BUILDING INFORMATION MODELLING-BASED APPROACH FOR ASPECTS OF GREEN BUILDING EVALUATION

TAKI EDDINE SEGHIER

Thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy in Architecture

Faculty of Built Environment and Surveying Universiti Teknologi Malaysia

AUGUST 2019

DEDICATION

To My Beloved Parents, I Dedicate All the Success. "May Allah Grant You Paradise" Your Youngest Son.

ACKNOWLEDGEMENT

First and foremost, all praises go to Allah (S.W.T) for giving me the courage and the willpower to go through this adventure and finish this research work.

I would like to express my most profound appreciation to Prof. Dr Mohd Hamdan Ahmad, my supervisor and advisor. He has generously provided his invaluable insights, constant critical guidance, and warm encouragement throughout this research journey. I would also like to give my great thanks to Assoc. Prof. Dr. Lim Yaik Wah, my co-advisor. He has generously given his time and shared his experience with me. His knowledge in the area of Building Information Modelling has provided an essential foundation for this research.

I would also like to thank the Real Estate and Housing Developers' Association (REHDA) and especially GreenRE assessors for assisting me in the data collection which has been invaluable to this research. Additionally, I would like to acknowledge the Ministry of Higher Education Malaysia for the scholarship and the financial support during my study at Universiti Teknologi Malaysia.

Last but by no means least, I would like to give this greatest gratitude to my mother Yamina Alia and my father Abdelaziz Seghier for the love, care, prayers and everything they gave me in this life, "May Allah grant them paradise". I would also like to express my most significant appreciation to my family, sisters, brothers and friends for putting up with me, always being there and keep on believing in me.

ABSTRACT

Green Building Rating Systems (GBRS) have been developed around the world to guide project teams in achieving sustainable building goals. However, the current practice of assessing building sustainability under these rating systems is based on a fragmented process, which relies on paper-based work and manual data input. Building Information Modelling (BIM) technology and design process, on the other hand, are based on the use of intelligent data-rich models, where the required data can be extracted automatically and used to assist green building assessment. This study developed an integrated BIM-based approach for green building assessment that supports GreenRE rating system developed by Real Estate and Housing Developers' Association (REHDA). Initially, an exploratory study was conducted to investigate the current practice of green building assessment under GreenRE and the feasibility of using BIM technologies to tackle the current issues. Then, a BIM-GreenRE assessment method was established based on the match-up of GreenRE requirements and the BIM design process required for sustainability assessment. Based on the conceptual framework of this assessment method, a pragmatic solution consisting of Passive Design Toolkit (PDT) was developed using a visual programming tool called Dynamo. The PDT automates the assessment of two passive design prerequisites under GreenRE rating tool, namely the Overall Value of Thermal Transfer Value (OTTV) and Concrete Usage Index (CUI). Finally, the PDT procedure was tested and demonstrated through a case study, and the generated results were validated against manual calculations. The validation experiment showed a higher automation with greater accuracy during the assessment process of the OTTV (measured 56.24 W/m²) and CUI (measured 0.255 m³/m²) of the case study and this took less than one minute to complete each procedure. This research has established and demonstrated a BIMbased strategy for integrating BIM to the process of assessing building sustainability under GreenRE requirements. The newly developed PDT could be used to assist project teams during the design decision-making regarding building envelop thermal performance such as OTTV, and Concrete Usage Index (CUI) assessment that would enable them to test and compare the performance of several design options early in the design stage.

ABSTRAK

Sistem Penarafan Bangunan Lestari (GBRS) telah dibangunkan di seluruh dunia bagi membantu pasukan projek mencapai matlamat bangunan lestari. Walau bagaimanapun, amalan yang dipraktikkan sekarang untuk menilai bangunan lestari menggunakan sistem penarafan tersebut adalah berdasarkan proses berasingan yang bergantung kepada borang kertas dan input data secara manual. Sebaliknya, teknologi dan proses mereka bentuk Permodelan Bangunan Bermaklumat (BIM) adalah berdasarkan penggunaan kepintaran model yang kaya dengan data, dimana data yang diperlukan boleh diambil secara automatik dan digunakan untuk membantu penilaian bangunan lestari. Kajian yang telah dikendalikan ini untuk membangunkan penarafan berintegrasi yang berasaskan BIM untuk membantu penilaian bangunan lestari bagi sistem penilaian GreenRE, yang telah dibangunkan oleh Persatuan Pemaju Hartanah dan Perumahan (REHDA). Kajian ini dimulai dengan menjalankan satu kajian penerokaan untuk menyiasat amalan terkini semasa menilai bangunan lestari di bawah GreenRE, dan kebolehlaksanaan untuk menggunakan teknologi BIM untuk meyelesaikan isu-isu semasa. Kemudian, satu kaedah penilaian BIM-GreenRE telah dibangunkan berdasarkan kepada gabungan keperluan GreenRE dan proses reka bentuk BIM yang diperlukan untuk penilaian lestari. Berdasarkan kepada kerangka konseptual teoritikal untuk kaedah penilaian ini, satu penyelesaian pragmatik yang terdiri daripada alatan reka bentuk pasif (PDT) telah dibangunkan dengan menggunakan bahasa pengaturcaraan visual (VPL) yang dipanggil Dynamo. PDT membuat penilaian secara automatik untuk dua prasyarat reka bentuk pasif di bawah alatan penarafan GreenRE, iaitu nilai keseluruhan pemindahan haba (OTTV) dan indeks penggunaan konkrit (CUI). Akhir sekali, prosedur PDT telah diuji dan dibandingkan melalui satu kajian kes dan hasil yang diperolehi telah disahkan melalui kaedah pengiraan manual. Eksperimen validasi telah menunjukkan automasi yang lebih tinggi dengan ketepatan yang lebih tepat semasa proses penilaian OTTV (diukur 56.24 W/m2) dan CUI (diukur 0.255 m³/m²) untuk kajian kes yang mengambil kurang daripada satu minit untuk setiap prosedur. Kajian ini telah membuktikan dan menunjukkan satu strategi berdasarkan BIM untuk mengintegrasikan BIM ke dalam proses penilaian bangunan lestari di bawah keperluan GreenRE. PDT yang dicadangkan dapat membantu pasukan projek semasa fasa membuat keputusan reka bentuk yang merangkumi reka bentuk sampul bangunan dan penilaian indeks seperti OTTV dan CUI yang membolehkan mereka menguji dan membandingkan kecekapan beberapa pilihan reka bentuk di peringkat awal fasa mereka bentuk.

TABLE OF CONTENTS

TITLE

DECL	ARATION	ii
DEDI	CATION	iii
ACKN	NOWLEDGEMENT	iv
ABST	RACT	v
ABST	RAK	vi
TABL	vii	
LIST	OF TABLES	xiii
LIST	OF FIGURES	xvi
LIST	OF ABBREVIATIONS	XX
LIST	OF APPENDICES	xxiii
CHAPTER 1	INTRODUCTION	1
1.1	Background of the Study	1
1.2	Problem Statement	4
1.3	Research Questions	7
1.4	Research Aim	7
1.5	Research Objectives	7
1.6	Research Design	8
1.7	Research Motivation	10
1.8	Research Scope	10
1.9	Significance of the Study	12
1.10	Thesis Organisation	12
CHAPTER 2	GREEN BUILDING EVALUATION AN	ND

CERTIFICATION152.1Introduction152.2Sustainable Development in the Build Environment15

	2.3	Sustaina	able Building Development in Malaysia	16
	2.4	Benefits	s of Sustainable/Green Buildings	18
	2.5	Building	g Sustainability Assessment	18
	2.6	Green E	Building Certification: Emergence and Challenges	19
	2.7	GreenR	E Certification	21
		2.7.1	GreenRE Requirements	23
		2.7.2	GreenRE Passive Design Criteria	25
		2.7.3	Overall Thermal Transfer Value (OTTV/RETV)	27
		2.7.4	Concrete Usage Index (CUI)	29
	2.8	Other G	reen Building Certification in Malaysia	29
		2.8.1	Green Building Index (GBI) Certification	29
		2.8.2	MyCREST Certification	30
	2.9	Compar	ison between the Malaysian GBRS	32
	2.10	Green E	Building Certifications around the World	36
		2.10.1	LEED Certification	36
		2.10.2	BREEAM Certification	37
		2.10.3	BEAM Plus Certification	40
		2.10.4	CASBEE Certification	41
		2.10.5	GBtools Certification	42
		2.10.6	Green Mark Certification	43
	2.11	Compar	ison of Green Building Certifications	44
	2.12	Summa	ry	48
CHAPTEI	R 3	BIM FO	OR GREEN BUILDING DESIGN	
		AND E	VALUATION	51
	3.1	Introduc	ction	51
	3.2	Building	g Information Modelling (BIM) Overview	51
		3.2.1	BIM Concept Definition	51
		3.2.2	BIM Framework	53
		3.2.3	BIM-based Design Process	55
		3.2.4	BIM LOD Framework	56
		3.2.5	BIM Authoring Tools	58

	3.2.6	BIM Add	option	59
	3.2.7	BIM Add	option in Malaysia	61
	3.2.8	Benefits	of BIM Process	61
3.3	Green H 3.3.1	e	formation Modelling (Green BIM) M for Sustainable Design	63 63
	3.3.2	BIM-bas	ed Environmental Analysis Tools	66
		3.3.2.1	Green Building Studio (GBS)	68
		3.3.2.2	Integrated Environmental Studio (IES-VE)	69
		3.3.2.3	Autodesk Ecotect Analysis	70
		3.3.2.4	EnergyPlus	71
		3.3.2.5	Building Energy Index Tool (BEIT)	71
	3.3.3	Revit Fu	nctionalities for Sustainable Design	72
3.4	Previou	s Research	n on Green BIM	73
	3.4.1	BIM for	Green Building Evaluation and Rating	73
	3.4.2	BIM for 2	Energy Efficiency and Optimisation	79
3.5	Compu	tational Bu	ilding Information Modelling (BIM)	82
	3.5.1	The Need	d for Computational BIM	82
	3.5.2	Algorithr	ns	85
	3.5.3	Textual F	Programming and Advanced Scripting	86
	3.5.4	Visual Pr	ogramming	87
		3.5.4.1	History of Visual Programming	87
		3.5.4.2	Visual Programming Languages (VPL)	
			Principles	89
		3.5.4.3	Comparison of Visual Programming tools	92
		3.5.4.4	Visual Programming vs. Revit Plug-ins	93
		3.5.4.5	Dynamo and Its Anatomy	94
		3.5.4.6	The Application of Visual Programming	100
3.6	Summa	ry		101
CHAPTER 4	RESEA	ARCH ME	CTHODOLOGY	103
4.1	Introdu	ction		103
4.2	Researc	h Philosop	bhical Paradigm	103
4.3	Researc	h Design		105

