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ABSTRACT

Utilization of renewable and sustainable sources of energy has gained attention 
to replace conventional and non-renewable fossil fuels. Production of hydrogen by 
catalytic steam reforming of phenol (SRP) is anticipated to play a vital role to 
overcome energy demand in future. The objective of this study is to develop nickel 
(Ni) and cobalt oxide (Co3O4) supported titanium dioxide (TiO2) and magnesium 
aluminate (MgAhO4) nanocomposite for SRP towards selective hydrogen production. 
Hydrothermal method was used to synthesize TiO2 microparticles (TMP), TiO2 

nanorods (TNR), spinel MgAhO4 and Co3O4 nanocubes. However, wet impregnation 
method was used to synthesise MgAhO4-TNR and Ni/Co3O4 promoted MgAhO4- 
TNR nanocomposite catalysts. The fresh and used catalyst samples were characterized 
by X-ray diffraction, X-ray photoelectron spectroscopy, high-resolution transmission 
electron microscopy, field emission scanning electron microscopy, Brunauer-Emmet- 
Teller with nitrogen, Fourier transform infrared spectroscopy and thermogravimetric 
analysis to understand the crystallinity, electronic state, surface morphology, pore 
structure, surface area and stability. Initially, a systematic thermodynamic analysis 
(TDA) was conducted to investigate the effect of various process parameters on output 
products composition. Optimal equilibrium reaction conditions according to TDA 
were found to be 550-750 oC reaction temperature, 1 atmospheric pressure and 5 wt.% 
phenol concentration. The catalytic activity test over Ni/TMP, Ni/TNR and Ni- 
Co3O4/TNR was performed to investigate the role of Ni and Co3O4 on the effectiveness 
of different structures of TiO2 support for SRP using a vertically aligned stainless steel 
tubular fixed bed reactor at 700 oC and steam to carbon ratio (S/C) of 15/1 at 
atmospheric pressure. After detailed screening, 10%Ni-5%Co3O4/TNR catalyst 
showed phenol conversion of 92% and H2 yield of 83.5%. However, addition of 
MgAhO4 as co-support with TNR promoted by Ni/Co3O4 was found very effective in 
phenol conversion with enhanced H2 yield and prolonged stability. Using composite 
catalyst, 96.4% phenol conversion with ~70% H2 selectivity and 88.6% H2 yield were 
achieved. The operating parameters were investigated by statistical approach using 
response surface methodology (RSM) to obtain optimum responses in the form of 
phenol conversion and H2 yield. Optimization of SRP by RSM revealed 92.5 % H2 

yield at optimal operating condition of 781.7 oC, 10.15 ml/h feed flow rate, 7.2 wt.% 
phenol concentration and 0.312 g of catalyst loading. The stability test showed 
composite catalyst continued its catalytic activity even after 400 h. Therefore, it can 
be concluded that MgAhO4-TNR promoted by Ni-Co3O4 catalyst has high prospective 
for application in steam reforming of phenol for selective and sustainable route for the 
production of hydrogen.
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ABSTRAK

