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ABSTRACT 

 

 

 

 

 

Federal Aviation Administration (FAA) is actively conducting research and 

development for unleaded aviation gasoline (AVGAS) transition for almost 20 years. 

Recent research with 200 unleaded blends and full-scale engine tests on 45 high-

octane unleaded blends has not found a “drop-in” replacement for AVGAS. In this 

study, analysis of compatibility via optimisation of Lycoming O-320 engine fuelled 

with blends of RON 97, RON 98, RON 100 and AVGAS was carried out. This is to 

determine the compatibility, usability and safety of motor gasoline fuel to be used as 

aviation fuels using the response surface methodology (RSM). Vapor lock (VL) and 

carburettor icing (CI) analyses were conducted using principal component analysis 

(PCA). ASTM D7826 was used as a guideline in the evaluation process. The engine 

was run under varied engine speed of 2000-2700 RPM. Brake horsepower (BHP), 

brake thermal efficiency (BTHE), brake specific fuel consumption (BSFC), exhaust 

gas temperature (EGT), relative knock index (RKI), carbon dioxide (CO2), carbon 

monoxide (CO), unburned hydrocarbon (UHC) and nitrogen oxide (NOx) were 

recorded during the experiments. Response surface equations were developed to 

predict the values of output parameters. Analysis of variance was carried out to 

observe the most significant parameters affecting the responses. Optimisation was 

performed using the RSM optimisation of desirability. The next objective of the 

study was to measure the VL and CI tendencies of selected fuels by the application 

of factor analysis known as PCA. Study considered sixteen variables for VL and CI 

assessments each, using the selected and calculated fuel properties. Twenty-three 

aviation fuels’ data from literatures were collected. Model equations explaining the 

VL and CI tendencies of the aviation fuels were derived, and their respective factor 

scores were calculated. The model was applied to the 14 fuels in this study and their 

respective factor scores were calculated. All the fuels were ranked using the factor 

score from the best to worst. RSM results indicated that when the engine was run 

with a speed of 2300 rpm, RON 98 fuel gave optimum solution. The corresponding 

values of BHP, BTHE, BSFC, EGT, RKI, CO2, CO, UHC and NOx were 146.37 Hp, 

28.1%, 0.2792 kg/kW-hr, 375.58 ℃, 58.26%, 7.34%, 7.12%, 233.66 ppm and 51.83 

ppm respectively. The desirability of 0.717 for RSM optimisation was obtained. 

Factor analysis results showed that PCA indicated cumulative variance of 86.77% 

and 86.78% for VL and CI respectively. Best VL and CI tendencies was shown by 

RON 98 with factor score of -0.64278 and -0.1982 respectively. The findings showed 

that motor gasolines (MOGAS) RON 97, RON 98 and RON 100 were able to 

outperform the commercial AVGAS in terms of VL and CI. The study concluded 

that MOGAS has a great ability to outperform AVGAS in terms of performance, 

detonation, emission, vapor lock and carburettor icing.  
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ABSTRAK 

 

 

 

 