5.1	Introdu	iction	137
CHAPTER 5		LTS AND DISCUSSION OF FGD WEB-SURVEY	137
4.8	Summa	ary	134
		4.7.3.1 Case Study for PDT Testing	132
	4.7.3	Testing and Validation	131
	4.7.2	Methodology for Auto-CUI Development	130
	4.7.1	Methodology for Easy OTTV/RETV Development	129
4.7	Passive	e Design Toolkit (PDT) Tool Development	126
	4.6.3	Development (LOD) BIM Tools Selection	124 125
	4.6.2	Integration with the BIM Level of	
	4.6.1	Interpreting GreenRE Credits Requirements	124
4.6	BIM-C	GreenRE Assessment Method Development	123
	4.5.2	Quantitative Data Analysis for the Survey	122
	4.5.1	Qualitative Data Analysis for the FGD	120
4.5	Data A	nalysis	120
		4.4.2.4 Conduct of the Focus Group Discussion	119
		4.4.2.3 General Information of the Focus Group	118
		4.4.2.2 Planning the Focus Group Meeting	117
		4.4.2.1 The Composition of the Focus Group	116
	4.4.2	Focus Group Discussion (FGD)	115
		4.4.1.5 Web-Survey Distribution	114
		4.4.1.4 Justification of the Sampling Approach	112
		4.4.1.3 Pilot Study Results	111
		4.4.1.1 Survey Questionnaire Design4.4.1.2 Pilot Study Testing	109 110
	4.4.1	Web-based Survey	108
4.4		collection Strategy and Instruments	107
	4.3.2	Argument of Selecting a Mixed Method	106
	4.3.1	Combining Descriptive and Exploratory Research	105
	101		105

5.2	Focus Group Discussion (FGD): The Perspective				
	of GreenRE assessors 13				
	5.2.1	Themes S	tructure	137	
	5.2.2	Current P	ractice under GreenRE Certification	138	
		5.2.2.1	GreenRE Assessment Process	138	
		5.2.2.2	Current Goals of GreenRE Certification	139	
		5.2.2.3	Current Tools and Methods of Working	140	
		5.2.2.4	Used Software and Tools	141	
		5.2.2.5	Common Mistakes and Challenges	142	
		5.2.2.6	Future Plans	144	
	5.2.3	BIM for C	GreenRE Certification Support	145	
		5.2.3.1	Malaysian Green Building Industry	145	
		5.2.3.2	BIM-based Tool Development	146	
		5.2.3.3	CUI: Current Challenges and Suggestions	147	
		5.2.3.4	OTTV/RETV: Current Challenges		
			and Suggestions	148	
		5.2.3.5	GreenRE Template	149	
	5.2.4	FGD Sum	imary	149	
5.3	Survey	Results: T	he Perspective of GreenRE Managers	151	
	5.3.1	Part 1: Pa	rticipants Overview	151	
	5.3.2	Part 2: Cu	rrent Practice under GreenRE Certification	155	
	5.3.3	Part 3: BI	M for GreenRE Certification Support	162	
		5.3.3.1	Part 3 – Section 1: BIM Awareness	162	
		5.3.3.2	Part 3 – Section 2: Feasibility of		
			Integrating BIM to GreenRE	167	
5.4	Summa	ry		172	
CHAPTER 6	DEVEI	LOPMENT	F OF PASSIVE DESIGN TOOLKIT		
	(PDT)	FOR BIM-	GREENRE ASSESSMENT	175	
6.1	Introduc	ction		175	
6.2			sessment Method Development	175	
0.2	6.2.1		ng GreenRE Requirements	175	
		6.2.1.1	Energy-Related Requirements	177	

			6.2.1.2	Other Green Requirements	181
		6.2.2	GreenRE	Requirements and the BIM Design Process	
			Integratio	n	186
		6.2.3	Summary	of the BIM-GreenRE Assessment Method	189
	6.3	Passive	Design To	olkit (PDT) Development	195
		6.3.1	Easy OTT	V/RETV Assessment Tool Development	195
			6.3.1.1	Current limitations and challenges	195
			6.3.1.2	Computational BIM-based OTTV/RETV	
				Model	196
			6.3.1.3	Dynamo Scripts for OTTV/RETV	197
			6.3.1.4	Case Study for Easy OTTV/RETV	
				Testing	203
		6.3.2	Auto-CU	Assessment Tool Development	208
			6.3.2.1	Current Limitations and Challenges	208
			6.3.2.2	Revit-CUI Compliance	209
			6.3.2.3	Dynamo Scripts for Auto-CUI Tool	210
			6.3.2.4	Case Study for Auto-CUI Testing	212
	6.4	Summar	ry		217
CHAPTEI	R 7	CONCI	LUSIONS	AND RECOMMENDATIONS	219
	7.1	Introduc	ction		219
	7.2	Researc	h Findings		219
		7.2.1	Current P	ractice of Green Building Evaluation	219
		7.2.2	BIM-base	d Approach for Green Building Evaluation	221
			7.2.2.1	BIM-GreenRE Assessment Method	221
			7.2.2.2	Passive Design Toolkit (PDT)	222
	7.3	Researc	h Limitatio	ons	223
	7.4	Researc	h Implicati	ons on Building Industry	224
	7.5	Recomm	nendations	for Future Research	226
REFEREN	NCES				229
LIST OF I	PUBLI	CATION	N		291

LIST OF TABLES

TABLE NO.	TITLE PA	AGE
Table 1.1	Previous studies related to the application of BIM for green	
	building evaluation	6
Table 2.1	GreenRE rating tool credits distribution for Residential Building	5
	and Non-Residential Buildings	23
Table 2.2	Prerequisite requirements in GreenRE tool V.3.0 for residential	
	building	24
Table 2.3	Passive design criteria in GreenRE tools for residential buildings	s 27
Table 2.4	Assessment criteria maximum achievable points	30
Table 2.5	Categories of green building index rating	30
Table 2.6	Comparison between EE categories of the Malaysian GBRS	34
Table 2.7	Comparison between the Malaysian GBRS	35
Table 2.8	LEED categories, points, and environmental weighting factors	36
Table 2.9	LEED rating scale	37
Table 2.10	BREEAM rating score	39
Table 2.11	BREEAM categories and their environmental weighting factors	39
Table 2.12	CASBEE rating scale	42
Table 2.13	GBTool environmental weighting	43
Table 2.14	BCA Green Mark NRB 2015 categories and maximum points	44
Table 2.15	BCA Green Mark NRB 2015 Award Rating System	44
Table 2.16	Comparison between four internationally recognised	
	environmental assessment methods	47
Table 3.1	BIM LOD	57
Table 3.2	Overview of popular BIM authoring tools in current market	58
Table 3.3	Dynamo packages	99
Table 4.1	Parts of the survey questions and its importance	110
Table 4.2	Reliability testing for the pilot study	112
Table 4.3	Non-probability sampling methods	113
Table 4.4	Overview of the focus group participants	118
Table 4.5	Discussion guide and topic agenda for the focus group	120

Table 4.6	Previous research and the software used for development	126
Table 4.7	Previous research and their validation methods	131
Table 4.8	Previous research and their validation methods (continued)	132
Table 5.1	Twelve major themes extracted from the FGD	138
Table 5.2	Comparison between Participants' green building certification	
	training attendance and the participation of green building	
	projects under specific green building certification	154
Table 5.3	The most used method during the assessment of green building	
	under GreenRE rating tool	161
Table 5.4	BIM tools used by the respondents for building sustainability	
	analysis	165
Table 5.5	Applicability levels in GreenRE Part 1 - Energy Efficiency (EE)	168
Table 5.6	Applicability levels in GreenRE Part 2 - Water Efficiency (WE)	168
Table 5.7	Applicability levels in GreenRE Part 3 – Environmental	
	Protection (EP)	169
Table 5.8	Applicability levels in GreenRE Part 4- Indoor Environmental	
	Quality (IEQ)	169
Table 5.9	Applicability levels in GreenRE Part 5 and 6 - Other Green	
	Features and Carbon Emission of Development	170
Table 6.1	Categorization of each GreenRE requirement according to its	
	assessment method	177
Table 6.2	Summary of the interpretation report of Energy Efficiency (EE)	
	requirements	179
Table 6.3	Summary of the interpretation report of Energy Efficiency (EE)	
	requirements (Continued)	180
Table 6.4	Summary of the interpretation report of	
	"other green requirements."	183
Table 6.5	Summary of the interpretation report of	
	"other green requirements." (Continued)	184
Table 6.6	Summary of the interpretation report of	
	"other green requirements." (Continued)	185
Table 6.7	OTTV/RETV integration with BIM LOD	187
Table 6.8	GreenRE (EE) requirements integration with the BIM LOD	
	and BIM functionalities screening	190

Table 6.9	GreenRE (EE) requirements integration with the BIM LOD	
	and BIM functionalities screening (Continued)	191
Table 6.10	Other Green Requirements integration with the BIM LOD	
	and BIM functionalities screening	192
Table 6.11	Other Green Requirements integration with the BIM LOD	
	and BIM functionalities screening (Continued)	193
Table 6.12	Other Green Requirements integration with the BIM LOD	
	and BIM functionalities screening (Continued)	194
Table 6.13	Comparing Easy OTTV/RETV assessment outputs	
	against manual calculations	207
Table 6.14	Comparison between Revit Material Take-off and	
	Auto-CUI tool of concrete volume in the case study	214

LIST OF FIGURES

FIGURE NO.