Penggunaan sumber tenaga yang boleh diperbaharui dan mampan telah 
mendapat perhatian bagi menggantikan bahan api fosil yang konvensional dan tidak 
boleh diperbaharui. Penghasilan hidrogen melalui stim pembentukan semula fenol 
bermangkin (SRP) dijangka dapat memainkan peranan penting dalam mengatasi 
permintaan sumber tenaga di masa hadapan. Objektif kajian ini adalah untuk 
menghasilkan nanokomposit nikel (Ni) dan kobalt oksida (Co3O4) yang disokong 
kepada titanium dioksida (TiO2) dan magnesium aluminat (MgAhO4) bagi SRP ke 
arah pengeluaran hidrogen yang selektif. Kaedah hidroterma telah digunakan bagi 
mensintesis mikropartikel TiO2 (TMP), nanorod TiO2 (TNR), spinel MgAhO4 dan 
nanokiub Co3O4 . Walaubagaimanapun, kaedah pengisitepuan basah telah digunakan 
untuk mensintesis mangkin-mangkin nanokomposit MgAhO4-TNR dan Ni/Co3O4 
digalakkan MgAhO4-TNR. Sampel mangkin baharu dan yang telah digunakan telah 
dicirikan oleh pembelauan sinar-X, spektroskopi fotoelektron sinar-X, mikroskopi 
elektron transmisi resolusi-tinggi, mikroskopi elektron imbasan pancaran medan, 
Brunauer-Emmett-Teller dengan nitrogen, inframerah transformasi Fourier dan 
analisis termogravimetri untuk mengkaji tentang penghabluran, keadaan elektronik, 
permukaan morfologi, struktur liang, keluasan permukaan dan kestabilan. Pada 
mulanya, analisis termodinamik (TDA) yang sistematik telah dijalankan untuk 
mengkaji kesan pelbagai parameter proses terhadap komposisi produk keluaran. 
Keadaan tindak balas keseimbangan yang optimum menurut TDA didapati pada suhu 
tindak balas 550-750 oC, tekanan 1 atmosfera dan kepekatan fenol 5 wt.%. Ujian 
aktiviti mangkin bagi Ni/TMP, Ni/TNR dan Ni-Co3O4/TNR telah dilakukan untuk 
menyiasat peranan Ni dan Co3O4 terhadap keberkesanan struktur sokongan TiO2 yang 
berbeza terhadap SRP menggunakan reaktor turus tetap tahan karat yang menegak 
pada 700 oC dan nisbah stim kepada karbon (S/C) adalah 15/1 pada tekanan atmosfera. 
Selepas pemeriksaan terperinci, mangkin 10%Ni-5%Co3O4/TNR menunjukkan 
penukaran fenol 92% dan hasil H2 83.5%. Walaubagaimanapun, penambahan 
MgAhO4 sebagai sokongan bersama dengan TNR digalakkan oleh Ni/Co3O4 telah 
didapati sangat berkesan dalam penukaran fenol dengan peningkatan hasil H2 serta 
kestabilan yang berpanjangan. Dengan menggunakan mangkin komposit, 96.4% 
penukaran fenol dengan selektiviti H2 ~70% dan hasil H2 88.6% telah dicapai. 
Parameter yang beroperasi telah disiasat dengan pendekatan statistik menggunakan 
kaedah tindak balas permukaan (RSM) untuk mendapatkan tindak balas optimum 
dalam bentuk penukaran fenol dan hasil H2 . Pengoptimuman SRP oleh RSM 
mendedahkan bahawa hasil H2 92.5% dicapai pada keadaan operasi yang optimal pada
781.7 oC, kadar aliran suapan 10.15 ml/jam, kepekatan fenol 7.2 wt.% dan 0.312 g 
muatan mangkin. Ujian kestabilan menunjukkan aktiviti mangkin komposit berterusan 
selepas 400 jam. Oleh itu, ini dapat disimpulkan bahawa mangkin MgAhO4-TNR 
digalakkan oleh Ni-Co3O4 mempunyai potensi yang tinggi untuk kegunaan stim 
pembentukan semula fenol untuk kaedah pengeluaran hidrogen yang selektif dan 
mampan.
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CHAPTER 1

INTRODUCTION

1.1 Research Background

A reliable and equitable supply of fuels and chemicals are very important for 

social and economic development of any society. Currently, the global source of 

energy generation is mainly dependent on fossil fuels and coal which is 32.9 % and

29.2 %, respectively [1]. Also, utilization of these fossil fuels and hydrocarbons (HCs) 

causes emission of Greenhouse gases (GHGs) which ultimately effects environment. 

In addition, with the passage of time these resources will be depleting. In view of the 

current global stocks versus rate of utilization of oil, coal and gas, these energy sources 

are anticipated to be drained within next 40, 200 and 70 years, respectively [2].

