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ABSTRACT 

 

 

 

Landslide is a consistent hazard in mountainous terrain, especially in 

seismically active areas and regions of high rainfall (tropical regions). The key goal 

of landslide hazard analysis is to observe the location, intensity (magnitude), and 

occurrence time (prediction) of landslide. Assessment of landslide hazard and future 

sensitivity prediction are at the infancy level because of the lack of temporal datasets 

and efficient modelling techniques. Due to the complex nature of landslides, several 

modeling methods have been applied for the assessment of landslide hazard. This 

study developed a hybrid modeling approach named weight of evidence based 

convolutional neural network (WOECNN) using two models, machine learning 

model which is convolutional neural networks (CNN) and weight of evidence 

(WOE) technique of bivariate statistical model. In this study the hybrid model was 

utilized for generating landslide hazard index (LHI) and sensitivity prediction for 

future using spatio-temporal data (3D). Two study areas having with environmental 

and physical conditions including seismo-tectonically active region of Sg. Mesilau, 

Kundasang, Sabah and Gombak Selangor, were selected for this study. The spatial 

dataset initially constructed landslide inventory maps for these two sample areas 

through virtual mapping technique. 21 landslide-causative factors which included 

slope angle, aspect, altitude, TWI, SPI, TST, TSC, TSConv, soil, lithology, land use, 

rainfall, seismicity and distance to roads, rivers, roads, and faults were derived from 

different sources including Airborne Laser Altimetry (ALS) data. These results were 

validated using receiver operating characteristic (ROC) curve. The area under curve 

(AUC) of ROC for the landslide hazard index of Sg. Mesilau, Kundasang with 

respect to different scenarios illustrated that there were variations in between the 

AUC values for all three scenarios. The AUC value of LHI with maximum 

parameters was higher (0.82) than the other scenarios as it had less parameters based 

on priority ranking. While in the Gombak Selangor area the situation was reverse as 

the AUC values were showed an increasing trend with a decrease in the parameters. 

The highest AUC value (0.89) was obtained with minimum parameters. Moreover, 

results of sensitivity prediction (0.86) for Quartz Ridge, Selangor area revealed that 

the greater part of study was within the range of medium to low hazard. In general, 

the variation of validation results for landslide hazard assessment in both areas 

depicted the importance of parameters selection. Based on results, the hybrid models 

can perform better than the individual models. The present study indicates that 

WOECNN has performed more efficiently for sensitivity prediction as compared to 

the individual models. 
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ABSTRAK 

 

 

 

Tanah runtuh merupakan situasi berbahaya yang konsisten di kawasan 

aktif secara seismic di pergunungan dan kawasan kepadatan hujan tinggi 

(wilayah tropika). Matlamat utama analisis risiko bahaya tanah runtuh adalah 

untuk melihat lokasi, intensiti (magnitud), dan masa berlakunya (ramalan) tanah 

runtuh. Penilaian berbahaya tanah runtuh dan ramalan kepekaan masa depan 

berada pada peringkat awal kerana kekurangan data temporal dan teknik 

pemodelan yang cekap. Disebabkan sifat tanah runtuh yang kompleks, beberapa 

kaedah pemodelan telah digunakan untuk penilaian bahaya tanah longsor. 

Kajian ini menghasilkan pendekatan pemodelan hibrid yang dinamakan 

konvolusi rangkaian neural berasaskan pemberat bukti (WOECNN) dengan 

menggunakan dua model, model pembelajaran mesin yang merupakan 

rangkaian neural konvensional (CNN) dan teknik pemberatan bukti (WOE) 