TITLE

PAGE

Figure 1.1	Research problem	4
Figure 1.2	Research Design	9
Figure 1.3	Thesis organization	13
Figure 2.1	Perdana Putra certified Platinum under GBI rating	17
Figure 2.2	Worldwide chronological development of green rating systems	20
Figure 2.3	Comparison of the criteria of GreenRE tools for residential	
	and non-residential buildings	22
Figure 2.4	GreenRE assessment framework for residential buildings	24
Figure 2.5	GreenRE Certification Process	25
Figure 2.6	MyCREST assessment criteria during the design, construction and	
	O&M stages	32
Figure 2.7	MyCREST rating stars and score	32
Figure 2.8	BREEAM assessment process	38
Figure 2.9	Framework of BEAM Plus assessment scheme	41
Figure 3.1	BIM framework includes three interlocking fields of BIM activity	54
Figure 3.2	Level of Development (LOD)	57
Figure 3.3	BIM tools suggested by the Public Works	
	Department (PWD) in 2007	59
Figure 3.4	An Updated Building Information Modeling (BIM) Maturity Mode	el
	from Computer-Aided Design to Building Lifecycle Management	60
Figure 3.5	Comparing the typical design process and design process	
	based on BIM	62
Figure 3.6	BIM-supported lifecycles of green projects	63
Figure 3.7	The different energy simulation software and engines in	
	the building industry	67
Figure 3.8	Comparison IES-VE Zone-based and Room-based modelling	
	compliance with part L of the Building Regulations and to conduct	
	assessment against a LEED rating system.	70

Figure 3.9	BEIT software	71
Figure 3.10	Framework depicting critical steps involved in sustainability	
	analyses and LEED documentation process	75
Figure 3.11	BIM–BEAM Plus application procedures	76
Figure 3.12	Flowchart of the integration process	77
Figure 3.13	GBAT tool sustainable data model	78
Figure 3.14	BPOpt optimisation output	79
Figure 3.15	Design optimisation	84
Figure 3.16	Visualized Excel dependencies between cells	88
Figure 3.17	Graphical representation and pseudocode of an if-statement	90
Figure 3.18	Schematic representation of a black-box and a white-box node	91
Figure 3.19	(a) Plug-Ins structure (left), (b) the integrated structure of graphic	cal
	programming (mid) and (c) the bi-directional connection to	
	more than one application (right)	93
Figure 3.20	Relationship of Dynamo to other applications	95
Figure 3.21	Problem-solving workflow in Dynamo	96
Figure 3.22	Dynamo V1.2.1 user interface anatomy	97
Figure 3.23	Basic Dynamo script anatomy	98
Figure 3.24	Dynamo Package Managers	98
Figure 4.1	Primary data collection from two perspectives: GreenRE	
	assessors and GreenRE Managers	108
Figure 4.2	Thematic Data Analysis for the FGD	121
Figure 4.3	BIM-GreenRE assessment method development stages	123
Figure 4.4	Passive Design Toolkit (PDT) conceptual model	128
Figure 4.5	Proposed research method for Easy OTTV/RETV	
	tool development	129
Figure 4.6	Computational BIM-based workflow for the development	
	of Auto-CUI tool	130
Figure 4.7	View (photo) on the case study building	133
Figure 4.8	Case study building (BIM model) modelled using Revit	133
Figure 4.9	1st floor plan of the case study building	134
Figure 5.1	Educational background qualification of the survey participants	151
Figure 5.2	Working organisation of the survey participants	152
Figure 5.3	Participants roles in their organisations	153

Figure 5.4	The most challenging GreenRE part to achieve its requirements	156
Figure 5.5	Frequency of agreement that implementing GreenRE's	
	sustainability requirements during the design stage is time-	
	consuming.	157
Figure 5.6	Frequency of agreement that the implementation of GreenRE's	
	sustainability requirements during the design stage is based on	
	paperwork and manual calculations	157
Figure 5.7	Frequency of agreement that data input in the current methods of	
	implementing GreenRE's requirements during the design stage is	
	manual	158
Figure 5.8	Frequency of agreement that the identification of the optimum	
	design option during the design of a building seeking	
	for GreenRE certification is challenging	159
Figure 5.9	Frequency of agreement that the current methods of implementing	5
	GreenRE's sustainability requirements do not integrate BIM	
	tools and process	159
Figure 5.10	Awareness of the survey participants about Building Information	
	Modelling (BIM) concepts	163
Figure 5.11	Participant's level of experience using Building Information	
	Modelling (BIM) tools	165
Figure 5.12	Agreement on the applicability of BIM tools to support	
	green building design under GreenRE requirements	166
Figure 5.13	Applicability of using BIM tools to support each	
	GreenRE criteria	170
Figure 6.1	Interpreting RES 3-1-CUI requirement	181
Figure 6.2	Proposed Easy OTTV/RETV model architecture	197
Figure 6.3	Concept for auto-detection of wall orientation in Revit	199
Figure 6.4	Data extraction flow for OTTV/RETV requirement	200
Figure 6.5	Dynamo script A1 developed to extract the opaque walls' data	
	according to OTTV/RETV requirement	201
Figure 6.6	Dynamo script A2: Data extraction and management for glazing	
	surfaces	202
Figure 6.7	Excluding the Non-AC rooms from OTTV/RETV	
	calculation using "Is NV Room" parameter	204

Figure 6.8	Case study (BIM model) in perspective view		
Figure 6.9	OTTV/RETV Excel Template	206	
Figure 6.10	New shared parameter for CUI assessment workflow	210	
Figure 6.11	The logic workflow of the developed Dynamo script		
	for automated CUI assessment	211	
Figure 6.12	Dynamo script for concrete usage assessment	212	
Figure 6.13	BIM model of the case study building in Revit	213	
Figure 6.14	Sample of Auto-generated CUI report showing concrete		
	quantities in each building element by level (The above schedule		
	presents only one part of the whole CUI report)	215	
Figure 6.15	Sample of a detailed comparison of CUI results generated using		
	Auto-CUI report and Revit Material Take-off	216	

LIST OF ABBREVIATIONS

3D	-	Three-dimensional		
2D	-	Two-dimensional		
AC	-	Air-Conditioned		
CAD	-	Computer-aided design		
AEC	-	Architecture, Engineering and Construction		
AIA	-	American Institute of Architects		
APA	-	Application Programming Interface		
ASHRAE	-	American Society of Heating, Refrigerating and Air		
		Conditioning Engineers		
BCA	-	Building and Construction Authority		
BEAM	-	Building Environmental Assessment Method		
BEI	-	Building Energy Index		
BEIT	-	Building Energy Index Tool		
BIM	-	Building Information Modelling		
BREEAM	-	Building Research Establishment Environmental		
		Assessment Method		
CASBEE	-	Assessment Method Comprehensive Assessment System for Built		
CASBEE	-			
CASBEE CF	-	Comprehensive Assessment System for Built		
	-	Comprehensive Assessment System for Built Environment Efficiency		
CF	-	Comprehensive Assessment System for Built Environment Efficiency Correction Factor		
CF CIDB	- - -	Comprehensive Assessment System for Built Environment Efficiency Correction Factor Construction Industry Development Board		
CF CIDB CUI		Comprehensive Assessment System for Built Environment Efficiency Correction Factor Construction Industry Development Board Concrete Usage Index		
CF CIDB CUI DLL		Comprehensive Assessment System for Built Environment Efficiency Correction Factor Construction Industry Development Board Concrete Usage Index Dynamic Link Libraries		
CF CIDB CUI DLL DOE		Comprehensive Assessment System for Built Environment Efficiency Correction Factor Construction Industry Development Board Concrete Usage Index Dynamic Link Libraries Department of Energy, United States		
CF CIDB CUI DLL DOE DSS		Comprehensive Assessment System for Built Environment Efficiency Correction Factor Construction Industry Development Board Concrete Usage Index Dynamic Link Libraries Department of Energy, United States Decision Support System		
CF CIDB CUI DLL DOE DSS DXF		Comprehensive Assessment System for Built Environment Efficiency Correction Factor Construction Industry Development Board Concrete Usage Index Dynamic Link Libraries Department of Energy, United States Decision Support System Drawing Exchange Format		
CF CIDB CUI DLL DOE DSS DXF EE		Comprehensive Assessment System for Built Environment Efficiency Correction Factor Construction Industry Development Board Concrete Usage Index Dynamic Link Libraries Department of Energy, United States Decision Support System Drawing Exchange Format Energy Efficiency		
CF CIDB CUI DLL DOE DSS DXF EE EP		Comprehensive Assessment System for Built Environment Efficiency Correction Factor Construction Industry Development Board Concrete Usage Index Dynamic Link Libraries Department of Energy, United States Decision Support System Drawing Exchange Format Energy Efficiency Environmental Protection		
CF CIDB CUI DLL DOE DSS DXF EE EP EPD		Comprehensive Assessment System for Built Environment Efficiency Correction Factor Construction Industry Development Board Concrete Usage Index Dynamic Link Libraries Department of Energy, United States Decision Support System Drawing Exchange Format Energy Efficiency Environmental Protection Environmental Product Declaration		

		Environment >	
FAB	-	Faculty of Built Environment	
FFI	-	Foreign Function Interface	
FGD	-	Focus Group Discussion	
GA	-	GreenRE Assessor	
GBAT	-	Green Building Assessment Tool	
GBI	-	Green Building Index	
GBS	-	Green Building Studio	
GBRS	-	Green Building Rating System	
gbXML	-	Green Building XML	
GFA	-	Gross Floor Area	
GHG	-	Greenhouse Gas	
GIS	-	Geographic Information System	
GMDB	-	Green Materials Database	
GnPR	-	Green Plot Ratio	
GTFS	-	Green Technology Financing Scheme	
GUI	-	Graphical User Interface	
HVAC	-	Heating, Ventilation and Air-Conditioning	
IEQ	-	Indoor Environmental Quality	
IES <ve></ve>	-	Integrated Environment Solution <virtual< td=""></virtual<>	
		Environment	
IFC	-	Industry Foundation Classes	
IN	-	Innovation	
IT	-	Information Technology	
JB	-	Johor Bahru	
JKR	-	Jabatan Kerja Raya	
KeTTHA	-	Ministry of Energy, Green Technology and Water of	
		Malaysia	
LCA	-	Life-cycle Assessment	
LCCF	-	Low Carbon City Framework	
LEED	-	Leadership in Energy and Environmental Design	
LOD	-	Level of Development	
MOO	-	Multi-objective Optimisation	
MS	-	Malaysian Standard	

MTO	-	Material Take-Off		
MyCREST	-	Malaysian Carbon Reduction and Environmental		
		Sustainability Tool		
NBS	-	National BIM Standards		
NRB	-	National BIM Standards Non Residential Building		
NRNC	-	Non-residential New Construction		
NV	-	Natural Ventilation		
OF	-	Solar Orientation Factor		
OGF	-	Other Green Features		
OandM		- Operations and Maintenance		
OPC	-	Ordinary Portland Cement		
OTTV	-	Overall Thermal Transfer Value		
PAM	-	Architectural Association of Malaysia		
PDT	-	Passive Design Toolkit		
PHP	-	Personal Home Page		
PV	-	Photovoltaic		
PWD	-	Public Works Department		
REHDA	-	Real Estate and Housing Developers' Association		
RES	-	Residential Building		
RETV	-	Residential Envelop Transmittance Value		
RNC	-	Residential New Construction		
ROI	-	Return on Investment		
SC	-	Shading Coefficient		
SHGC	-	Solar Heat Gain Coefficient		
USGBC	-	U.S. Green Building Council		
UTM	-	Universiti Teknologi Malaysia		
WC	-	Water-Closets		
WE	-	Water Efficiency		
WEPLES	-	Water Efficient Product Labelling Scheme		
WWR	-	Window-to-wall Ratio		
V	-	Variable		
VPL	-	Visual Programming Language		

LIST OF APPENDICES

APPENDIX

TITLE

PAGE

Appendix A	Web-Based Survey Questionnaire	2466
Appendix B	Cross Tabulation	25252
Appendix C	Focus Group Discussion	2566
Appendix D	Consent of Participation for FGD	2577
Appendix E	Focus Group Discussion Questions	26363
Appendix F	Initial themes created from the FGD transcript	26464
Appendix G	GreenRE Rating Tool for Residential building	2655
Appendix H	Details of the PDT Scripts	2677
Appendix I	User Guideline: Easy OTTV/RETV	27474
Appendix J	Manual Calculation of OTTV	28383
Appendix K	Material Take-Off for CUI	2866
Appendix L	Case Study Building Specification	2899
Appendix M	List of Publications	29191

CHAPTER 1

INTRODUCTION

1.1 Background of the Study

Worldwide, the building construction industry is considered as one of the most challenging and complex industries. Unfortunately, it has been heavily criticised for its high impact on the natural environment and the role that it plays in increasing greenhouse gas emissions and the degradation of the planet resources (Jones *et al.*, 2010; Stadel *et al.*, 2011). As a consequence, it is now believed that building professionals and stakeholders should act in order to alleviate climate change threats and the extensive impact of constructions on the environment by adopting sustainable practices in building design (Dixon *et al.*, 2012; Wu, 2010).

