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ABSTRACT 

 The present study focuses on the synthesis and characterisation of carbon 

nanotubes (CNTs) synthesised from flame at atmospheric condition. A laminar flame 

burner was utilised to establish a rich premixed propane/air flame. The flame was 

impinged on a stainless steel wire mesh coated with nickel (Ni) catalyst to grow 

CNTs. Parametric studies were conducted to investigate the optimum operating 

conditions for CNTs yields. The effects of equivalence ratios, substrate mesh number 

and the distance between the burner nozzle outlet and substrate on the yield of CNTs 

were investigated. The CNTs formed on the substrate were collected and 

characterised by using scanning electron microscopy (SEM), transmission electron 

microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), X-ray powder 

diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and thermogravimetric 

analysis (TGA). CNTs were grown on the substrate impinged by the main reaction 

zone of the flame. The FESEM micrograph showed that CNTs produced were in 

disarray. Parametric studies showed that substrate with mesh number 80 at the 

distance of 10 cm from burner outlet, total air/propane flow rate of 1.2 g/s, mixture 

of fuel/air at ϕ 2.2 produced optimum yield of CNTs during 15 minutes of flame 

synthesis process. Analysis of the TEM micrographs shows the average diameter of 

CNTs are 11.3 -12.3 nm and interplanar spacing (002), d002 is approximately 0.31 

nm. XRD results showed the characteristic CNTs (002) peak is found at 2θ ~26°. 

Distinctive G-band and D-band for CNTs were observed from Raman spectra for 

samples produced. TGA analysis showed that 75 % of CNTs present in the sample 

has oxidation temperature of 510 °C. The purity and quality of the CNTs were 

improved by using H2O2 and HCl treatments, whereby CNTs with purity of 92.9 % 

and thermal stability of 556 °C were obtained.  
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ABSTRAK 

 Kajian ini memberi tumpuan kepada pencirian karbon nanotiub (CNTs) yang 

disintesis mengunakan api bawah keadaan atmosfera. Pembakar api laminar telah 

digunakan untuk menghasilkan nyalaan yang kaya dengan pracampuran 

propana/udara yang nisbah kesetaraan yang tinggi. Api telah dikenakan terhadap 

dawai besi keluli tahan karat yang disalut dengan pemangkin nickel (Ni) untuk 

pertumbuhan CNTs. Kajian parametrik telah dijalankan untuk menyiasat keadaan 

operasi optimum untuk hasil CNTs. Kesan nisbah kesetaraan, nombor mesh substrat 

dan jarak antara alur keluar pembakar dan substrat ke atas hasil CNTs telah dikaji. 

CNTs yang terbentuk pada substrat telah dikumpul dan diciri dengan menggunakan 

mikroskop imbasan elektron (SEM/FESEM), mikroskop elektron transmisi (TEM), 

X-ray serakan tenaga spektroskopi (EDX), pembelauan sinar-X (XRD), X-ray 

spektroskopi fotoelektron (XPS) dan analisis termogravimetri (TGA). CNTs yang 

tumbuh pada substrat telah dihasilkan oleh zon pembakaran utama api. FESEM 

mikrograf menunjukkan bahawa CNTs dihasilkan adalah dalam keadaan tidak 

tersusun. Kajian parametrik telah menunjukkan substrat dengan nombor mesh 80 

pada jarak 10 cm dari salur keluar pembakar, jumlah kadar aliran propana/udara 

sebanyak 1.2 g/s, nisbah pencampuran minyak/udara ϕ 2.2 telah menghasilkan kadar 

penghasilan CNTs yang optimum dalam masa 15 minit proses sintesis pembakaran. 

Analisis mikrograf TEM telah menunjukkan diameter purata adalah dalam julat 11.3 

-12.3 nm dan jarak antara satah (002), d002 adalah lebih kurang 0.31 nm. Keputusan 

XRD telah menunjukkan CNTs ciri puncak (002) adalah pada 2θ ~26 °. G-band dan 

D-band CNTs telah dapat diperhati dari spektrum Raman bagi semua sampel. 

Analisis TGA telah menunjukkan bahawa 75 % daripada CNTs di dalam sampel 

mempunyai suhu pengoksidaan pada 510 °C. Ketulenan dan kualiti CNTs telah 

diperbaiki dengan menggunakan rawatan H2O2 dan HCl, di mana ketulenan 92.9 % 

dan kestabilan haba pada suhu 556 °C diperolehi. 
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CHAPTER 1  

INTRODUCTION 

1.1 Background of Study  

The interest in carbon nanotubes (CNTs) is motivated by its superior 

characteristics that make it both interesting and potentially useful.  CNTs are high 

strength, flexible, high stiffness, high aspect ratio, good thermal conductor, high 

electric conductivity and unique electronic properties that can be metallic or 

semiconductors depending on chirality.  CNTs have mechanical strength greater than 

steel and thermal conductivity as high as diamond.  The demand of CNTs are 

growing exponentially due to the great enhancement of performance when applied 

electronics, water filtration, catalyst support media, gas adsorption media, energy 

storage, electromechanical storage, reinforcing material for composite and hydrogen 

storage media [1].  However, low production rate and low production quantities 

become an obstacle for CNTs become commercialise. Production methods that 

support fast rate and large quantities of CNTs are required to enable the supplies of 

CNTs fulfil the demand of CNTs at industrial level.   