The current global energy requirement and environmental issues are serious 

concerns and must be dealt on time; if not, our planet will face an immense energy 

crises and serious environmental issues. In recent years, a lot of research has been 

conducted to produce human and environment friendly energy from sustainable and 

renewable energy resources. The sustainable and renewable energy resources which 

have been exploited by the researchers for production of renewable energy and 

renewable fuels are wind, solar thermal, large and small hydro, geothermal and 

biomass [3].

Recently, hydrogen (H2) as a sustainable fuel is pursuing much attention to 

minimize the reliance on fossil fuels because the energy density of H2 is highest as 

compared to other fuels and energy sources [4]. Also, H2 shows zero carbon emission 

during combustion reaction producing water vapor accompanied by heat in the form 

of energy [5]. Generally, for large scale H2 production, nonrenewable sources being 

used are natural gas (NG), coal and oil. Almost, half of H2 production is obtained by 

thermal catalytic reforming and gasification of NG and oils. In addition, heavy naphtha



is the second largest H2 production sources after coal [6]. A much lower amount which 

is 4 and 1 % of H2 is produced from water by electrolysis and biomass, respectively 

[7]. In short, almost 95% global production of H2 comes from nonrenewable sources 

like fossil fuels.

The H2 generation by sustainable and renewable energy sources like wind 

energy, biomass, and solar thermal energy are suitable for slowly substituting 

nonrenewable fossil fuels [8]. Currently, the technologies used in H2 production are 

reforming of natural gas (NG) or gasification, electrolysis of water, photo and electro­

catalysis of water and photo-fermentation of biomass [9]. Commonly, at industrial 

scale, H2 is mainly produced by steam reforming (SR) of HCs, particularly NG as 

feedstock [10, 11]. On the other hand, SR of HCs is not sustainable because of CO2 

production and nonrenewable nature of fossil fuels feedstock. As compared to 

conventional production of H2 by SR of fossil fuels like NG, SR of compounds derived 

from biomass and bio-oil is close to CO2 free and so a more reliable and sustainable 

process. Phenol and phenolic compounds are largely produced from biomass 

gasification, petrochemical industries, reforming, and waste or in some of the cases as 

byproduct. Additionally, phenol is the main component of the bio-oil pyrolysis 

produced by bio-oil refineries. Therefore, phenol could be a suitable feedstock for 

hydrogen production.

In general, phenolic compounds are produced or separated from 

renewable/bio-oil sources or from industrial waste contains large amount of water. In 

pyrolysis of bio oils, approximately 15 to 30 wt. % of water per 30 wt. % phenol is 

produced [12, 13]. Removal of water from such mixture to get refined phenolic 

compounds either by physical or chemical means is not an economical approach [14]. 

Besides, it is difficult to transfer phenolic compounds because they can easily be 

condensed and can corrode equipment [15]. Similarly, direct transportation of tar 

having high concentration of phenol causes environmental issues, which is most 

common in developing countries [16, 17], which ultimately results as a waste of valued 

organic and renewable fuel resources, in addition of environment pollution.
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A lot of exploration has to be done to develop cost effective and environment 

friendly methods to convert phenols and water mixture into clean fuels and chemicals 

[18]. There are many techniques for phenol-water conversion like aqueous phase 

reforming (APR), hydrodeoxygenation (HOX), and steam reforming (SR) [19-21]. 

The waste heat which is generated during bio-oil gasification, pyrolysis or reforming 

can be utilized to steam reforming of phenol (SRP). Since, reforming usually require 

large quantity of water to produce steam, so it is not required to remove water from 

phenol mixture, hence operation cost and investment is minimized. Purified H2 rich 

syngas produced by SRP can be used as renewable fuel or as starting chemical to 

produce valuable products like methanol [22].