Building practitioners have realised the importance of having consistent metrics for the quantitative and qualitative evaluation of building performance in order to efficiently guide and rate the design and construction of green buildings (Wu, 2010). As a result, many Green Building Rating Systems (GBRS), such as LEED (Leadership in Energy and Environmental Design), BREEAM (Building Research Establishment Environmental Assessment Method), Green Mark (Singapore), Green building Index (GBI) and GreenRE (Malaysia) have been developed and adopted by different countries around the world to assess and certify green buildings. A GBRS is a point-based system which consists of several categories for the benchmarking of building design performances and its surrounding environment (Sharaf and Al-Salaymeh, 2012). These categories cover standard requirements including but not limited to building Energy Efficiency (EE), Indoor Air Quality (IAQ), water efficiency, materials and resources usage, and others. Achieving points in these targeted areas will mean the building will likely be more environmentally friendly than those that do not address the issues (Gowri, 2004).

Energy Efficiency (EE) has always been the one of most concern under the majority of GBRS, and weighted the highest portion of achievable credit points (e.g. 31.9% of credit in BREEAM and 19% in LEED). According to Sadineni *et al.*, (2011) building Energy Efficiency can be improved either by passive and/or active technologies. Active design focus mainly on the optimization of building services which includes heating, ventilation, air-conditioning (HVAC) systems, hot water production and lighting. In contrast, passive design strategies seeks to provide more energy efficient building envelope, shape and layout, which are constrained by the building structure. Recently, an increased interest has appeared among building practitioners in passive design strategies because of its low extra capital investment cost compared to the potential benefit in energy saving (Chen *et al.* 2015). Therefore, several passive design requirements become incorporated in the various GBRS to ensure the achievement of energy saving at the initial architectural design stage.

A recent trend of research works started to investigate how Building Information Modelling (BIM) design process and tools could be implemented to assist green building evaluation under the different GBRS requirements. By definition, Building Information Modelling (BIM) is a set of interacting policies, processes and technologies generating a "methodology to manage the essential building design and project data in digital format throughout the building's life-cycle" (Penttilä, 2006). BIM-based design process relies on object-oriented database which is made up of intelligent objects, 3D representation of integrated information and a relational database that is interconnected (Eastman, 2011). According to Smith and Tardiff (2009) and Eastman (2011), most of the information used in a construction project originates in CAD drawings. Though, these have limited capability to serve as a data repository, are labour intensive, time consuming to produce and un-computable. Therefore, it may create much room for error in the information production and flow. On the other hand, BIM approach to building design does not only lie on the advantages of 3D parametric modelling, but also the structured information that is organized, defined and exchangeable (Haron, 2013). The structured information can be used to support decision-making early in the design process by increasing the design certainty, easing the coordination of design production and providing a seamless

information flow and communication between project stakeholders (Smith and Tardiff, 2009).

Krygiel and Nies (2008), Eastman (2011) and many other scholars think that BIM can help to improve building industry productivity as well as support green building evaluation and certification. For example, according to Jalaei (2015) BIM tools have the ability to provide users with an opportunity to explore diverse energy saving alternatives at the early design stage by avoiding time-consuming process of re-entering all building geometry and supporting information necessary for complete energy analysis. Moreover, due to the integration of Visual Programming Languages (VPL) to the BIM tools, designers without background in programming are now able to develop graphical scripts for automated data extraction and management. For instance, the linkage of visual programming tools (e.g. Dynamo) to the BIM authoring tools (e.g. Revit) allows designer to create automated workflows for the extraction of the data that can be used for building sustainability analysis (Wong and Kuan, 2014; Kensek, 2015; Konis *et al.*, 2016).

Currently, much effort is carried out for BIM adoption around the world including Malaysia. However, in the Malaysian building industry, BIM application in green building assessment and certification are still in its infancy stages. This study aims to address the challenges of integrating BIM technologies with one Green building rating tool in Malaysia, namely GreenRE. The main output of this study consists of the proposed BIM-GreenRE assessment method in addition to the developed Passive Design Toolkit (PDT). The availability of such a BIM-based assessment method and Toolkit will support project teams in the implementation of BIM-based efficient workflows for the automation of green building evaluation early in the design stages.

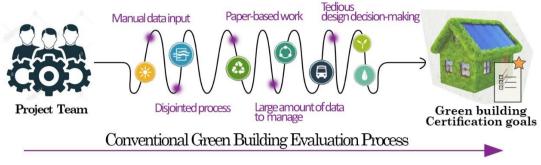


Figure 1.1 Research problem

The current practice of building design to achieve a specific green building certification goals is highly-complex, rigorous and costly (Kasim, 2015). As shown in Figure 1.1, it is based on a disjointed process which relies on manual calculation, paper-based work and manual data input (Jalaei, 2015; Kasim, 2015; Wong and Kuan, 2014; Wu, 2010). Moreover, it often requires the management of a large amount of data at every stage of building sustainability assessment, which increases the possibility of having inaccurate assessment results at the end of the assessment process (Cole, 2005). For instance, materials selection in green buildings become dependent on several sustainability criteria and regulations, such as materials embodied energy, carbon emissions, concrete usage index (CUI), local material and so on. Because of the interference between these sustainability criteria, it is not easy to predict the impact of one material choice on the overall building sustainability, especially in the early stages of building design (Trusty, 2003). One design option could achieve an excellent thermal performance of the indoor building environment; however, the same choice could have a negative impact on the environment (e.g. in term of embodied carbon).

Design decision-making in green building projects and building sustainability assessment processes are very time consuming due to the fact that collecting, managing and documenting the relevant data is a very laborious process (Ilhan and Yaman, 2016; Jalaei and Jrade, 2015; Kasim, 2015; Lim *et al.*, 2016; Wong and Kuan, 2014; Wu, 2010). Additionally, applying passive design strategies to optimise the envelop of the building can be very tedious (Konis *et al.*, 2016). As a consequence, designers and architects tend to rely on their previous experience outcomes to make a design decision. Therefore, they may create several design options and then they manually test them against past cases to select what they think is the best solution

(Sukreet and Kensek, 2014). Nonetheless, taking the appropriate steps to automate the process of gathering the necessary information for building environmental analysis is argued by Biswas *et al.* (2013) to be very crucial. Therefore, design team nowadays needs more data-driven workflows and tools to automate the assessment process and cope with these new challenges.

It has been argued in the previous research that BIM can support design decision-making and sustainability analysis in the very early design stages (Azhar *et al.*, 2011; Jalaei and Jrade, 2015; Ilhan and Yaman, 2016). Numerous BIM-based methods, tools, and frameworks have been developed around the world, though most of the proposed solutions were developed specifically to comply with the requirements of well-known green building rating systems such as LEED and BREEAM (Lim *et al.*, 2016). Therefore, it is necessary to develop a BIM-based method for green building assessment which complies with the standards and regulation of the Malaysian green building industry. Furthermore, there is a lack of data related to the current practice of green building assessment under the Malaysian green building certifications such as GreenRE. It is not clear yet if green building professionals in the Malaysian building industry are aware of the benefits of using BIM technologies to support the assessment of building sustainability during the design process. Thus, an explorative study on how BIM tools and design process can improve the current practice of green building evaluation is needed.

In the era of BIM application for green building evaluation, often the proposed methods and frameworks are further developed as tangible solutions, which include tools and decision support systems (DSS). Technically speaking, the conventional approaches in developing these solutions can be categorized into two categories; the development of plug-ins or tools integrated to the BIM tools which can analyse the compliance of the building design against several sustainability criteria (Ilhan and Yaman, 2016; Jalaei and Jrade, 2015; Jrade and Jalaei, 2013; Kasim, 2015; Wu, 2010). On the other hand, the second category of solutions relies on the usage the built-in functionalities of the BIM software such as Quantity Take-off (QTO) functionality of Autodesk Revit (Wong and Kuan, 2014; Lim *et al.*, 2016). This method is relatively more straightforward compared to the previous method, it requires only knowledge

about the usage of the BIM tool and its functionalities, though the automation of data management in this method is relatively low and can be considered as semi-automated.

On the other end of the spectrum, recent research have proven that computational BIM design workflows and tools (e.g. Dynamo) have a high potential in automating data extraction and management as well as supporting building sustainability analysis (Asl *et al.*, 2015; Kensek, 2015). Though, most of the very few proposed BIM-based models and tools for green building evaluation in Malaysia are still based on semi-automated technics for data extraction (i.e. Material Take-off). Therefore it is needed to explore the potential of using visual programming to develop automated assessment workflows for green building evaluation. The following table (Table 1.1) summarises the characteristics of some previous research which have proposed BIM-based tools for green building evaluation.

GBRS	Author	Categories	Stage	Related BIM tools/functionality /concepts
LEED (USA)	(Barnes and Castro-Lacouture, 2009)	Building Material	Assessment stage	Revit
LEED (USA)	(Wu, 2010)	Building Material	Assessment stage	Revit, Revit API, design assistance, certification management
LEED (USA)	(Azhar <i>et al.</i> , 2011)	Energy and Water	Assessment stage	Revit, gbXML, IES-VE
BEAM-plus (Hong- Kong)	(Wong and Kuan, 2014)	Building Material	Assessment stage	Revit, parameters, material take-off, Scheduling
LEED (Canada)	(Jalaei and Jrade, 2015)	Energy and Material	Conceptual design stages	Revit, Revit API, Material Database,
BREEAM (Europe)	(Kasim, 2015)	Holistic	Assessment stage	IFC, Rules, Decision logic, Bentley, Revit
LEED, ASHRAE standards	(Asl et al., 2015)	Energy and daylighting	Assessment/ Design stage	Autodesk Revit, Dynamo
BREEAM (Europe)	(Ilhan and Yaman, 2016)	Building Material	Conceptual design stages	ArchiCAD, Green Material Database, IFC, template

Table 1.1 Previous studies related to the application of BIM for green building evaluation

1.3 Research Questions

- 1. What are the challenges, needs, and gaps in the current practice of green building design under the requirement of GreenRE certification?
- 2. What are the expectations of building practitioners about the potential of BIM technologies in supporting green building assessment under GreenRE requirement?
- 3. What are the design variables under each GreenRE requirement and in which level of design process these variables can be managed and extracted from the BIM model?
- 4. What desirable functionalities that BIM applications can provide to generate GreenRE requested data?
- 5. How can computational BIM workflows be implemented to automate the assessment of the passive requirements under GreenRE certification?
- 6. To what extent the proposed Passive Design toolkit is feasible?