Current methods used to produce CNTs include arc discharge method, laser 

ablation method and chemical vapour deposition (CVD) method.  These methods are 

energy consuming. The arc discharge and laser ablation method lack demonstrated 

scalability for high volume CNTs production.  The CVD method is the most 

common method that is used for bulk synthesis of CNTs, but the weakness of these 

methods are energy intensive, long synthesis time and can only be performed in 

batches.  The basic CVD processes require hydrocarbon gas and catalyst metal 
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particles in elevated temperature condition.  Synthesis of CNT is due to formation of 

particles in the high concentration of carbon species and high temperature conditions.  

Flame synthesis method is used to synthesise CNT, with the CNT growth theory 

similar to CVD method, but flame synthesis has benefit low set up cost and short 

synthesis time.  Flame is an auto-thermal process where fuel is burnt to generate heat 

to provide reactive carbon species that serves as carbon source for CNTs formation.   

 Flame synthesis is a relatively cost effective technique that can be scaled to 

industrial level.  A detail study of the important parameters that affect CNTs yield 

and quality in a flame system is needed to optimise the production of CNTs via flame 

synthesis.  With these intentions mentioned above, flame synthesis of CNTs with 

using a simple set up of burner is investigated. 

1.2  Problem Statement  

 CNTs with superior properties are useful in many applications. However, the 

high production cost of CNTs has become an obstacle for CNTs to be mass 

produced.  The cost of CNTs varies depending on the type and quality.  The current 

price of single wall carbon nanotubes (SWCNTs)  and double wall carbon nanotubes 

(DWCNTs) are in the range of 21,500- 264,000 €/kg, while the price for multi wall 

carbon nanotubes (MWCNTs) is in the range of 300 - 22,000 €/kg [2].  The demands 

of CNTs keep increasing. It was estimated that the market value of CNTs was $158.6 

million in 2014. The value is expected to grow by 33.4 % by 2019 [3].   

 Flame synthesis is the potential alternative method to produce CNTs.  There 

is a lack of characterisation of CNTs produced by flames.  Although previous 

literature has shown the feasibility of CNTs production using flame synthesis via 

SEM and TEM imaging, there is a lack of reporting on the yield, quantifications of 

carbon yield and oxidation stability.  These information are useful for practical 

application.   
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1.3 Objectives of the Study 

 The objectives of the present study are:  

(i) To establish a methodology of synthesising and purifying CNTs using premixed 

flame synthesis method prior to characterisation. 

(ii) To determine the parameters affect CNT growth and yield.  The parameters such 

as flow rate, equivalent ratio, mesh size and synthesis time. 

(iii) To characterise the morphology and the properties of CNTs produced using 

SEM, TEM, EDX, XPS, Raman spectroscopy and TGA.   

1.4 Scope of the Study 

 This study focuses on synthesis and characterisation on CNTs from flame 

synthesis.  Propane fuel and nickel catalyst were used in this experiment to grow 

CNTs.  Parametric studies were performed with fuel/air flow rate in the range of 0.9 

g/s to 1.5 g/s, equivalence ratio of 1.8 to 2.2, mesh size ranging from 60 to 100 and 

synthesis time of 10 min to 20 min.  The distance between nozzle and substrate was 

varied between 2 cm to 18 cm to obtain maximum CNTs yield.  The morphology and 

the properties of CNTs produced were characterised by using SEM, TEM, EDX, 

XRD, TGA, Raman spectroscopy and XPS. 

1.5 Significance of the Study 

 The present study focuses on the investigation of CNTs synthesised from 

flame.  By using a relatively simple setup of a Bunsen type premixed flame burner, 

parametric study of CNTs production was conducted to determine the optimal 

conditions for CNTs growth.  The quality of the CNTs synthesised were 

characterised using different techniques.  The methodology of synthesising, 

harvesting, purifying and characterising CNTs can serve as a reference for extended 

flame synthesis method.  The database of the CNTs characteristics developed can be 
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used for modelling validation targets and practical usage.  It is envisaged that CNTs 

production using flame can be up scaled to industrial level. 
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