1.2 Steam Reforming of Phenol

Since, reforming usually require large quantity of water to produce steam, so 

it is not required to remove water from phenol mixture, thus operating cost and 

investment can be minimized. Purified H2 rich syngas produced by SRP can be used 

as renewable fuel or as starting chemical to produce valuable products like methanol 

[22]. During thermal catalytic SRP, phenol-water mixture reacts to produce high yield 

of H2 gas accompanied by other by-products like carbon monoxide (CO), carbon 

dioxide (CO2) and water (H2O). In the SRP, the main reactions are decomposition of 

phenol-water mixture at high temperature to produce H2 rich syngas using Equation 

(1.1). Similarly, water gas shift (WGS) and reverse water gas shift (RWGS) reaction 

also promoted H2 production as explained in Equation (1.2) [23, 24]. The overall and 

complete SRP results in a 14 mole of H2 per mole of phenol which is maximum 

theoretical of yield of H2 as defined in Equation (1.3) [25]

AH= 710.91 kJ/mol ( u )

6x[CO+H2O ^ C O 2+H2] AH = -41.15 x 6 kJ/mol (L2)

C6H5OH+1 1h2O ^  6CO2+14H2 AH=464.01 kJ/mol (L3)
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According to Equation (1.3), SRP is favorable at higher steam to phenol (S/P) 

mole ratios and the reaction equilibrium could be shifted towards right direction 

resulting in higher phenol conversion, hydrogen yield and product selectivity. 

However, phenol conversion and hydrogen yield along with other product composition 

during SRP is not only dependent on reaction temperature. In the case of any 

homogenous phase reaction system, other reaction conditions such as reactants mole 

ratios, reactor pressure and inert gas dilution in feed stream are as important as reaction 

temperature. In order to investigate the effect of the reaction conditions, the 

thermodynamic analysis is critical to understand further its impact on the product 

distribution during the reaction [26].

In terms of catalytic performances in SRP, process optimization is important 

to identify optimum reaction conditions towards achieving the maximum target output 

and to understand the interaction between input process parameters and output 

responses such as feed conversion and product yield. To achieve the exact optimum 

conditions for steam reforming a systematic design of experiments (DOE) has a vital 

role. Therefore, response surface methodology is mostly used in steam reforming 

processes for experimental design, optimize and investigate multivariate effect on 

output product composition in SRP [27].

In catalytic steam reforming of phenol, aluminum oxide (AhO3) is one of the 

most commonly used support because of its high chemical and mechanical stability, 

cost-effective and metal dispersion is high because of its high surface area [28]. 

Furthermore, Ni supported on MgO and AhO3 has showed better performance in terms 

of conversion of steam reforming of phenol with prevailed H2 yield [29]. Generally, 

Ni is commonly used in SR processes because it has low cost relative to other rare 

earth and noble metals [30]. Noble metals like rhodium (Rh), ruthenium (Ru) and 

palladium (Pd) can resist carbon formation with increased catalyst stability [31, 32]. 

However, these metals rare in nature and have high cost which makes them less 

feasible for commercial use [33]. Although, Ni has a good activity towards C-C bond 

cleavage, but it has also high rates of methane formation as well as sintering of catalyst 

along with coke formation [34-36].
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In phenol steam reforming, carbon formation can be minimized using 

bimetallic catalysts like nickel (Ni) and cobalt (Co) on different supports such as, 

AhO3, La2O3 and ZrO2 [37]. With addition of Co into Ni containing catalyst, carbon 

formation and carbon growth can be minimized because Co can break the actual 

surface on which Ni ensembles, which apparently reduces the particle size of Ni. 

Moreover, Ni-Co catalyst can enhance stability of catalyst and have better resistance 

towards oxidation of active metal [23, 38]. Zhao and co-workers [39] reported 68.7 % 

conversion of ethanol at 350 oC using Ni and Co as catalyst supported on Al2O3 for 

SR of ethanol. It was further stated that higher dispersion of catalyst shows higher 

stability and lower carbon deposition.