1.4 Research Aim

This research aims to develop a BIM-based method to support design decisionmaking during the evaluation of green buildings under GreenRE tool. This will allow architects and designers to achieve the targeted green building certification goals more efficiently during the design stages.

1.5 Research Objectives

- To investigate with GreenRE assessors and managers the feasibility of using BIM tools to support the current practice of green building evaluation under GreenRE requirements.
- To develop a BIM-GreenRE assessment method based on the integration of GreenRE requirements, Revit functionalities and the required BIM Level of Development (LOD) for data extraction.

- iii. To develop a computational BIM-based passive design toolkit (PDT) for the assessment of the passive design prerequisites under GreenRE tools.
- iv. To demonstrate the feasibility of the proposed Passive Design Toolkit (PDT) through a case study building.

1.6 Research Design

The overall research design includes two main parts: the first part is designed to explore the current practice of green building assessment and rating under GreenRE rating tools. Hence, it investigates the current challenges, needs, and gaps. Moreover, in this part, the opinion of GreenRE Managers (GM) and GreenRE assessors (GA) about the feasibility of BIM tools integration to the GreenRE requirement is also investigated. The second part consists of proposing BIM-based solutions for the current issues which include the development of a BIM-GreenRE assessment method and a Passive Design Toolkit (PDT) for green building assessment and rating support during the design stage.

A mixed method that includes a web-based survey (quantitative) and Focus Group Discussion (qualitative) was carried out for data collection to answer the question related to first part of this study (the current practice and the feasibility study). However, the BIM-GreenRE assessment method is developed based on the integration of the BIM functionalities (e.g. Material take-off) provided by the BIM tools with GreenRE requirements. This was done after reviewing the relevant literature and guidelines related to GreenRE requirements and the functionalities provided by the BIM software. The Passive Design Toolkit (PDT) is developed using a Visual Programming Language tool called Dynamo. The developed PDT was tested on a case study building, and its output was validated against manual calculations.

The research design is shown in Figure 1.2. The research approach adopted in this study is expected to answer the formulated research questions and achieve the objectives stated in this chapter. The choice to implement such an approach is influenced by the available resources such as time, skills and accessibility to data.



Figure 1.2 Research Design

1.7 Research Motivation

Several aspects and facts are motivating the current research. Firstly, the increasing demand for BIM related research that supports its adoption in the Malaysian construction sector and more especially in the green building industry (Latiffi et al., 2013). Secondly, the fact that the establishment of new building regulations and performance standards by the Malaysian government regarding 2030 Agenda (Prime Minister's Department, 2017), has led to a growing demand for environmentally friendly buildings as well as increasing the complexity in green building design and certification process (Jrade and Jalaei, 2013; Kasim, 2015; Ilhan and Yaman, 2016; Lim et al., 2016). Accordingly, there is a need to develop new workflows and methods to cope with these new arising challenges. Thirdly, the lack of a comprehensive BIMbased assessment method integrated with the available Green Building Rating Systems (GBRS) in Malaysia, although several assessment methods, models, and tools have been developed around the world for other green rating systems such as LEED (US) (Azhar, et al., 2009; Wu, 2010; Azhar et al., 2011), LEED (Canada) (Jrade and Jalaei, 2013), BREEAM (UK) (Kasim, 2015), and BEAM Plus (Wong and Kuan, 2014) to name few.

1.8 Research Scope

This study focuses on GreenRE rating tools for new buildings (residential buildings (RES) and non-residential buildings (NRB)) developed by REHDA. Though, only the criteria included in GreenRE rating tool V3.0 for new residential buildings is used as a case in this study because most of these criteria are shared ones between both rating tools (RES and NRB). Refer to section 2.7 for comparison of RES and RNB criteria.

There are three main reasons for choosing GreenRE rating system in this study. Firstly, based on the previous research (Ilhan and Yaman, 2016; Jalaei and Jrade, 2015; Wong and Kuan, 2014; Wu, 2010), the integration of BIM to GBRSs has always taken only one rating system as a case study. This is because GBRS requirements and certification process differ from one GBRS to another, therefore it is needed to select one specific GBRS to use its assessment framework as a case. Secondly, there is a lack of studies on the integration of GreenRE and BIM; most of the very few proposed models and frameworks in Malaysia focused on Green Building Index (GBI) rating tools as it is the first GBRS introduced in Malaysia (Lim *et al.*, 2016). Thirdly, as discussed in section 2.9 the comparison of the different rating systems available in Malaysia (GreenRE, Green Building Index and MyCREST) revealed that GreenRE rating system allocates more credit points to the criteria related to architectural design compared to other rating system. This is important for this research as it aims to support designer and architect during design decision-making by taking advantage of BIM technologies.

On the other hand, as suggested by GreenRE assessors in the focus group discussion (FGD), working on the passive design requirements (e.g. OTTV/RETV, CUI) under GreenRE criteria is very important and should be taken as a priority. Project teams should think first on the passive design strategies before thinking in the installation of sophisticated active technologies which are often costly and need regular maintenance. In contrast, the right passive design strategy could have a significant impact on building performance, in some cases with no additional costs. Moreover, According GreenRE assessors and mangers, the assessment process of Energy Efficiency (EE) related requirements including OTTV/RETV is among the challenging criteria under GreenRE. In fact, based on the survey findings, most of the project teams are assessing these criteria manually using simple excel template. Thus, data input in this workflow is done manually due to the lack of tools which can extract the required data automatically from the BIM model. Accordingly, due to the importance of working on the passive design criteria and the challenges that project teams are facing during the assessment process, the proposed toolkit will focus only on two passive design criteria under GreenRE tool, mainly the Overall Thermal Transfer Value (OTTV/RETV) and Concrete Usage Index (CUI) criteria. The potential score of these two criteria is up to 15 points and 5 points respectively for OTTV/RETV and CUI.

1.9 Significance of the Study

The contribution of this research can be classified into three outputs: firstly, the investigation of the current practice of green building assessment and rating in the Malaysian context and specifically under GreenRE rating tool will help in understanding the existing challenges, the current way of green building evaluation and to what extent BIM can assist. Secondly, it is expected that the BIM-GreenRE assessment method will contribute to the current body of knowledge of BIM implementation in Malaysia by creating a foundation of tangible application of BIM to support green building assessment and rating under GreenRE rating tool. Finally, the developed Passive Design Toolkit (PDT) can be used by the building practitioners and even the students working under GreenRE certification requirements to assist them in assessing OTTV/RETV and CUI criteria. This is beneficial as the user of the PDT will get simultaneous feedback of the earned/lost credit points while designing. Accordingly, this kind of automation will speed up the design process by allowing designers to avoid assessment rework. Thus, designers will focus more on design ideas instead of benchmarking and chasing credit points.

1.10 Thesis Organisation

The thesis is organised into seven chapters. Chapter 1 is an introduction of the thesis. Chapter 2 and 3 covers respectively the literature review of two main topics: Green building design related issues, the different environmental assessment methods, and rating systems are reviewed and discussed in this chapter. Meanwhile, Chapter 3 discusses the application of BIM for green building evaluation (Green BIM) and the usage of computational BIM and VPL for data extraction and automation.

Chapter 4 discusses the research methodology and justifies the research approach implemented in formulating and answering the research questions, the process of data collection, as well as the workflow implemented in the development of BIM-GreenRE assessment method and the toolkit are also explained. In Chapter 5 the results related to the current practice under the GreenRE certification and the feasibility of the BIM-GreenRE integration (Web-based survey and Focus Group Discussion FGD) are presented and discussed.

Chapter 6 discusses the development of both the BIM-GreenRE integration assessment method and the Passive Design Toolkit (PDT) as well as the testing of the proposed PDT through a case study. The final chapter 7 concludes the overall research findings and suggests recommendations for future research.

The overall thesis organisation is illustrated in Figure 1.3

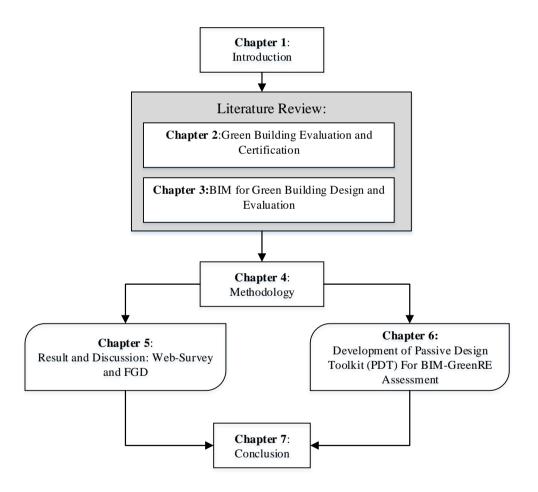


Figure 1.3 Thesis organization

REFERENCES

- ACEM. (2012). Association of Consulting EACEMngineers Malaysia. Retrieved December 18, 2018, from http://www.acem.com.my/index.php?option=com_contentandtask=viewandid=5 8andItemid=1
- Achim, M., and Sean, A. (2011). *Computational design thinking*. Chichester: Wiley (AD Reader).
- AISH, R., FISHER, A., JOYCE, S., and MARCH, A. (2012). Progress towards Multi Criteria Design Optimisation using DesignScript with SMART Form, Robot Structural analysis and Ecotect building performance analysis. *Acadia*, 47–56.
- Aish, R, Fisher, A., Joyce, S., and March, A. (2012). Progress towards Multi Criteria Design Optimisation using DesignScript with SMART Form, Robot Structural analysis and Ecotect building performance analysis. *Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture* (ACADIA), II(2012), 47–56.
- Aish, Robert. (1986). Three-dimensional input and visualization. *Evolution*.
- Akanmu, A., Asfari, B., and Olatunji, O. (2015). BIM-Based Decision Support System for Material Selection Based on Supplier Rating. *Buildings*, 5(4), 1321–1345. https://doi.org/10.3390/buildings5041321
- Alyami, S. H., and Rezgui, Y. (2012). Sustainable building assessment tool development approach. *Sustainable Cities and Society*, 5(1), 52–62. https://doi.org/10.1016/j.scs.2012.05.004
- Andia, A., and Spiegelhalter, T. (2015). *Post-parametric automation in design and construction*. Boston ; London: Artech House.
- Andrea Vannini. (2015). andreaarch | Architectureandamp;Computation. Retrieved February 17, 2017, from https://andreaarch.wordpress.com/
- Andy, M. (2016). A Methodological Approach To Support Building Life Cycle Analysis - An Example To Use Revit-Apis. University College Cork. Retrieved from https://www.slideshare.net/AndyMcNamara2/a-methodological-approachto-support-building-life-cycle-analysis-andy-mcnamara?qid=68d287fb-4fcd-4dad-9132-a14937c05680andv=andb=andfrom_search=4
- Anink, D., Mak, J., and Boonstra, C. (1996). *Handbook of sustainable building: an* environmental preference method for selection of materials for use in construction and refurbishment. Earthscan.
- Aotake, N., Ofuji, N., Miura, M., Shimada, N., and Niwa, H. (2005). Comparison Among Results of Various Comprehensive Assessment Systems - Case Study for a Model Building Using CASBEE, BREEAM and LEED. 2005 World Sustainable Building Conference, 2005 (September), 1734–1737.