daripada teknik model statistik dwiperubah. Dalam kajian ini, model hibrid 

telah digunakan untuk menghasilkan indeks bahaya tanah runtuh (LHI) dan 

ramalan kepekaan untuk masa depan menggunakan data ruang masa (3D). Dua 

kawasan kajian yang mempunyai keadaan alam sekitar dan fizikal termasuk 

wilayah aktif seismik-tektonik Sg. Mesilau, Kundasang, Sabah dan Gombak 

Selangor, Selangor dipilih untuk kajian ini. Dataset ruang pada mulanya dibina 

peta inventori tanah runtuh untuk kedua-dua kawasan sampel melalui teknik 

pemetaan maya. 21 faktor penyebab tanah runtuh termasuk sudut cerun, aspek, 

ketinggian, TWI, SPI, TST, TSC, TSConv, tanah, litologi, penggunaan tanah, 

hujan, seismik dan jarak ke jalan raya, sungai, jalan raya dan gelinciran telah 

diperoleh dari sumber yang berbeza termasuk data Altimetri Laser Udara 

(ALS). Keputusan ini telah disahkan menggunakan lenkung ciri operasi 

penerima (ROC). Kawasan di bawah lengkung (AUC) daripada ROC untuk 

indeks bahaya tanah runtuh Sg. Mesilau, Kundasang berhubung dengan 

daripada senario yang berbeza menggambarkan bahawa terdapat variasi di 

antara nilai AUC untuk ketiga-tiga senario ini. Nilai AUC LHI dengan 

parameter maksimum adalah lebih tinggi (0.82) daripada senario yang lain 

kerana parameternya kurang berdasarkan kedudukan utama. Manakala di 

kawasan batas kuarza Gombak Selangor, keadaan itu berlaku sebaliknya kerana 

nilai AUC menunjukkan trend yang semakin meningkat dengan penurunan 

parameter. Nilai AUC tertinggi (0.89) diperoleh dengan parameter minimum. 

Selain itu, hasil ramalan sensitiviti (0.86) untuk kawasan batas kuarza, Selangor 

mendedahkan bahawa sebahagian besar kajian berada dalam lingkungan bahaya 

sederhana hingga rendah. Secara umumnya, variasi keputusan pengesahan 

untuk penilaian bahaya tanah runtuh di kedua-dua kawasan menggambarkan 

kepentingan pemilihan parameter. Berdasarkan keputusan, model hibrid adalah 

lebih baik daripada model individu. Kajian ini menunjukkan bahawa 

WOECNN lebih cekap untuk ramalan kepekaan dibandingkan dengan model 

individu. 
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CHAPTER 1 

 

 

 

1 INTRODUCTION 

1.1 Problem Background  

Geophysical hazard refers to the naturally occurred event, incidence or 

phenomenon which effect the human and environment negatively. It includes 

geological, geomorphological and metrological phenomenon’s, i.e. landslides, 

earthquakes, floods, tsunamis, volcanic eruptions, tornadoes, severe storms, droughts 

etc. (Strupler et al., 2018). These are abrupt and unforeseen events which cause the 

disturbance in the balance of landscape and environment.  

Currently, the world is threatened with a precipitously growing impact of 

geophysical hazards, which caused not only increase in the exposure but also 

increase in hazardous events. Every year several deaths have been recorded due to 

geophysical disasters all over the world especially in developing countries (Zorn, 

2018). In developing countries, the probable impacts of hazardous incidents are huge 

as compare to developed countries. The impact of natural disasters on developing 

and developed countries can be judged by the fact that in the USA more or less 246 

thousand deaths were recorded in the last ten years (2006-2015) while almost 113 

million people were recorded as affective. In UK only around 800 deaths and some 

of 400 thousand of casualties were recorded for the same time period (EM-DATE, 

2014). On the other hand, in Asia the highest loss of life and casualty rate is 

recorded, which is around 4 million deaths and more than one billion victims were 

recorded in the last ten years (2006-2015), (World Disaster Report, 2016). 

Natural disasters and their consequences have considerable effects on human 

life, properties, infrastructure and environment. The important most natural hazard 
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among these is landslide, which play vital role in these effects all over the world. 

Landslides is a regular hazard of mountainous terrain, particularly in active seismic 

regions of and high rainfall (tropics) areas. Among all the natural calamities 

landslides have substantial accountability for injury, life loss and property damage in 

mountainous regions around the world. Beside this it also has positive effects like 

form landforms and transport sediments and wood to streams.  

The activation of landslide depends on both endogenic (igneous process and 

tectonic process) and exogenic (gradational process) forces. It is a rock or soil 

movement towards down along slope due to gravitational force when it loses its 

connectivity with the base. Although landslide is a natural hazard, but it can also 

accelerate due to human activities (e.g. construction, absence of vegetation cover, use 

of irrational farming technology, etc.). Usually it occurs at steep gradient but could 

also happen in areas having low relief based on its climatic, topographical, and 

geological conditions. Landslide is a regular event of tropical areas and is liable for 

critical fatalities and monetary losses. That’s why the assessment of landslide hazard 

on local scale as well as on regional scale is gaining much importance in recent years 

(Aydın and Eker, 2016).  