On the other hand, TiO2 can be a good candidate to use as active metal support 

because it is high mechanically and chemically stable, economical and large surface 

area for active metal dispersion, abundantly available in nature and nontoxic [40]. Kho 

and co-workers [10] used Ni/TiO2 for steam reforming of methane and achieved 45 % 

methane conversion at 500 oC, however, deactivation of catalyst after 54 hour (h) was 

observed due to due to carbon deposition. Comparatively, spinel oxides of the type 

(AB2O4) ( A= Mg, Ca) (B = Al) have been extensively used and proposed as a support 

in catalytic steam reforming because of their basic nature and resistance to carbon 

deposition and sintering [41]. Recently, Mizuno and coworkers [42] used MgAhO4 as 

support along with Ni-Co as catalyst for steam reforming of acetic acid and reported 

high rate of adsorption and decomposition of species like acetyl and acetate on metal- 

support interface. Similarly, Katheria and co-workers [43] reported the use of 

MgAhO4 as a support for Ni catalyst for steam reforming of methane with better 

resistance towards deactivation of catalysts.

There is no literature on steam reforming of phenol using Ni-Co as a catalyst 

supported on modified TiO2 impregnated with MgAl2O4 . Besides, TiO2 has high 

surface area for active metal dispersion, low-cost and it is abundantly available. 

MgAhO4 is also highly active in adsorption of reacting species and can give high 

basicity and thermal stability. Therefore, in this study thermodynamic analysis has 

been carried out to find optimal range of operating conditions and Ni-Co3O4 supported 

on TiO2/MgAhO4 nanocomposite has been synthesized and tested for SRP to
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investigate the combined effect of modified TiO2 nanorods and MgAl2O4 for catalyst 

stability and selective H2 production. Finally, the input process parameters were 

analyzed and optimized for output responses by using response surface methodology 

approach.

1.3 Problem Statement

Although, H2 production from steam reforming of phenol (SRP) has great 

prospects. The main problems in steam reforming of phenol are given as follow:

(a) Phenol, one of the major aromatic chemical compound and ubiquitous in

industrial wastewater effluent from many sectors (i.e. petroleum refineries, 

synthetic chemical plants, plastics, pulp and paper, textiles, detergent, pesticide 

and herbicide, and pharmaceutical factories), has become a problematic issue

in many developed and developing countries. This is due to its toxicity threats

to humans and aquatic life even at low concentration. Steam reforming is one 

of the effective technology to convert phenol to hydrogen. However, this 

process requires higher input energy due to endothermic nature of reaction. The 

stable aromatic cyclic hydrocarbon structure of phenol further requires high 

temperature for C-C and -C-H bond breakage during steam reforming reaction.

(b) Due to endothermic nature of reaction, effects of different parameters such as

temperature, feed concentration and reactor pressure greatly effects products

distribution. Thus, to achieve desired product gas especially H2 whilst

minimizing side reactions is another challenge in this process. Furthermore, 

during SRP, side reactions decrease thermal efficiency and lower activity (in 

terms of selectivity and yield of hydrogen). For example, low reaction 

temperature results in lower H2 yield and catalyst deactivation due to multiple 

side reaction and CO production which leads to coke formation on catalyst 

surface. The extent of all these reactions is normally a function of reaction 

conditions, i.e. pressure, temperature and feed concentration. However, there 

is no such information available in literature to select exact parameters values 

to maximize hydrogen yield with minimum coke formation.
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(c) Steam reforming of phenol is one of the attractive route to convert phenol to 

hydrogen and other valuable product gas. The advantage of utilizing phenol as 

feed in SR is that 14 moles of hydrogen can be produced per mole of phenol 

via complete steam reforming reactions. On the other hand, it also comprises 

six carbon atoms in one mole of phenol which could lead to catalyst 

deactivation due to catalyst sintering and coke formation on catalyst surface. 