- Arayici, Y., Khosrowshahi, F., Ponting, A., and Mihindu, S. (2009). Towards implementation of building information modelling in the construction industry. https://doi.org/10.13140/2.1.3776.6080
- Asl, M. R., Stoupine, A., Zarrinmehr, S., and Yan, W. (2011). Optimo : A BIM-based Multi-Objective Optimization Tool Utilizing Visual Programming for High Performance. In Proceedings of the 33rd International Conference on Education and Research in Computer Aided Architectural Design in Europe (Vol. 130, pp. 1–10).
- Asl, M. R., Zarrinmehr, S., Bergin, M., and Yan, W. (2015). BPOpt: A framework for BIM-based performance optimization. *Energy and Buildings*, 108, 401–412. https://doi.org/10.1016/j.enbuild.2015.09.011
- Attia, S. (2018). *Regenerative and Positive Impact Architecture Learning from Case Studies*. https://doi.org/https://doi.org/10.1007/978-3-319-66718-8
- Autodesk. (2009). Sustainable Design Analysis and Building Information Modeling, 1-10.
- Autodesk. (2013). Green Building Studio. Retrieved January 20, 2017, from https://gbs.autodesk.com/GBS/
- Autodesk. (2015). Shared Parameters | Revit Products | Autodesk Knowledge Network. Retrieved August 15, 2017, from https://knowledge.autodesk.com/support/revit-products/learnexplore/caas/CloudHelp/cloudhelp/2015/ENU/Revit-Model/files/GUID-E7D12B71-C50D-46D8-886B-8E0C2B285988-htm.html
- Autodesk. (2016). Discover Dynamo. Retrieved January 28, 2017, from http://dynamobim.org/explore/
- Azhar, S, Brown, J., and Farooqui, R. (2009). BIM-based sustainability analysis: An evaluation of building performance analysis software. *Proceedings of the 45th ASC Annual Conference, Gainesville, Florida, April 1-4, 2009.*
- Azhar, S, Brown, J., and Sattineni, A. (2010). A case study of building performance analyses using building information modeling. *Proceedings of the 27th International Symposium on Automation and Robotics in Construction (ISARC-27), Bratislava, Slovakia, June 2010.*
- Azhar, S, Carlton, W. A., Olsen, D., and Ahmad, I. (2011). Building information modeling for sustainable design and LEED ® rating analysis. *Automation in Construction*, 20(2), 217–224. https://doi.org/10.1016/j.autcon.2010.09.019
- Azhar, Salman, and Brown, J. (2009). BIM for Sustainability Analyses. *International Journal of Construction Education and Research*, 5(4), 276–292. https://doi.org/10.1080/15578770903355657
- Azhar, Salman, Brown, J., and Farooqui, R. (2008). BIM-based Sustainability Analysis: An Evaluation of Building Performance Analysis Software. *Proceedings of the 45th ASC Annual Conference*, 1–4.
- Azhar, Salman, Carlton, W. A., Olsen, D., and Ahmad, I. (2011). Building information modeling for sustainable design and LEED®rating analysis. *Automation in Construction*, 20(2), 217–224. https://doi.org/10.1016/j.autcon.2010.09.019

- Badescu, V., and Sicre, B. (2003). Renewable energy for passive house heating: II. Model. *Energy and Buildings*, 35(11), 1085–1096. https://doi.org/10.1016/j.enbuild.2003.09.004
- Banerjee, A., and Chaudhury, S. (2010). Statistics without tears: Populations and samples. *Industrial Psychiatry Journal*, *19*(1), 60. https://doi.org/10.4103/0972-6748.77642
- Bank, L. C. (2018). Integrating Bim With System Dynamics As a Decision-Making Integrating Bim With System Dynamics As a Decision-Making. *Proceedings of* the First International Conference on Sustainable Urbanization (ICSU), (January 2011).
- Barbour, R., and Kitzinge, J. (1999). *Developing Focus Group Research: Politics, Theory and Practice*. Sage Publications Ltd.
- Barnes, S., and Castro-Lacouture, D. (2009). BIM-enabled integrated optimization tool for leed decisions. In *Proceedings of the 2009 ASCE International Workshop* on Computing in Civil Engineering (Vol. 346, pp. 258–268). https://doi.org/10.1061/41052(346)26
- Baumert, K. A., Herzog, T., and Pershing, J. (2005). *Navigating the Numbers Greenhouse Gas Data and International Climate Policy*. Retrieved from http://pdf.wri.org/navigating_numbers.pdf
- BCA. (2008). *Code on Envelope Thermal Performance for Buildings*. BCA. Retrieved from http://www.bca.gov.sg/PerformanceBased/others/RETV.pdf
- BCA. (2013). Singapore BIM Guide. Singapore.
- BCA. (2016). BCA Green Mark for Residential Buildings GM RB : 2016 For Pilot.
- BCA. (2018). About BCA Green Mark Scheme. Retrieved December 15, 2018, from https://www.bca.gov.sg/greenmark/green_mark_buildings.html
- Bedrick, J. (2008). Organizing the Development of a Building Information Model. *The American Institute* of *Architects, AECbytes Feature.* https://doi.org/10.1111/j.1476-5381.1989.tb11947.x
- BIM Forum. (2017). DEVELOPMENT SPECIFICATION LOD Spec 2017 Guide, (November).
- BIMForum. (2017). Level of Development Specification. BIM Forum, 195.
- BIMForum. (2018). LOD Specification 2018 Part I: For Building Information Models and Data, (September), 253. Retrieved from www.bimforum.org/lod
- BIS/Industry Working Group. (2011). Building Information Modelling (BIM) Working Party Strategy Paper. *Government Construction Client Group*, (March), 1–107. https://doi.org/10.1524/teme.2010.0045
- Biswas, T., Wang, T.-H., and Krishnamurti, R. (2013). From design to pre-certification using building information modeling. *Journal of Green Building*, 8(1), 151–176. https://doi.org/10.3992/jgb.8.1.151
- Bragança, L., Mateus, R., and Koukkari, H. (2010). Building sustainability assessment. *Sustainability*, 2(7), 2010–2023. https://doi.org/10.3390/su2072010

- Braumann, J., and Brell-Cokcan, S. (2014). Visual Robot Programming Linking Design, Simulation, and Fabrication. *Proceedings of Symposium on Simulation for Architecture and Urban Design*, 101–108.
- BREEAM. (2014). BREEAM. BREEAM New Construction Technical Manual SD5076: 0.1 (Draft) 2014. BRE Global Ltd.
- Broadhurst, K., Holt, K., and Doherty, P. (2012). Accomplishing parental engagement in child protection practice?: A qualitative analysis of parent-professional interaction in pre-proceedings work under the Public Law Outline. *Qualitative Social Work*, *11*(5), 517–534. https://doi.org/10.1177/1473325011401471
- Brundtland. (1987). Report of the World Commission on Environment and Development. Our Common Future. https://doi.org/10.1016/0022-2364(91)90424-R
- Bryman, A. (2012a). *Social research methods* (Vol. 53). Oxford University Press. https://doi.org/10.1017/CBO9781107415324.004
- Bryman, A. (2012b). Using IBM SPSS for Windows. Social Research Methods. https://doi.org/10.4324/9780203410028
- Bryman, A., and Cramer, D. (2005). Quantitative Data Analysis With SPSS 12 and 13.
- Çavuşoğlu, Ö. H., and Çağdaş, G. (2017). Why Do We Need Building Information Modeling (BIM) in Conceptual Design Phase? In *International Conference on Computer-Aided Architectural Design Futures*. Springer, Singapore.
- Celani, G., Eduardo, C., and Vaz, V. (2012). CAD Scripting and Visual Programming Languages for Implementing Computational Design Concepts: A Comparison from a Pedagogical Point of View. *International Journal of Architectural Computing*, 10(1), 121–138.
- Chandra, D., and Zhou, N. (2014). BIM ADD-ON TOOL FOR AUTOMATED CUI CALCULATION DANIELS CHANDRA 1 and NING ZHOU 2 1,2, 305–314.
- Chang, Y., Ries, R. J., and Wang, Y. (2011). The quantification of the embodied impacts of construction projects on energy, environment, and society based on I-O LCA. *Energy Policy*, 39(10), 6321–6330. https://doi.org/10.1016/j.enpol.2011.07.033
- Charles J. Kibert. (2013). Sustainable Construction, Green Building Design and Delivery.
- Chateau, L. (2007). Environmental acceptability of beneficial use of waste as construction material-State of knowledge, current practices and future developments in Europe and in France. *Journal of Hazardous Materials*, 139(3), 556–562. https://doi.org/10.1016/j.jhazmat.2006.02.064
- Chen, X., Yang, H., and Lu, L. (2015). A comprehensive review on passive design approaches in green building rating tools. *Renewable and Sustainable Energy Reviews*, 50, 1425–1436. https://doi.org/10.1016/j.rser.2015.06.003
- Chen, X., Yang, H., and Zhang, W. (2017). A Proposed New Weighting System for Passive Design Approach in BEAM Plus. *Energy Proceedia*, 105, 2113–2118. https://doi.org/10.1016/j.egypro.2017.03.593