Changes in the natural environment may affect environmental negatively. In 

the last century, the mountain landscapes have experienced significant 

transformations all over the world. Natural and anthropogenic changes, climate 

changes, tourism and industrial development, socio-economic interactions, and their 

consequences in terms of land use and land cover changes (LUCC) have directly 

influenced the spatial organization and vulnerability of mountain landscapes. Land 

use change (e.g. deforestation) can influence and disturb the vegetation cover and 

stability of water level which ultimately cause in an increase in erosion (Glade, 2003; 

Ghimire et al., 2013). The ultimate result of this change is intense environmental 

risk, i.e. landslide incidence, which may leave a solid impact on the human wellbeing 

with greater scale (Tasser et al., 2003; Ko¨rner et al., 2005; Papathoma-Ko¨hle and 

Glade, 2013). Studying the change in nature due to human-environment interactions 

is thus crucial (Rounsevell et al., 2006). 
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In the steep mountainous areas of tropics, the occurrence of landslides is 

more frequent due to high humidity, intensive rainfall, unstable soil and morphology. 

Moreover, being in tropical region, the hilly landscape in Malaysia, especially the 

eastern peninsula (Borneo) is extremely susceptible to landslide hazard due to active 

tectonic movement and intense rainfall. Rainfall-activated landslides is the common 

most type of landslide, occurring all over the mountains and foothills of western 

peninsula of Malaysia, while in eastern peninsula seismicity is contributing side by 

side with rainfall. Likely to assess the landslide hazard time data is obvious. It could 

be defined as the likelihood of landslide occurrence for a given region or area (X, Y) 

over time. Without including third dimension (time), it is not possible to assess the 

hazard but only susceptibility.  

Carrying out a hazard evaluation of landslide needs both a spatial as well as 

temporal (3D) database. Nevertheless, most of the hazard maps for landslide presents 

only the susceptibility zoning (spatial likelihood) without utilizing the temporal 

information regarding that particular hazard. Among these one of the major problems 

while assessing temporal possibility of landslides lies in recognizing the frequency 

and magnitude relationship since historic landslide archives are not complete. 

Although, despite scarcity in data, there is immense need to address the recent 

incidences of landslides which might be connected to triggering events (e.g. 

earthquake, rainfall).  

Numerous landslide hazard assessment models are mentioned in literature 

which can be grouped into direct methods (geomorphological and heuristic) and 

indirect (statistical and mechanistic approach) methods (Pardeshi, Autade and 

Pardeshi, 2013; Van Westen et al., 2006). Usually the direct methods (knowledge 

driven/ qualitative) is dependent on the skills, experience and knowledge of the 

expert preparing the map. While the indirect methods or statistical modelling 

approach (data driven/ quantitative) are included multivariate and bivariate statistical 

models. The featured concept of statistical modelling is that, “the past is key to the 

future”, that’s why the historical landslide inventory and its causal associations can 

help to forecast future scenarios (Van Westen, Castellanos and Kuriakose, 2008 ). 

Conversely, data mining models (machine learning) such as decision tree (DT) 
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random forest (RF), and support vector machine (SVM), gained the popularity 

among different geoscience applications for their great prediction ability (Wu et al., 

2013).  

Scenario preparation for future along with probability model is a valuable 

tool for probing forthcoming consequences towards environmental change. Scenarios 

are impressions of likely futures (Abildtrup et al., 2006). The visualization of these 

landslide scenarios can effectively contribute to the awareness of ultimate problems 

which may cause trouble in future (Promper et al., 2014). Thus, the results of such 

analyses might support the enhancement of future adaption and management 

strategies. These results encourage the creativity and support to develop a vision and 

strategy for a safe future. While scenarios might provide assistance to prepare for 

expected inconvenient future expansions by disturbing the well-known planning 

pattern (Wollenberg et al., 2000). They propose possibilities to assess the existing 

response options, while consulting decision makers as part of game (Shearer, 2005; 

Kriegler et al., 2012).  

Imageries are the ideal tool for inventory mapping and hazard assessment, 

since it offers information over large areas with short time intervals. Remote sensing 

(RS) techniques experienced speedy and important developments in last few epochs. 