Ultimately, it will lead to lower H2 yield. Therefore, proper selection and 

design of catalyst system is required to minimize the catalyst deactivation. An 

effective catalyst design includes the type of active metals which is promoting 

the reaction and type of support that can provide good surface area as well as 

minimizing the carbon formation. The most common supports used in SRP 

reactions are Al2O3 , MgO and ZrO2 but they depict catalyst sintering and 

carbon formation. Among the metals noble and rare earth metals like La, Pt, 

Rh, Ru and Ce are commonly used to minimize carbon formation and to 

achieve higher H2 yield and prolonged catalyst stability. However, utilization 

of rare and noble metals makes the process uneconomical and commercially 

unfeasible.

1.4 Research Hypothesis

On the basis of challenges and problems mentioned in above section for phenol

steam reforming, proposed hypothesis and solutions are as follow:

(a) Steam reforming of phenol with excess water content would be effective 

strategy to recycle waste water for hydrogen production. However, range of 

different operating parameters can be identified through thermodynamic 

analysis (TDA). TDA will be useful to identify possible reactions occur in SRP, 

thus an effective tool to solve and identify the problem related to the feasible 

range of operating parameters. Also, optimal process conditions for SRP 

reaction can be obtained by TDA of the operating process parameters on 

product distribution. Hence, it will be of great interest to apply thermodynamic 

study in the current system that involves phenol as a feed in steam reforming.
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(b) Catalyst sintering and carbon formation depends on catalyst structure and 

variation in process parameters and can be reduced by selecting reducible 

catalyst support. It is hypothesized that TiO2 as a catalyst support would 

provide higher metal support interaction to reduce coke formation. This is 

because TiO2 has exceptional electronic interfaces between the active metal 

and support due to its property of being reducible oxide. The efficiency of TiO2 

would be further improved using TiO2 nanorods (TNR) due to their 1D 

structure and higher specific surface area. Therefore, using modified-TNR 

having larger surface area compared to conventional TiO2 could be efficient to 

minimize carbon formation and can further improve the activity as catalyst 

towards SRP due to high dispersion of active metals over 1D structure. The 

efficiency of TNR would be promising with loading with Ni and CO3O4 nano­

cubes due to their synergistic effects and reducible characteristics.

(c) The coupling MgAhO4 with TNR as co support would further improve thermal 

stability, mechanical strength and basicity of catalyst composite. Moreover, the 

use of Ni-Co3O4 as active metals in TNR- MgAl2O4 composite would be 

promising to enhance both yield and selectivity with prolonged stability. The 

combined effect of TiO2 NR and MgAhO4 heterojunctions promoted with Ni- 

Co3O4 as bimetallic active catalyst can demonstrate enhanced catalytic activity 

as compared to individual support. The MgAl2O4 can promote water gas shift 

reaction by inhibit the carbon formation due to its strong basic nature. 

Therefore, it is imperative to develop a catalyst having high resist to carbon 

formation, stability and high selectivity towards H2.

(d) The optimization of operating parameters would further be fruitful to maximize 

H2 yield and selectivity with improved phenol conversion. This would also be 

helpful to reduce operating temperature while maximizing catalyst activity and 

stability.
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1.5 Research Objectives

The main goal of this research is to develop a stable and highly active catalyst 

composite for phenol steam reforming for hydrogen production. The main objectives 

of this study are:

(a) To study thermodynamic analysis of SRP for hydrogen production;

(b) To synthesize and characterize nickel (Ni) and cobalt oxide (Co3O4) modified 

TiO2 NR and MgAhO4 catalyst for SRP;

(c) To investigate catalytic activity and stability of Ni-Co3O4/TiO2-MgAl2O4 

nanocomposite in SRP for selective H2 production;

(d) To optimize operating conditions in SRP using response surface mythology.