- Chew, M. Y. L., and Das, S. (2008). Building Grading Systems: A Review of the Stateof-the-Art. *Architectural Science Review*, 51(1), 3–13. https://doi.org/10.3763/asre.2008.5102
- Chua, S. C., and Oh, T. H. (2011). Green progress and prospect in Malaysia. *Renewable and Sustainable Energy Reviews*, 15(6), 2850–2861. https://doi.org/10.1016/j.rser.2011.03.008
- Churcher, D., and Richards, M. (2013). Cross-discipline discipline design deliverables for BIM Phase 1 report – Strategy Document David Churcher, Hitherwood Consulting.
- Chwieduk, D. (2003). Towards sustainable-energy buildings. *Applied Energy*, 76, 211–217. https://doi.org/10.1016/S0306-2619(03)00059-X
- CIDB. (2014). Building Information Modeling Roadmap for Malaysia's Construction Industry, Workshop Report (Series 2). Construction Industry Development Board Malaysia (CIDB). https://doi.org/10.1002/9780470432846
- CIDB. (2015). MyCREST The Malaysian Carbon Reduction and Environmental.
- CIDB. (2017a). 22 nd AsiaConstruct Conference Seoul, Korea. *Malaysia Country Report*, (45), 5–6. Retrieved from http://www.cidb.gov.my/images/content/international/Malaysia----Country-Report-2017--22nd-Asia-Construct.pdf
- CIDB. (2017b). *Malaysia_BIM Report 2016.pdf*. Kuala Lumpur, Malaysia: LEMBAGA PEMBANGUNAN INDUSTRI.
- Cidell, J. (2009). Building Green: The Emerging Geography of LEED-Certified Buildings and Professionals. *The Professional Geographer*, 61(2), 200–215. https://doi.org/10.1080/00330120902735932
- cleanmalaysia. (2015). The Rise of Green Building in Malaysia Clean Malaysia. Retrieved December 17, 2018, from https://cleanmalaysia.com/2015/08/28/the-rise-of-green-building-in-malaysia/
- Clemson. (2007). Definition of Policy. Retrieved from http%0A//www.clemson.edu/research/orcSite/orcIRB_DefsP.htm.%3E
- Coenders, J. L. (2009). Parametric and associative design as a strategy for conceptual design and delivery to BIM. *Construction*, (October), 1112–1123.
- Cole, R. J. (1998). Emerging trends in building environmental assessment methods. *Building Research and Information*, 26(1), 3–16. https://doi.org/10.1080/096132198370065
- Cole, R. J. (2005). Building Environmental Assessment Methods: Redefining Intentions. *Lca*, 2005(September), 1934–1939.
- Cole, R. J., and Larsson, N. (2002). GBTool user manual. *IiSBE*, (February), 75. Retrieved from http://iisbe.org/down/gbc2005/GBC2k2/GBC2k2_Manual.pdf
- Consortium, J. S. B. (2004). CASBEE for New Construction. CASBEE-NC Technical Manual 2004 Edition Tool–1. Tokyo.

- Cormen, T. H., Leiserson, C. E., L.Rivest, R., and Stein, C. (2009). *Introduction to Algorithms. Soil Science* (3rd ed.). Cambridge, Massachusetts: The MIT Press. https://doi.org/10.1097/00010694-200012000-00002
- Creswell, Jhon.W. (1994). *Research Design Qualitative, Quantitative, and Mixed Method(1st ed.)*. London: SAGE Publications.
- Creswell, John.W. (2009). Research Design: Qualitative, Quantitative and Mixed Method Approaches (3rd ed.). London: SAGE Publications.
- Crosbie, T., Dawood, N., and Dean, J. (2010). Energy profiling in the life-cycle assessment of buildings. *Management of Environmental Quality: An International Journal*, 21(1), 20–31. https://doi.org/10.1108/14777831011010838
- Davenport, T. H. (1992). Process Innovation. Rengineering Work through Information Technology (Vol. 1).
- Davis, D., and Peters, B. (2013). Design Ecosystems: Customising the Architectural Design Environment with Software Plug-ins. *Architectural Design*, 83(2), 124–131.
- Department of Standards Malaysia. (2014). Malaysian Standard 1525:2014 Energy efficiency and use of renewable energy for non-residential buildings Code of practice (2nd revision).
- Ding, L., Zhou, Y., and Akinci, B. (2014). Building Information Modeling (BIM) application framework: The process of expanding from 3D to computable nD. *Automation in Construction*, 46, 82–93. https://doi.org/10.1016/j.autcon.2014.04.009
- Dino, I. G. (2012). Creative design exploration by parametric generative systems in architecture. *Metu Journal of the Faculty of Architecture*, 29(1), 207–224. https://doi.org/10.4305/METU.JFA.2012.1.12
- Dixon, T., Colantonio, A., Shiers, D., Reed, R., Wilkinson, S., Gallimore, P., ... Gallimore, P. (2012). A green profession ? A global survey of RICS members and their engagement with the sustainability agenda. *Journal of Property Investment* and Finance. https://doi.org/10.1108/14635780810908352
- Easterby-Smith, M., Thorpe, R., and Lowe, A. (2001). *Management Research: An Introduction (SAGE series in Management Research)*. London: Sage.
- Eastman, C. M. (2011). *BIM handbook : a guide to building information modeling for owners, managers, designers, engineers and contractors* (2nd ed.). Hoboken, NJ: Wiley.
- Eastman Charles. (1974). An Outline of the Building Description System-Research report (Vol. 50). https://doi.org/10.1017/CBO9781107415324.004
- Edwards, B., and Turrent, D. (2013). *Sustainable housing: Principles and practice*. Taylor and Franci.
- Edwin Guerra. (2014). Dynamo: Visual Programming for Revit/Vasari YouTube. Retrieved January 28, 2017, from

https://www.youtube.com/watch?v=xm26L0P2MPE

- Ferrari Paola C, Silva, N. F., and Lima, E. M. (2010). Building Information Modeling and Interoperability with Environmental Simulation Systems. 感染症誌 (Vol. 91).
- Fetterman, D. M. (2010). *ETHNOGRAPHY* (Third Edit). United States of America: Sage Publications, Inc.
- Flick, U. (2009). Qualitative Research: Why and How to do It. An Introduction to Qualitative Research, 11–23. https://doi.org/978-1-84787-323-1
- Fowler, K. M., and Rauch, E. M. (2006). Sustainable Building Rating Systems Summary. Pacific Northwest National Laboratory (Operated by Battelle for the U.S. Department of Energy), (July 2006), 1–55. https://doi.org/PNNL-15858
- Frej, A., and Gottfried, D. (2005). *Green office buildings : a practical guide to development*. Washington, D.C: ULI The Urban Land Institute.
- Fricker, R. D. (2008). Sampling Methods for Web and E-mail Surveys. *The SAGE Handbook of Online Research Methods*, 195–217. https://doi.org/10.4135/9780857020055
- Gary Andreson and Nancy Arsenault. (2005). Garry Anderson-Fundamentals of Educational Research.
- GBI. (2010). GBI RNC Residential Tool V1.2. Green Building Index Reference Guide and Submission Format, (September), 33–38. Retrieved from http://www.greenbuildingindex.org/Resources/GBI Tools/GBI RNC Residential Tool V2.0 Final.pdf
- GBI. (2011). GBI Assessment Criteria NRNC, (June 2011), 0-18.
- GBI. (2013). Gbi Assessment Criteria for Residential New Construction (RNC), (January), 0–17.
- GBI. (2016). GREEN BEATS: GBI SUSTAINABILITY MILESTONE HITS 150 MILLION SQUARE FEET MARK.
- GBRI. (2015). What is a Green Building Rating System? Home Energy Pros. Retrieved September 18, 2016, from http://homeenergypros.lbl.gov/profiles/blogs/what-is-a-green-building-ratingsystem
- GIBSON, R. B. (2006). BEYOND THE PILLARS: SUSTAINABILITY ASSESSMENT AS A FRAMEWORK FOR EFFECTIVE INTEGRATION OF SOCIAL, ECONOMIC AND ECOLOGICAL CONSIDERATIONS IN SIGNIFICANT DECISION-MAKING. Journal of Environmental Assessment Policy and Management, 259–280.
- Glinert, and Tanimoto. (1984). An Interactive Graphical Programming Environment. *Computer*.
- Goedert, J. D., and Meadati, P. (2008). Integrating Construction Process Documentation into Building Information Modeling. *Journal of Construction Engineering and Management*, 134(7).

- Gourlis, G., and Kovacic, I. (2016). Building Information Modelling for analysis of energy efficient industrial buildings A case study. *Renewable and Sustainable Energy Reviews*, 1–11. https://doi.org/10.1016/j.rser.2016.02.009
- Gowri, K. (2004). Green Building Rating Systems: An Overview. ASHRAE Journal, 46 (11): 56-60, 46(PNNL-SA-42827).
- GreenRE. (2015). Design reference guide, (June), 1–94.
- Grix, J. (2010). The Foundations of Research (2nd ed.). Basingstoke: Palgrave Macmillan.
- Guba, E. E., and Licolin, Y. s. (1994). Competing Paradigms in Qualitative Research, Handbook of Qualitative Research Denzin, K. N. and Lincoln, Y. S. London: London: Sage.
- Haapio, A., and Viitaniemi, P. (2008). A critical review of building environmental assessment tools. *Environmental Impact Assessment Review*, 28(7), 469–482. https://doi.org/10.1016/j.eiar.2008.01.002
- Haron, A. T. (2013). Organisational Readiness To Implement Building Information Modelling : A Framework For Design Consultants In Malaysia, 285.
- Hayden, M. K. (1995). An experimental investigation of visual enhancements for programming environments.
- Hirakawa, M., and Ichikawa, T. (1992). Advances in visual programming. *Proceedings of the Second International Conference on Systems Integration*, 538–543. https://doi.org/10.1109/ICSI.1992.217309
- Hong Kong Special Administration Region Government. (2013). Hong Kong Energy Statistics Annual Report.
- Ilhan, B., and Yaman, H. (2016). Green building assessment tool (GBAT) for integrated BIM-based design decisions. *Automation in Construction*, 70, 26–37. https://doi.org/10.1016/j.autcon.2016.05.001
- Infocomm BIM Taskforce. (2011). Building Information Modeling.
- Inhabitgroup. (2016). ETTV Façade Designer released to Singapore Market Inhabit Group. Retrieved February 10, 2017, from http://inhabitgroup.com/ettv-facadedesigner-released-to-singapore-market-2/
- ISO. (2016). ISO 29481-1:2016(en), Building information models Information delivery manual Part 1: Methodology and format. Retrieved September 14, 2016, from https://www.iso.org/obp/ui/#iso:std:iso:29481:-1:ed-2:v1:en
- Jalaei, F. (2015). Integrate building information modeling (bim) and sustainable design at the conceptual stage of building projects.
- Jalaei, F., and Jrade, A. (2015). Integrating building information modeling (BIM) and LEED system at the conceptual design stage of sustainable buildings. *Sustainable Cities and Society*, 18, 95–107. https://doi.org/10.1016/j.scs.2015.06.007
- Johnson, R. B., and Onwuegbuzie, A. J. (2004). Mixed methods research: A research paradigm whose time has come. *Educational Researcher*, (33), 14–26.