Federal Aviation Administration (FAA) melaksanakan penyelidikan dan 

pembangunan secara aktif selama 20 tahun untuk peralihan gasolin penerbangan 

(AVGAS) tanpa plumbum. Penyelidikan terbaru dengan 200 campuran tanpa 

plumbum dan ujian enjin berskala penuh pada 45 campuran tanpa plumbum tinggi 

tidak menemui penggantian "drop-in" untuk AVGAS. Dalam kajian ini, analisis 

keserasian melalui pengoptimuman enjin Lycoming O-320 telah dikendalikan 

menggunakan campuran bahan api RON 97, RON 98, RON 100 dan AVGAS. Ini 

adalah untuk menentukan keserasian, kebolehgunaan dan keselamatan bahan bakar 

petrol motor untuk digunakan sebagai bahan api penerbangan menggunakan kaedah 

sambutan permukaan (RSM). Analisa pengunci wap (VL) dan pengaisan karburetor 

(CI) dilaksanakan menggunakan analisa komponen utama (PCA). ASTM D7826 

digunakan sebagai garis panduan dalam proses penilaian. Enjin dikendalikan di 

bawah kelajuan berbeza dari 2000-2700 RPM. Kuasa brek enjin (BHP), kecekapan 

terma brek (BTHE), penggunaan bahan api khusus brek (BSFC), suhu gas ekzos 

(EGT), indeks relatif ketukan (RKI), karbon dioksida (CO2), karbon monoksida 

(CO), hidrokarbon tidak terbakar (UHC) dan nitrogen oksida (NOx) direkodkan 

semasa eksperimen. Persamaan sambutan permukaan telah dihasilkan untuk 

meramalkan nilai parameter pengeluaran. Analisa varians telah dijalankan untuk 

melihat parameter yang paling ketara yang memberi kesan kepada respon. 

Pengoptimuman dilakukan berdasarkan kecenderungan pengoptimuman RSM. 

Objektif kajian seterusnya adalah untuk mengukur kecenderungan VL dan CI bahan 

api terpilih menggunakan analisis faktor dikenali sebagai PCA. Kajian menilai enam 

belas pemboleh ubah untuk penilaian VL dan CI, menggunakan sifat-sifat bahan api 

yang dipilih dan dikira. Dua puluh tiga data bahan api penerbangan dari literatur 

telah dikumpulkan. Persamaan model yang menjelaskan kecenderungan VL dan CI 

dari bahan api penerbangan diperoleh, dan skor faktor masing-masing telah dikira. 

Model ini digunakan untuk 14 bahan api dalam kajian ini dan skor faktor telah dikira. 

Semua bahan api disenaraikan dengan menggunakan skor faktor dari yang terbaik 

hingga terburuk. Keputusan RSM menunjukkan bahawa apabila enjin dijalankan 

dengan kelajuan 2300 rpm, bahan api RON 98 memberikan penyelesaian yang 

optimum. Nilai-nilai sepadan BHP, BTHE, BSFC, EGT, RKI, CO2, CO, HC dan 

NOx didapati masing-masing 146.37 hp, 28.1%, 0.2792 g/kW-hr, 375.58 ℃, 58.26%, 

7.34%, 7.12%, 233.66 ppm dan 51.83 ppm. Kecendurangan 0.717 untuk 

pengoptimuman RSM telah diperolehi. Keputusan analisis faktor menunjukkan 

bahawa PCA menerangkan 86.77% dan 86.78% daripada varians terkumpul masing-

masing untuk VL dan CI. Kecenderungan VL dan CI terbaik ditunjukkan oleh RON 

98 dengan skor faktor masing-masing -0.64278 and -0.1982. Penemuan 

menunjukkan bahawa RON 97, RON 98 dan RON 100 mampu mengatasi AVGAS 

komersial dari segi VL dan CI. Kajian ini menyimpulkan MOGAS mempunyai 

keupayaan besar untuk mengatasi prestasi AVGAS dari segi persembahan, ketukan, 

emisi,  pengunci wap dan pengaisan karburetor. 
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CHAPTER 1 

 

 

 

INTRODUCTION 

 

 

 

  

Approximately 230,000 piston-powered aircrafts worldwide rely on 100 low 

lead (100LL) Aviation Gasoline (AVGAS) for safe operation (Unleaded AVGAS 

Transition Aviation Rulemaking Committee, 2012a, 2012b). AVGAS is a specially 

blended grade of gasoline for use in aircraft engines of the piston type with 

distillation range normally within 30°C to 200°C (Energy Commission, 2015). But, 

in reality AVGAS has high levels of Tetraethyl Lead (TEL) (ASTM International, 

2017b; Esch, Funke, and Roosen, 2010; Jonathon, 2011; M. Thom and Atwood, 

2011). TEL is an additive which is added in aviation fuels to assist on anti-knocking 