The competence of advance and boosted remote sensing methods to obtain 2.5D 

spatial data (X, Y + elevation) along with high precision contours allows innovative 

and successful enquiries about landslide incidents. The data obtained from multi-

sensors accompanied with airborne as well as ground-based allows to provide 

valuable knowledge for training the model, result validation and creating simulations 

of natural phenomena’s (Scaioni et al., 2014). Amongst these technologies, the light 

detection and ranging (LiDAR) and laser interferometric synthetic aperture radar 

(InSAR) are widely used for landslide studies in last few decades. Unlike 

conventional approaches, these are fast and precise mapping techniques for 

hydrological, geomorphological and LULC etc. (Hervás et al., 2003; Ardizzone et 

al., 2007; Guzzetti et al., 2012; Roering et al., 2013; Daehne and Corsini, 2013).  
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The advent of remote sensing (RS) and geographical information systems 

(GISs) played vital role in the appliance and addition of numerous algorithms, 

methods and models in landslide research. Moreover, by determining and mitigating 

failures new visions into landslide studies have been exposed via these techniques. In 

spite RS and GIS, extended field knowledge, multiple expert’s knowledge along with 

considerable budget, are mandatory to detect landslide prone sites (Van Westen et 

al., 2006, 2008). Although the RS data may be used in several other stages of 

calamity management, for instance prevention, preparedness, relief, and 

reconstruction but in fact till todate it is generally utilized for monitoring and 

warning system. Therefore, hazard assessment can only be carried out effectively 

when it consist of widespread, multidisciplinary studies based on spatial information, 

derived from sensors and other sources. This study is concentrating on 3D (2D space 

+ Time) hazard assessment for landslide using novel hybrid model (bivariate 

statistical model and machine learning techniques).  

1.2 Research Problem 

Landslide is a natural phenomenon but could turn into hazard and may cause 

either life losses or damage to structures including man-made as well as natural. The 

casualties and economic losses caused by landslides are greater than any other 

natural disaster in many countries. Landslide is a significant geo-hazard which 

causes impairment to social and natural environment (Pardeshi et al., 2013). Brabb 

(1993) mentioned that around 90% of losses due to landslide could be avoided if the 

issue is identified before event. Landslide mapping, evaluation, assessment and 

prediction is a crucial step for disaster resilience especially in tropical regions, which 

are more prone to this disaster due to its climatic conditions. Hence, landslide hazard 

assessment at various spatial scales is important.  

 Due to the wide range of uncertainties in data procurement, management, 

model selection and standardization, and to the complexity and exposure of 

modern societies, landslide mapping, hazard evaluation, and risk assessment 

seems to be out of the reach of traditional puzzle-solving scientific methods, 

http://springerplus.springeropen.com/articles/10.1186/2193-1801-2-523#CR14
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based on controlled experiments and on a very generalized consensus 

amongst experts. These challenging problems may be solved by a new 

scientific practice which could be capable to handle large uncertainties, 

fluctuating expert views, and societal issues elevated by hazard assessment 

and risk evaluation researches (Guzzetti et al., 1999). With this context, 

expended efforts are required to formulate new or combination (hybrid) of old 

methods and models for landslide mapping, susceptibility zoning and hazard 

assessment. It could be better documented and more efficient or “technical”. 

However additional efforts are required to transfer this scientific information 

regarding landslides and the related hazards and risk authorities involved with 

planning regulations, civil defense plans and building codes. In Malaysia 

landslides are the biggest threat to settlements, infrastructure and tourism 

industry in hilly areas (Pradhan et al., 2010) because of its loose morphology, 

excessive rain and hot and moist climate. Seismic acceleration is also a major 

factor in eastern part (Borneo island) of Malaysia.  

 To study the landslides, it is necessary to have understanding with its varied 

types, the causal factors and involving aspects, especially in more vulnerable 

locations. Landslide hazard investigation is the basic component of landslide 

risk management. Numerous techniques and models of landslide hazard 

assessment are in practice including heuristic (knowledge driven methods), 

semi-quantitative, quantitative (data driven methods), and machine learning 

(ML) etc. There is a long debate of researchers on Landslide hazard 

assessment methods however, there is no method universally accepted by a 

known team of researches for assessment of landslide hazards in terms of 

high accuracy (Pardeshi, 2013).  