1.6 Scope of Study

This research focused on improving catalytic activity and stability of TiO2 

coupled MgAl2O4 based nanocomposite and impregnation with nickel and cobalt 

oxide. The structure of commercially available anatase TiO2 catalysts was optimized 

from microparticle to nanorods. The catalytic performance of the best selected 

catalysts after screening experiments was tested in a fixed bed reactor while varying 

different parameters. Initially, thermodynamic analysis using Aspen plus simulation 

software was conducted to set optimum range of operating conditions for SRP process. 

Finally, response surface methodology was used on optimal catalyst composite to 

investigate the effect of multiple input process parameters on output response. In this 

study the overall scope is divided into following four main sections:

(a) Thermodynamic analysis (TDA) of SRP for hydrogen production was done by 

using Aspen plus version 8.8 simulation software. Apart from establishing the 

optimal operating conditions for SRP operation; phenol conversion, hydrogen 

yield and selectivity for different products was determined.

(b) The TiO2 micro-particles (TMP), TiO2 nanorods (TNR) and MgAhO4 catalyst 

supports promoted by Nickel (Ni) and Cobalt oxide (Co3O4) were synthesized
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in this study. The TNR was prepared by single step wet impregnation and 

hydrothermal method, respectively. The MgAhO4 was prepared by wet 

chemical co-precipitation method accompanied by hydrothermal method. The 

catalysts Ni/TMP, Ni/TNR, Ni-Co3O4/TMP, Ni-Co3O4/TNR, and Ni- 

Co3O4/MgAl2O4/TNR (TMA) were prepared by wetness impregnation. The 

prepared sample were calcined at different temperatures to activate the catalyst. 

The prepared samples were characterized by Nitrogen adsorption-desorption 

(BET), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), 

Fourier transform infrared spectroscopy (FTIR), H2-temperature programmed 

reduction (H2-TPR) and CO2 -temperature programmed desorption (CO2- 

TPD), field emission scanning electron microscopy (FE-SEM), energy- 

dispersive X-ray spectroscopy (EDX), transmission electron microscopy 

(TEM), and thermogravimetric analysis (TGA).

(c) The catalytic screening was carried out in SRP reaction on homogeneous 

reaction as well as synthesized catalysts including Ni/TMP, Ni/TNR, Ni- 

Co3O4/TMP, Ni-Co3O4/TNR, and Ni-Co3O4/MgAhO4/TNR (TMA), at 

reaction temperature 700 oC under atmospheric pressure, where loading of 

catalyst was kept constant at 0.3 grams, feed flow rate was maintained at 10 

ml/h, N2 flow rate of 20 ml/min, and 5 wt. % phenol was used as feedstock. 

The product distribution analysis was investigated to obtain the catalytic 

activity comparison. Consequently, the parametric study in SRP was further 

studied on selected catalyst based on the high catalytic activity obtained in 

catalytic screening. The parameters used in this study were temperature (600­

900 oC), feed flow rate (5-15 ml/h), catalyst loading (0.1-0.3g), and 

concentration of phenol (5-15 wt. %), while the responses recorded were 

phenol conversion, hydrogen yield and hydrogen selectivity.

(d) The optimum conditions of SRP process were evaluated using response surface 

methodology (RSM) with Statistica software (version 8.0) to design the 

experiments and to analysis the effect of multivariate input variable on output 

responses. The independent input variables such as temperature, phenol 

concentration, feed flow rate and catalyst loading were selected to optimize 

dependent output responses such as phenol conversion and H2 yield.
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1.7 Significance of Study

This study is important to address the environmental as well as the economic 

concerns related to the phenol pollutant whereby a sustainable process utilising 

renewable sources for the production of clean energy carrier of hydrogen is highly 

desirable. Phenol is widely known as one of the chemically and physically stable 

aromatic compound, and considered as a harmful pollutant when found in 

environment. In this study phenol has been successfully converted into the valuable 

and pollution free source of energy (H2) by using a commercially viable process of 

catalytic steam reforming. In this work, hydrogen production from phenol steam 

reforming process over Ni-Co3O4 supported on various support types with different 

structures and compositions has been thoroughly investigated.