(Atwood and Rodgers, 2014; Energy Commission, 2015; M. Thom and Atwood, 

2011). Aircraft engines operate at higher power settings and temperatures and are 

prone to engines knock and this is the main reason why the TEL continuation as an 

additive in AVGAS (Jabiru Aircraft Pty Ltd, 2015). Introduction of 100 “low-lead” 

(100LL) AVGAS, which had the maximum allowable lead content reduced from 

4.22 to 2.11 grams of lead per gallon has reduced the emissions of TEL (Lyons et al., 

2016).  

 

TEL additive in AVGAS, mainly for octane boosting and valve recession 

avoidance, can cause serious health impacts, including neurological effects in 

children that prompt behavioural issues, learning deficiencies and lowered IQ 

(Centre for Disease Control and Prevention, 2017). Lead content in the blood, bone, 

and tissues, if it is not promptly discharged, influences the kidneys, liver, sensory 

system, and blood-forming organs (Lyons et al., 2016). Lead is viewed as a human 

cancer-causing agent. Human introduction to lead happens fundamentally through 

breathing which leads to serious health problems. Lead concentrations of 10 µg per 

decilitre or more has been identified as a “level of concern” to human health by the 
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The Centres for Disease Control (CDC) and the World Health Organization (WHO) 

and has not been changed since 1991 (Gerberding, Falk, Rabb, and Brown, 2004). 

Specialists now utilize the term “a reference level” instead of the term “level of 

concern” of 5 µg for each decilitre to recognize youngsters with blood lead levels 

that are much higher than most children’s levels. This new level is based on the U.S. 

population of children ages 1-5 years who are in the highest 2.5% of children when 

tested for lead in their blood (Centre for Disease Control and Prevention, 2017).  

 

Friends of the Earth (FOE) filed a ''Petition for Rulemaking Seeking the 

Regulation of Lead Emissions From General Aviation Aircraft Under Clean Air Act 

(CAA)"(Friends of the Earth, 2016) to make a finding that lead discharged from 

piston-powered aircrafts using AVGAS jeopardizes the health of humans. FOE 

suggested the standard evaluation for lead emission from piston-powered aircrafts 

using AVGAS should be carried out. FOE said if the chairman of Environmental 

Protection Agency (EPA) trusts that incompetent data exists to make such a finding, 

start a research to study natural effects of lead discharge, including effects to people, 

creatures and environments under the CAA and issue a public report about the 

discoveries of the investigation and research (Environmental Protection Agency, 

2010a).  Consequently, in October 2010, EPA announced a revised lead National Air 

Ambient Quality Standard (NAAQS) to 0.15 µg (Environmental Protection Agency, 

2010a). Figure 1.1 depicts the AVGAS grade in the general aviation market and the 

corresponding TEL content. 

 
Figure 1.1 AVGAS grade and TEL content (Unleaded AVGAS Transition 

Aviation Rulemaking Committee, 2012a) 
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In December 2014, EPA issued a proposed rulemaking in which it reaffirmed 

its function to give expanded health security to kids and other people prone to the 

hazard against a variety of unfavourable health impacts, neurological impacts in kids, 

including neurocognitive and neurobehavioral impacts related to lead 

(Environmental Protection Agency, 2017a). The EPA currently is serious about 

issuing a proposed finding on the rulemaking and related materials on lead emissions 

from aircraft engines using leaded AVGAS. This proposed finding will then undergo 

public notice and comment. After evaluating comments on the proposal, final 

determination will be issued in 2019 (Esler, 2015).  