 The hazard assessment considers the triggering factor and temporal data. 

There is a variety of triggering factors which have strong connection with the 

activation of landslide but the most important ones according to literature are 

earthquake and rainfall. Anthropogenic triggering factors are also quite 

influential in this regard (e.g., water level change, fluvial erosion, change in 

vegetation cover (LULC) and human activities (Construction of roads, 
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buildings etc.). Validating hazard map is a crucial step in landslide modelling, 

without it hazard maps are not reliable. There are several procedures for 

validation of susceptibility and hazard models are presented, so that the 

obtained results can be interpreted meaningfully with respect to future 

landslide occurrence and the significance of the predictions can be 

communicated to decision makers allowing them to perform sound planning 

for land use and landslide crisis management. In the case of landslide 

inventory mapping not only accuracy assessment and validation, but also the 

updating of the landslide inventory is important.  

 Projection of hazard for future is an emerging concept in the field of 

geohazard all over the world. Hazard prediction fundamentally depends on 

the understanding of interplay of relevant determining factors (both 

predisposing and triggering) and their selective combinations for causing 

different slide types. Such understanding of landslide process forms on the 

basis of preparation of 3D spatio-temporal land slide inventory (Ghosh, 

2014). In developing countries due to non-availability of temporal data of 

events, future projection is still at its infancy. In Malaysia, like other 

developing countries there is no database for historical landslide events 

except a few which gathered from different news reports of Mineral and 

Geoscience Department, Malaysia. Moreover, for future prediction temporal 

data of triggering factors e.g. rainfall and earthquake have equal importance 

as landslide events. The missing of any single database effects the accuracy of 

prediction because of which future prediction is very difficult to model. This 

research is incorporating ML technique for future modeling to fill the gap. 
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1.3 Research Questions 

The research will address the following questions:  

Which characteristics need to investigate to prepare a landslide inventory? 

 What types of mass movement (topple, creep, debris flow, rock fall etc.) 

exists?  

 What is the size, activity, type and dimension of each particular landslide? 

 How to prepare multi temporal land slide inventories? 

How to quantify the parameters, and which could be suitable models for 

computation of landslide hazard (type, magnitude and time) and validation on 

local scale? 

 Which ground consequences (structural/ geological/ landuse) can play vital 

role in the emergence of landslide hazards (spatial query)? 

 Which geomorphometric (relief, slope, aspect etc.) factors may play 

additional role to increase the intensity of damage many folds caused by a 

landslide (spatial query)?  

 Which triggering factors (seismological/ hydrological/ Metrological) play 

important role in the activation of a landslide? 

 Which model can efficiently assess the landslide hazard index using spatio-

temporal data set? 

 Which method could be used for validation of landslide hazard index (LHI) 

maps. 

 Which predisposing parameters are important to assess the landslide hazard 

index (LHI) in that region. 

What kind of data and technics could be used in future modelling of landslide 

hazard for future planning? 

 Which dynamics (temporal data) could be considered for future scenario 

building? 

 How time can affect the process and which technique/ models can efficiently 

project the landslide hazard index in future? 
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 What is the likelihood of occurrence of a particular landslide type with in a 

given time period? 

1.4 Research Objectives 

The key goal of this study is to design a hybrid model to assess the spatio-

temporal probability and sensitivity prediction for landslide hazard in the densely 

vegetated tropical environment which might be helpful in decision making process 

about land use policies and disaster risk reduction.  

Accordingly, the objectives of the study are: 

 To investigate, identify and map the physical extent series of existing 

landslides, their type, intensity and frequency based on remotely sensed data, 

historical records and field verifications/ observation on local scale. 

 To design the model to assess and validate the 3D landslide hazard and 

sensitivity prediction based on important predisposing parameters  

 To evaluate different landslide hazard scenarios to find the future threats 

based on importance predisposing/ conditioning factor and validation through 

quantification of the model. 

 To highlight the landslide, hazard sensitive areas by modelling spatio-

temporal prediction for future.  