The most significant findings from this research that are highly contributing in 

the steam reforming of phenol area is the application of TiO2 as the catalyst support 

since it has never been reported in SRP process. Besides, different structures of TiO2 

have been explored to find relationship towards the catalytic activity in phenol steam 

reforming. In addition, the application of dual support combination between TiO2 and 

MgAhO4 have also been explored other than the metal loading composition of Ni- 

Co3O4 towards the catalytic activity and stability in phenol steam reforming. Up-to- 

date, the combination of TiO2-MgAl2O4 as catalyst support have never been 

investigated as well in the steam reforming reactions. Followings are the specific 

outcomes of this study:

(a) The thermodynamic analysis of SRP process is helpful to select best process 

conditions to achieve desired products. Thus, using TDA, number of 

experiments can be minimized to safe energy with minimum waste of catalyst.

(b) A novel 10%Ni-5%Co3O4/25%MgAl2O4-TiO2 NR nanocatalyst composite 

was synthesized, characterized and tested under thermodynamically set 

operating condition, producing exceptional results in terms of phenol 

conversion, H2 yield and long run stability. More importantly, a stability of 400 

h was achieved without any obvious deactivation and it can be promising 

catalyst for commercial utilization in steam reforming processes.
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(c) The response surface methodology was helpful to understand the significance 

and effect of input process variables on phenol conversion and H2 yield. With 

RMS, best operating condition with higher H2 yield with minimum side 

reactions were obtained. Thus, it is a promising tool to optimize process 

parameters and can reduce total number of experiments.

1.8 Layout of Thesis

The main aim of this study is to produce hydrogen by catalytic steam reforming 

of phenol over modified TiO2-MgAhO4 (TMA) based catalyst in a fixed bed reactor. 

A detailed investigation and screening of TiO2 support structure and MgAhO4 loading 

ratio has been done to reach to the optimal catalyst support. To predict the possible 

reaction SRP and extend of these reactions, a thorough study on thermodynamic 

properties has also been conducted. Furthermore, with the help of thermodynamic 

analysis ideal process conditions have been evaluated for SRP operation. The best 

screen out and optimal modified TiO2-MgAhO4 based catalysts were further tested for 

catalytic activity and stability in terms of phenol conversion, hydrogen yield and 

selectivity. Moreover, response surface methodology (RSM) was employed to 

optimize and analysis the effect of multiple input variables on hydrogen yield and 

phenol conversion. Catalyst preparation, characterization, screening of various 

catalysts, catalytic activity testing on different operating conditions, thermodynamic 

analysis and response surface methodology (RSM) are discussed in different chapters. 

This thesis contains of six chapters.

Research background, problem and research hypothesis, research objectives, 

scope and significance of this study has been discussed in Chapter 1. A thorough 

literature review about energy aspects and sources of hydrogen and phenol are 

discussed in Chapter 2. Furthermore, basic concepts of steam reforming technique and 

their merits and demerits are also presented. Different types of catalysts used in phenol 

as well as other oxygenates steam reforming are summarized in tabulated form have 

been discussed too in literature review. At the last part thermodynamic and process 

optimization in steam reforming of phenol and other oxygenates has been presented.
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Chapter 3 contains research methodology for this study, which includes; details of 

equipment and materials used, catalyst preparation methods, catalyst characterization 

techniques, detail and schematic representation of experimental setup, procedure for 

parametric, thermodynamic and process optimization techniques. All the 

characterization results of fresh catalyst composites are discussed in Chapter 4. 

Chapter 5 contains TDA, catalyst screening, parametric experiments on optimal 

catalysts, post reaction catalyst characterization, process optimization and analysis of 

variance (ANOVA) by using RSM. At the end, Chapter 6 represents the conclusion of 

this study and recommendations for future work.
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