 

Responding to the urgent concerns by the FOE, EPA and general aviation 

groups, Unleaded AVGAS Transition Aviation Rulemaking Committee (UAT ARC) 

was sanctioned on January 31, 2011, by the Federal Aviation Administration (FAA) 

to research and organize the move to an unleaded AVGAS (Unleaded AVGAS 

Transition Aviation Rulemaking Committee, 2012a, 2012b). Research concentrated 

on the advancement of unleaded AVGAS has been going for a considerable length of 

time. Right now, the FAA is proceeding with an assessment program to recognize an 

appropriate unleaded substitution for AVGAS 100LL (Esler, 2015).  

 

UAT ARC (Unleaded AVGAS Transition Aviation Rulemaking 

Committee, 2012a, 2012b) in its final report of unleaded AVGAS findings and 

recommendations identified the following problems that must be addressed in any 

effort for the transition of the piston-powered aviation sector to an unleaded 

AVGAS; 

 

a) Unleaded fuel replacement that addresses the issues and meets the mandatory 

requirements of piston aviation engines does not exist at present.  

b) No program exists that can organize and encourage the assessment, 

certification, deployment and effect of a piston aviation engine fuel 

substitution of AVGAS.  

c) No market driven reason exists to move to a substitution fuel because of the 

constrained size of the AVGAS market, decreasing interest, special nature of 
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AVGAS, safety, risk, and the cost required in an endorsement and approval 

process.  

d) No FAA strategy or test methodology exists to empower piston aviation engine 

evaluation and approval of an unleaded replacement fuel.  

e) There is no institutionalized technique for conveying to the business and end-

clients the effects postured by a proposed fuel. 

 

Several recommendations were outlined by UAT ARC (Unleaded AVGAS 

Transition Aviation Rulemaking Committee, 2012a, 2012b) ; 

 

a) Assessment of the suitability of selected unleaded fuels on the aviation engine, 

performance, emissions and economic evaluations.   

b) Centralized testing of possible unleaded fuels at the FAA William J. Hughes 

Technical Centre. 

c) Include a FAA audit board with the specialized personnel from general 

aviation industry. 

d) An industry-government collaboration referred to as the Piston Aviation Fuels 

Initiative (PAFI). 

 

In response to the recommendations set by the UAT ARC (Unleaded 

AVGAS Transition Aviation Rulemaking Committee, 2012a, 2012b), FAA 

formed Piston Aviation Fuels Initiative (PAFI) (Unleaded AVGAS Transition 

Aviation Rulemaking Committee, 2012b). PAFI with direct supervision from 

Coordinating Research Council (CRC) of FAA evaluated 245 fuels, selecting 45 

of the best evaluated fuels and by further evaluating the 45 fuels in a full-scale 

engine testing. Surprisingly, none of the fuels could match all the performance 

regulations of 100LL AVGAS (Unleaded AVGAS Transition Aviation 

Rulemaking Committee, 2012a, 2012b). Various periods of airplane testing were 

proposed, and 2019 is the time estimated for distribution of American Society for 

Testing Materials (ASTM) details for the unleaded substitution fuel. In spite of the 

fact that there are determinations for a 100 octane "very low lead" (VLL) AVGAS 

(ASTM, 2017) that brings down the lead content by around 20% with respect to 

AVGAS 100LL, it gives the idea that AVGAS 100LL will be the most commonly 
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used fuel. This situation will continue to exist until detailed assessment on the 

unleaded AVGAS can be financially accessible and commercially safe and 

successful (Lyons et al., 2016).  

 

 

 

 

1.1 Problem Statement 

 

One possible technique for eliminating the effect of TEL emissions caused by 

general aviation was recognized; which is to make unleaded Motor Gasoline 

(MOGAS) accessible as another option to leaded AVGAS. In any case, unleaded 

MOGAS is a current, appropriate substitute for AVGAS. Piston aviation engines can 

work on a lower octane evaluated fuel, given that the aircraft is approved to run on 