1.5 Scope of the Study 

This research is focused on modeling 3D landslide hazard sensitivity 

prediction. The scope of the study is limited to two different areas including S.g 

Mesilau valley, Kundasang in district Ranau, Sabah and Gombak Selangor Quartz 

Ridge in Selangor.  The area of S.g Mesilau valley, Kundasang, is located in the state 

of Sabah. The area has a rural environment and the land is dominantly under 
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agriculture as basic activity. The whole region lies under high rainfall intensity. The 

area is also cherecterized by active seismo-tectonic activity as it lays in the foothills 

of Mount Kinabalu. While the Gombak Selangor Quartz Ridge area lies in Selangor 

state. This study area has urban environment with rapid developments and high 

intensity of rainfall as well. Though the area has no history of seismic activity. The 

study utilized spatio-temporal data including past landslide location data with 

attribute together with date of incident and cumulative rainfall data. The seismic 

magnitude and rainfall intensity were used as triggering factor for hazard assessment. 

To assess the future sensitive areas for landslide hazard the previous spatio-temporal 

database was used side by side with forecast data of rainfall. In this study, the 

predisposing factors which may contribute to the landslide and other mass 

movements such as geological, geomorphological, hydro-topographical, and 

anthropogenic factors were utilized to calculate landslide hazard index (LHI) using 

data driven approach.  

1.6 Significance of Study  

Landslide is the movement of mass of rock, debris or earth (soil) down a 

slope under the influence of gravity. Although Malaysia is not a precipitous country 

(mountains and hills are less than 25% of the terrain), slope failures/landslides are a 

frequently happened. From 1993-2011, around 28 major landslides were reported in 

Malaysia with a total loss of more than 100 lives. Moreover, from 1973-2007, the 

total economic loss due to landslides in Malaysia was estimated about US $1 billion. 

The collapsed of the 14-storey block A of the Highland Tower in Ulu Klang, 

Selangor was the most tragic landslide in Malaysia with 48 deaths. The main factor 

that caused slopes failure/landslides at numbers site in hillside development in 

Malaysia are rainfall, storm water activities and poor slope management. Another 

cause of landslides can be due to the abuse prescriptive methods, inadequate study of 

past failures, design errors including insufficient site-specific ground investigation. 

Besides, the development of highland or hilly terrain has increased developed and 

many hills project are in the pipeline. All this factor together contributes to landslide 

disaster in this country. An impact of landslides in Malaysia has given rise to some 
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environmental and socioeconomic issues such as loss of lives, damaged of properties 

and infrastructures, psychological pressures among the victims, disputes on land 

boundaries and also land degradation. Therefore, planning, design, construction and 

maintenance are very critical to achieve a safe and cost-effective hill-site 

development. 

This study provides the understanding of relationship between rainfall 

amount and duration along with conditioning parameters that possesses the 

possibility to trigger a landslide. Since both areas have high landslide intensity thus, 

it is necessary to develop an empirical rainfall threshold to predict the landslide 

event. 

1.7 Thesis Outline 

This thesis is structured into five chapters as follows: 

Chapter 1 includes the background of the study and the key challenges. The 

specific objectives of the study and Research questions are also the part of the 

chapter. The thesis outline structure is also elaborated. 

Chapter 2 presents the literature review on landslides. This chapter describes 

definitions, classification of landslides, factors affecting landslides, tools to predict 

landslides such as remote sensing, Geographic Information Services (GIS), landslide 

inventory, susceptibility and hazard modelling.  

Chapter 3 is about research methodology. It explains the study areas in 

different physical environments: i) Intermediate channel of River Mesilau, 

Kundasang, Saba, a rural area with active seismo-tectonic conditions ii) Gombak 

Selangor Quartz Ridge with grater urban expansion on critical slopes. The chapter 

also describes the methodology and models applied in this study. 



 

12 

Chapter 4 describes the data and initial outcomes in form of landslide 

inventories. This chapter also describes parameterization and factor importance 

ranking of predisposing factors. 

Chapter 5 presents the results and discussion i.e.  

 Landslide hazard Assessment results and its validation. 

 Landslide hazard scenarios according to factor importance  

 Landslide hazard future prediction which could be used efficiently in 

monitoring and early warning system.  

Chapter 6 consists of conclusions and recommendations. This chapter 

discussed the very high and high landslide hazard occupies of the total study area 

based on the models and determining how to use this for monitoring and early 

warning system of landslide hazard caused by earthquake and rainfall based on 

community participation uses the danger level of rainfall. This chapter will also give 

some recommendation about areas having very high and high hazard and the 

prevention as well as mitigation efforts, especially related to land use directive must 

be continuously disseminated to the public. 
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