009). Pinch Analysis Approach to Carbon-Constrained Planning for Sustainable Power Generation. *Journal of Cleaner Production*, 17, 940-944.
- Tan, Y. L., Manan, Z. A. and Foo, D. C. Y. (2007). Retrofit of Water Network with Regeneration Using Water Pinch Analysis. *Process Safety and Environmental Protection*, 85, 305-317.
- Tiew, B. J., Shuhaimi, M. and Hashim, H. (2012). Carbon Emission Reduction Targeting Through Process Integration and Fuel Switching with Mathematical Modeling. *Applied Energy*, 92, 686-693.
- Tjan, W., Tan, R. R. and Foo, D. C. Y. (2010). A Graphical Representation of Carbon Footprint Reduction for Chemical Processes. *Journal of Cleaner Production*, 18, 848-856.
- US DOE. (2014). *Buying an Energy-Efficient Electric Motor*. U.S. Department of Energy. Retrieved on 12.12.2017 2017, from https://www.energy.gov/sites/prod/files/2014/04/f15/mc-0382.pdf
- US DOE. (2015). Independent Statistics & Analysis. US Department of Energy.
 Washington, DC: Energy Information Administration. Retrieved on 03.11.2015 2015, from http://www.eia.gov/tools/faqs/faq.cfm?id=447&t=1
- US EPA. (2011). Emission Factors for Greenhouse Gas Inventories. Unirted States Environmental Protection Agency. Retrieved on 12.02.2015 from http://www.epa.gov/climateleadership/documents/emission-factors.pdf

- US EPA. (2015). *Greenhouse Gas Inventory Data Explorer*. Environmental Protection Agency. Retrieved on 03.11.2015, from http://www3.epa.gov/climatechange/ghgemissions/inventoryexplorer/
- Varbanov, P. S. and Klemeš, J. J. (2010). Total Sites Integrating Renewables With Extended Heat Transfer and Recovery. *Heat Transfer Engineering*, 31, 733-741.
- Varbanov, P. S. and Seferlis, P. (2014). Process Innovation through Integration Approaches at Multiple Scales: A Perspective. *Clean Technologies and Environmental Policy*, 16, 1229-1234.
- Walmsley, M. R. W., Walmsley, T. G., Atkins, M. J., Kamp, P. J. J. and Neale, J. R. (2014). Minimising Carbon Emissions and Energy Expended for Electricity Generation in New Zealand through to 2050. *Applied Energy*, 135, 656-665.
- Walmsley, M. R. W., Walmsley, T. G., Atkins, M. J., Kamp, P. J. J., Neale, J. R. and Chand, A. (2015). Carbon Emissions Pinch Analysis for Emissions Reductions in The New Zealand Transport Sector Through to 2050. *Energy*, 92, 569-576.
- Wan Alwi, S. R., Aripin, A. and Manan, Z. A. (2009a). A Generic Graphical Approach for Simultaneous Targeting and Design of A Gas Network. *Resources, Conservation and Recycling*, 53, 588-591.
- Wan Alwi, S. R. and Manan, Z. A. (2006). SHARPS: A New Cost-Screening Technique to Attain Cost-Effective Minimum Water Network. *AIChE Journal*, 11, 3981-3988.
- Wan Alwi, S. R. and Manan, Z. A. (2008). Generic Graphical Technique for Simultaneous Targeting and Design of Water Networks. *Industrial & Engineering Chemistry Research*, 47, 2762-2777.
- Wan Alwi, S. R., Manan, Z. A., Samingin, M. H. and Misran, N. (2008). A holistic framework for design of cost-effective minimum water utilization network. *Journal of Environmental Management*, 88, 219-52.
- Wan Alwi, S. R., Mohammad Rozali, N. E., Abdul-Manan, Z. and Klemeš, J. J. (2012). A Process Integration Targeting Method for Hybrid Power Systems. *Energy*, 44, 6-10.
- Wan Alwi, S. R., Tamar Jaya, M. A. and Manan, Z. A. (2009b). Cost–Effective Retrofit of A Palm Oil Refinery using Pinch Analysis. *Jurnal Teknologi*, 51, 29–40.

- Wang, Y., Zheng, M., Liu, G., Zhang, D. and Zhang, Q. (2016). Graphical Method for Simultaneous Optimization of The Hydrogen Recovery and Purification Feed. *International Journal of Hydrogen Energy*, 41, 2631-2648.
- Wang, Y. P. and Smith, R. (1994). Wastewater Minimization. Chemical Engineering Science., 49, 981-1006.
- Wetenhall, B., Race, J. M. and Downie, M. J. (2014). The Effect of CO₂ Purity on the Development of Pipeline Networks for Carbon Capture and Storage Schemes. *International Journal of Greenhouse Gas Control*, 30, 197-211.
- Witkowski, A., Majkut, M. and Rulik, S. (2014). Analysis of pipeline transportation systems for carbon dioxide sequestration. *Archives of Thermodynamics*, 35.
- Wong, S. (2013). CO₂ Compression and Transportation to Storage Reservoir (Module 4).
- Wong, W. H., Foo, D. C. Y. and Tan, R. R. (2011). Chronologically Constrained Composite Curves for Carbon Constrained Agricultural Planning. *Biomass and Bioenergy*, 35, 1716-1720.
- Yang, J. and Chen, B. (2014). Carbon Footprint Estimation of Chinese Economic Sectors Based on A Three-Tier Model. *Renewable and Sustainable Energy Reviews*, 29, 499-507.
- Yang, M., Feng, X. and Liu, G. (2016). A Unified Graphical Method for Integration of Hydrogen Networks with Purification Reuse. *Chinese Journal of Chemical Engineering*, 24, 891-896.
- Zhang, M. and Guo, Y. (2014). A comprehensive model for regeneration process of CO 2 capture using aqueous ammonia solution. *International Journal of Greenhouse Gas Control*, 29, 22-34.
- Zhang, Q., Feng, X., Liu, G. and Chu, K. H. (2011). A Novel Graphical Method for The Integration of Hydrogen Distribution Systems with Purification Reuse. *Chemical Engineering Science*, 66, 797-809.
- Zhelev, T. K. and Ntlhakana, L. (1999). Energy-Environment Closed-Loop Through Oxygen Pinch. Computer and Chemical Engineering, 23, 79-84.
- Zhelev, T. K. and Semkov, K. A. (2004). Cleaner Flue Gas and Energy Recovery Through Pinch Analysis. *Journal of Cleaner Production*, 12, 165-170.
- Zhenmin, L. (2003). Pinch Analysis of Hydrogen System in Refineries. Computer Aided Chemical Engineering, 952-955.