MOGAS (Lycoming, 2018; Whittaker, 2001). To date 70,000 Supplemental Type 

Certificates (STC)s have been issued for aircraft modification for the usage of 

MOGAS and the results have shown that MOGAS is “better for internal engine parts 

and fuel systems as compared to AVGAS 100LL” (Cloche, 2010). When MOGAS is 

used in lower rated octane engines, it was seen that fewer spark-plug fouling issues 

occur with less valve sticking as compared to when these engines are pumped with 

AVGAS 100LL. According to EAA test reports, “engines running on MOGAS have 

better extended life and more time between overhauls” (Cloche, 2010). Not only is 

MOGAS is an efficient and unleaded fuel which when used in a modified engine like 

Continental O-200 ensures safe and smooth flights, but it’s also cost effective and 

cheaper than AVGAS 100LL. In the long run, as the production of MOGAS exceeds 

that of AVGAS 100LL, it will be readily available for its usage in aircrafts, powering 

almost 70-80% of general aviation fleet (Cloche, 2010). 

  

While there are no safety issues related with using a higher-octane rating, 

utilization of a fuel with very low octane rating gives safety risk issue. FAA (Federal 

Aviation Administration, 2006), European Aviation Safety Agency (EASA) (Esch et 

al., 2010) and Cessna Textron Aviation (Cessna Textron Aviation, 2010) raised 

serious concerns on the use of MOGAS in aviation. Material incompatibility of the 
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fuel system, danger of phase separation, vapor lock due to increased vapour pressure, 

carburettor icing due to raised enthalpy of evaporation, reduced energy content and 

alcohol in MOGAS red-flagged the issue. Apart from engine compatibility issues on 

the usage of MOGAS in aviation, emissions profile of MOGAS when used in 

aviation engines raise concerns. Emissions from aircraft piston engines are not 

considered as a significant problem in comparison to the total emissions. Globally 

there have not been any efforts to consider emission certification for piston engine 

aircrafts because data about piston engine aircraft emissions performance is almost 

non-existent (Rindlisbacher, 2007a; Yacovitch et al., 2016).   

 

Despite the issues on MOGAS usage in aviation, the aviation community has 

accepted MOGAS to be a sustainable solution for “low compression low octane rated 

piston powered aircraft engine”. It has to be convinced that MOGAS in aviation is 

already happening as around 10% of piston aviation fuel usage is MOGAS (Lyons et 

al., 2016). In the long run, as the production of MOGAS exceeds that of AVGAS 

100LL, it will be readily available for its usage in aircrafts, powering almost 70-80% 

of general aviation fleet (Cloche, 2010). Information that the Experimental Aircraft 

Association (EAA) produced from their Cessna 150 flights (Jonathon, 2011) and 

FAA (Gallagher, 1998) comprehensively tested has demonstrated that MOGAS is 

able to give satisfactory operational safety in their piston-engine. To support this, 

Australia, Bangladesh, Canada, New Zealand, Holland, Ireland, Malta, United Arab 

Emirates (UAE) and United Kingdom (UK) via civil aviation authority, allow the use 

of MOGAS (Beard, 1984; Canada, 1993; Canteenwalla, Imray, Earle, and Chishty, 

2017; Civil Aviation Authority United Kingdom, 2016; Civil Aviation Safety 

Authority Australia, 2007; European Aviation Safety Agency, 2007; Irish Aviation 

Authorithy, 2014; Jack Stanton, 2007; Light Aircraft Association, 2015; Majlis, 

1999; Transport Malta, 2009).   

 

The Civil Aviation Authority of Malaysia (CAAM), previously known as the 

Department of Civil Aviation of Malaysia (DCAM) in its airworthiness notice dated 

01 April 1987, made nine points on MOGAS usage in piston-powered aircrafts in 

Malaysia and conclusively said that, “taking all the facts into consideration the 

CAAM decided that applications for the utilization of MOGAS in aviation engines 
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will not be evaluated or mandated in Malaysia unless supported by the aircraft 

manufacturer or a research organisation who will be required to present appropriate 

technical data” (Civil Aviation Authority of Malaysia, 1987). Realizing the huge 

potential of unleaded MOGAS in aviation engines in terms of economy and 

environment, necessity of providing complete data in terms of performance, 

detonation, emissions, vapor lock and carburettor icing characteristics within the 

climatic envelope of Malaysia (Civil Aviation Authority of Malaysia, 1987) is vital 

and extremely beneficial to the country.  

 

 

 

 

1.2 Objectives  

 

This study aims to determine the compatibility of using locally made motor 

gasoline fuels in aviation engine which specifically focused on the following 

objectives: 

 

a. To characterise the physical and chemical composition of tested fuels in this 

work to be compared to the base reference fuel and to develop a parametric 

optimisation modelling of each tested fuel on the performance, detonation and 

emissions responses by employing Response Surface Methodology (RSM).  

b. To determine vapour lock and carburettor icing tendencies of the tested fuels by 

employing Factor Analysis of the Principal Component Analysis (PCA) with 

comparative analysis from experimental data.   

 

 

 

 

1.3 Scopes of Research 

 

The research is subjected to several scopes and limitations due to wide area of 

research in fuel analysis, optimisation analysis and Principal Component Analysis. In 
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order to achieve the objectives, a few scopes and limitations haven been identified in 

this research as listed:  

 

a. Selection of fuel was limited to RON 97 as the lowest octane rated fuel with 

Octane Requirement Increase (ORI) of the engine was taken into consideration. 

b. Gas Chromatography Mass Spectrometry (GCMS) is used to categorise the 

chemical composition of each tested fuels based on type of hydrocarbon. 

c. Standard laboratory analysis is used to determine the physical and chemical 

properties of the fuel blends. 

d. Dynamometer and exhaust gas analyser equipped with dedicated sensors are used 

to collect experimental data on the performance, detonation, emission, vapor lock 

and carburettor icing. 

e. Experimental vapor lock data is collected by means of temperature measurement 

using a dedicated thermocouple installed at location of the fuel as it approaches 

carburettor of the test engine. 

f. Experimental carburettor icing data measurement is done based on the brake 

specific fuel consumption (BSFC) data collected. 

g. Engine speed was limited to 2000-2700 RPM as this is the crucial speed 

concerned to the descending, cruising, climbing and take-off speeds. 

h. Optimisation analysis on the effects of RPM and fuel types on the performance, 

detonation and emissions responses is done using Response Surface 

Methodology (RSM).  

i. Design of Expert version 10.0.1 is used to implement the Response Surface 

Methodology (RSM). 

j. Factor analysis in Principal Component Analysis (PCA) is used to study the 

behaviour based on Factor Scores and the model was applied to the tested fuels 

of the study. 

k. Factor Score ranking of the fuels is compared with experimental rank of the fuels 

to study the relationship between statistical and experimental methods for vapour 

lock and carburettor icing evaluation. 

l. Only Principal Component (PC) which had highest score for vapor lock and 

carburettor icing were chosen for model prediction instead of all the PCs with 

eigenvalues more than 1.  



 

 

9 

 

1.4 Significance of the Study 

 

 To the best of the author’s knowledge and based on literature, the last 

conducted test by the FAA on a similar research was in the late 1980, MOGAS in 

General Aviation Aircraft by FAA Technical Centre in March 1987. As years 

developed, MOGAS qualities have changed drastically according to current world 

needs. As quoted by CAAM (1987) about lead in MOGAS and MTBE content in 

MOGAS, present MOGAS available in Malaysia are all unleaded and without 

MTBE content and this indicates a serious amendment of the current stand of the 

CAAM and it would be best with full operational data.  

 

 CAAM (1987) mentions that it is aware of the high cost of AVGAS and that 

certain foreign regulatory authorities are approving the use of MOGAS in some types 

of light piston engine aircraft, but CAAM does not consider that these approvals can 

be directly read across to the use of such a fuel in Malaysia. All such approvals are 

related to a specific climatic envelope and the use of fuels produced within defined 

specification limits (Civil Aviation Authority of Malaysia, 1987). This research 

adopted the climatic envelope of Malaysia (research conducted in Universiti 

Teknologi Malaysia – UTM, Johor Bahru, Johor) and the results of the study are 

expected to change the stand of the CAAM on the possible usage of MOGAS in 

aviation in Malaysia and countries with similar climatic envelope with Malaysia. 

 

 CAAM (1987) also mentioned that it is important to realise that mogas differs 

from AVGAS in being produced to much wider specifications allowing for 

considerable variability in chemical composition and physical properties. It follows 

that mogas marketed in Malaysia can show significant variation in characteristics 

related to the refineries from which it was supplied. This research addresses all these 

issues using current MOGAS in Malaysia market which is expected to make a 

breakthrough of MOGAS usage in aviation. 

 

 The vapour pressure (Pv) of AVGAS is required to lie in the range 38 – 48 

kPa and engine and aircraft fuel systems are designed, tested and certificated on that 
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basis (Civil Aviation Authority of Malaysia, 1987). CAAM (1987) says it has no data 

on the Pv of locally available MOGAS, but it is probable that the top end of the range 

is considerably higher than that specified for AVGAS. This research provides full 

chemical and physical property data including the vapor pressure data of the local 

AVGAS, local MOGAS and the blends to address the concern raised by the CAAM. 

 

 CAAM (1987) further mentioned that the difference in volatility and vapour 

pressure between AVGAS and MOGAS can be highly significant in relation to the 

risk of vapour lock. Aircraft fuel systems are not designed to cope with large 

volumes of vapour and may be especially susceptible to this problem when climbing 

to altitude with warm mogas in the fuel tanks (Civil Aviation Authority of Malaysia, 

1987). This research has evaluated the vapor lock tendency of AVGAS, MOGAS 

and the blends extensively based on experimental results and Principal Component 

Analysis (PCA). 

 

Apart from that no such tests have been initiated or done as far as Malaysia’s 

general aviation market is concerned. This research will eventually give an updated 

study of the locally available MOGAS and their performance characteristics on spark 

ignited (SI) aviation engine. Since no unleaded fuel replacement that addresses the 

issues and meets the mandatory requirements of SI aviation engines exist, this study 

will give an option for general aviation operators globally using SI aviation engines 

to consider a transition to an unleaded fuel. This study will also be an eye opener for 

the environmental agencies in Malaysia and South East Asia to enhance further 

research on TEL emissions from aircrafts using AVGAS.  

 

 A technically viable program will be organized to encourage the assessment 

of MOGAS or unleaded fuel effects on a SI aviation engine with a setup of proper 

engine testing laboratory and test methodologies as currently no FAA strategy or test 

methodology exists to empower SI aviation engine evaluation and approval of an 

unleaded replacement fuel.  
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Apart from that, no optimisation studies have been undertaken on aviation 

fuel research worldwide and this research initiated optimisation analysis of aviation 

fuels and motor gasoline fuels in an aviation engine based on Response Surface 

Methodology (RSM).  

 

 This study will give an empirical model of assessment for performance, 

detonation and emissions parameters of leaded and unleaded fuels for piston engine 

fuel development initiative. Optimisation of fuel blends and base fuels in this study 

gives a clearer picture of possible unleaded transition towards the efforts of TEL 

elimination from AVGAS. Empirical model created to assess the vapor lock and 

carburettor icing tendencies of the fuels intended to be used in aviation before it 

could be used for future experimental runs, will eventually save cost. Best candidate 

fuels can be evaluated statistically before can be selected for laboratory testing.  

 

 MOGAS adaptation in aviation industry in Malaysia will significantly give 

economic importance as MOGAS is far cheaper than AVGAS which will benefit 

greatly Approved Flight Training Organizations (AFTO) and other general aviation 

operators who operate with piston powered aircrafts in Malaysia. 
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