- Jones Lang Lasaale. (2012). Global-Sustainability-Perspective-February-2012.pdf, (February), 1–16.
- Jones, P. D., Parker, D. E., Osborn, T. J., and Briffa, K. R. (2010). *Global and Hemispheric Temperature Anomalies - Land and Marine Instrumental Records. Carbon Dioxide Information Analysis Center* (Vol. 1942). https://doi.org/10.3334/CDIAC/cli.002
- Joseph Kaos Jr. (2017). Green tech financing scheme to continue with RM5bil funding - Nation | The Star Online. Retrieved January 2, 2019, from https://www.thestar.com.my/news/nation/2017/03/02/green-tech-financingscheme-to-continue-with-rm5bil-funding/
- Jrade, A., and Jalaei, F. (2013). Integrating building information modelling with sustainability to design building projects at the conceptual stage. *Building Simulation*, 6(4), 429–444. https://doi.org/10.1007/s12273-013-0120-0
- Kasim, T. (2015). BIM-Based Smart Compliance Checking to Enhance Environmental Sustainability, 240.
- Kats, G. (2003). The Costs and Financial Benefits of Green Buildings. A Report to California's Sustainable Building Task Force.
- Kensek, K. (2015). VISUAL PROGRAMMING FOR BUILDING INFORMATION MODELING: ENERGY AND SHADING ANALYSIS CASE STUDIES. *Journal of Green Building*, 10(4), 28–43. https://doi.org/10.3992/jgb.10.4.28
- Kensek, K., and Kahn, W. (2013). Integration of Environmental Sensors with BIM Seven Case Studies, (June).
- Kensek, K. M., and Noble, D. E. (2014). Building Information Modeling: BIM in Current and Future Practice. Journal of Chemical Information and Modeling (Vol. 53). https://doi.org/10.1017/CBO9781107415324.004
- Keung, J. (2012). SUSTAINABLE CONSTRUCTION: A Guide on CONCRETE USAGE INDEX. Building and Construction Authority.
- Kim, H., Asl, M. R., and Yan, W. (2015). Parametric BIM-based Energy Simulation for Buildings with Complex Kinetic Façades, 1, 657–664.
- Kitzinger, J. (1995). Qualitative research. Introducing focus groups. Bmj.
- Konis, K., Gamas, A., and Kensek, K. (2016). Passive performance and building form: An optimization framework for early-stage design support. *Solar Energy*, 125, 161–179. https://doi.org/10.1016/j.solener.2015.12.020
- Kota, S., Haberl, J. S., Clayton, M. J., and Yan, W. (2014). Building Information Modeling (BIM)-based daylighting simulation and analysis. *Energy and Buildings*, 81, 391–403.
- Krueger, R. A. (1994). *Focus groups: A practical guide for applied research (2nd ed.)*. Thousand Oaks, CA: Sage.
- Krueger, R. A., and Casey, M. A. (2009). *Focus Groups: A Practical Guide for Applied Research*. Thousand Oaks: CA: SAGE Publications, Inc.
- Krygiel, E., and Nies, B. (2008). Green BIM: successful sustainable design with

building information modeling.

- Latiffi, A. A., Mohd, S., Kasim, N., and Fathi, M. S. (2013). Building Information Modeling (BIM) application in Malaysian construction industry. *International Journal of Construction Engineering and Management*, 2(March 2016), 1–6. https://doi.org/10.5923/s.ijcem.201309.01
- Lee, Seulki, Yu, J., and Jeong, D. (2015). BIM Acceptance Model in Construction Organizations. *Journal of Management in Engineering*, *31*(3), 04014048. https://doi.org/10.1061/(ASCE)ME.1943-5479.0000252
- Lee, Sungwoo, Tae, S., Roh, S., and Kim, T. (2015). Green Template for Life Cycle Assessment of Buildings Based on Building Information Modeling: Focus on Embodied Environmental Impact. *Sustainability*, 7(12), 16498–16512. https://doi.org/10.3390/su71215830
- Leedy, P. D., and Ormrod, J. E. (2005). *Practical Research: Planning and Design (8th Edition)*. Pearson Merrill Prentice Hall.
- Leitão, A., Santos, L., and Lopes, J. (2012). For Generative Design : Programming Languages For Generative Design. *International Journal of Architectural Computing*, 10(01), 139–162.
- Lim, Y.-W., Shahsavari, F., Fazlenawati, N., Azli, M. N., Ossen, D. R., and Ahmad, M. H. (2015a). Developing a BIM-based process-driven decision-making framework for sustainable building envelope design in the tropics. In *Building Information Modelling (BIM) in Design, Construction and Operations* (Vol. 149, pp. 531–542). https://doi.org/10.2495/BIM150431
- Lim, Y.-W., Shahsavari, F., Fazlenawati, N., Azli, M. N., Ossen, D. R., and Ahmad, M. H. (2015b). Developing a BIM-based process-driven decision-making framework for sustainable building envelope design in the tropics, *149*, 531–542. https://doi.org/10.2495/BIM150431
- Lim, Y. (2017). BIM-based Sustainable Building Design Process and Decisionmaking. 2017 International Conference on Research and Innovation in Information Systems (ICRIIS), 1–6.
- Lim, Y., Shahsavari, F., Sediadi, E., and Azli, N. F. binti M. N. (2016). Building Information Modelling for Building Energy Efficiency Evaluation. In *Ace* (pp. 42–48).
- Looi, I. H. P. (2014). Computer Simulation For Building Energy Efficiency, Module 5 – Computer Simulation. SEMINAR ON PASSIVE and ACTIVE DESIGN FOR ENERGY EFFICIENT BUILDINGS.
- Love, P. E. D., Simpson, I., Hill, A., and Standing, C. (2013). From justification to evaluation: Building information modeling for asset owners. *Automation in Construction*, 35, 208–216. https://doi.org/10.1016/j.autcon.2013.05.008
- Lu, Y., Wu, Z., Chang, R., and Li, Y. (2017). Building Information Modeling (BIM) for green buildings: A critical review and future directions. *Automation in Construction*, 83(August), 134–148. https://doi.org/10.1016/j.autcon.2017.08.024

Makris, M., Gerber, D., Carlson, A., and Noble, D. (2013). Informing Design through

Parametric Integrated Structural Simulation. In ECAADe 2013: Computation and Performance–Proceedings of the 31st International Conference on Education and Research in Computer Aided Architectural Design in Europe, 1, 69–77.

- MALAYMAIL. (2017). Use of BIM in projects above RM100m mandatory by 2019 -MalayMail News Article. Retrieved April 29, 2018, from http://epaper.mmail.com.my/2017/11/21/use-of-bim-in-projects-above-rm100mmandatory-by-2019/
- Manning, M., and Mcmurray, D. (2009). Quantitative Research Methods. In *MCMURRAY, D. (ed.) Study Guide EDU03263*. Lisamore, Australia: Southern Cross University.
- Marty, R. (2015). End-To-End Collaboration Enabled by BIM Level 3, 34(9), 2–6. Retrieved from http://blogs.3ds.com/perspectives/what-is-bim-level-3/
- Menzies, T. (1998). Evaluation Issues for Visual Programming Languages.
- Micheal Kilkelly. (2016). 5 Ways Computational Design Will Change the Way You Work - ArchSmarter -. Retrieved June 30, 2019, from https://archsmarter.com/computational-design/
- Miettinen, R., and Paavola, S. (2014). Automation in Construction Beyond the BIM utopia: Approaches to the development and implementation of building information modeling. *Automation in Construction*, 43, 84–91. https://doi.org/10.1016/j.autcon.2014.03.009
- Morgan, D. L. (1997). Focus Groups in Qualitative Research. *Qualitative Research Methods*, 16.
- Mourshed, M., and Zhao, Y. (2012). Healthcare providers' perception of design factors related to physical environments in hospitals. *Journal of Environmental Psychology*, (32), 362–370.
- mybuildingsmart. (2014). BIM in Malaysia. Retrieved January 16, 2019, from http://mybuildingsmart.org.my/index.php/2015-01-04-07-24-47/9-bim-in-malaysia
- MyCrest. (2017). Retrieved December 25, 2018, from http://www.cidb.gov.my/index.php/en/bidang-utama/pembinaanmampan/mycrest
- MyCREST. (2016). MyCREST A Reference Guide for Malaysian Carbon Reduction and Environmental Sustainability Tool (Version 1.0): Design Stage Certification.
- Myers, B. A. (1990). Taxonomies of visual programming and program visualization. *Journal of Visual Languages and Computing*, 1(1), 97–123. https://doi.org/10.1016/S1045-926X(05)80036-9
- N. C. Shu. (1988). *Visual programming*. New York, NY, USA: Van Nostrand Reinhold Co.
- Napier, B., Connolly, K. J., and Jernigan, F. (2009). Building Information Modeling A report on the current state of BIM technologies and recommendations for implementation, 1–38.
- Natephra, W., Yabuki, N., and Fukuda, T. (2018). Optimizing the evaluation of

building envelope design for thermal performance using a BIM-based overall thermal transfer value calculation. *Building and Environment*, *136*(March), 128–145. https://doi.org/10.1016/j.buildenv.2018.03.032

- NBIMS Committe. (2007). National Building Information Modeling Standard. *Nbim*, 180. https://doi.org/10.1017/CBO9781107415324.004
- NBS, Malleson, A., Huber, R., Watson, D., Heiskanen, A., and Finner, C. (2013). NBS International BIM Report - 2013, 1–16. Retrieved from http://www.thenbs.com/pdfs/NBS-International-BIM-Report_2013.pdf
- Neuman, W. L. (2014). Social Research Methods: Qualitative and Quantitative Approaches. Relevance of social research (Vol. 8). https://doi.org/10.2307/3211488
- NIBS. (2007). *National BIM Standard*. Retrieved from http://academics.triton.edu/faculty/fheitzman/NBIMSv1_ConsolidatedBody_11 Mar07_4.pdf
- Oates, B. J. (2006). *Researching Information Systems and Computing*. London: Sage Publications Ltd.
- Ohueri, C. C., Enegbuma, W. I., Kuok, K. K., and Wong, N. M. (2018). Preliminary Evaluation of Synergizing BIM and Malaysian Carbon Reduction and Environmental Sustainability Tool. In *International Conference on Sustainability in Energy and Buildings* (Vol. 22, pp. 218–227). https://doi.org/10.1007/978-3-642-36645-1
- Oxford. (n.d.). technology | Definition of technology in English by Lexico Dictionaries. Retrieved June 16, 2019, from https://www.lexico.com/en/definition/technology
- Papadopoulos, a. M., and Giama, E. (2009). Rating systems for counting buildings' environmental performance. *International Journal of Sustainable Energy*, 28(1–3), 29–43. https://doi.org/10.1080/14786450802452423
- Parker, J. (2012). The Value of BREEAM, 50. Retrieved from http://www.schneiderelectric.co.uk/sites/uk/en/products-services/buildings/breeam/breeamreport.page
- Pawlaczyk, K., Kuzlan-Pawlaczyk, M., Anderstam, B., Heimbürger, O., Bergström, J., Waniewski, J., ... Lindholm, B. (2001). Effects of intraperitoneal heparin on peritoneal transport in a chronic animal model of peritoneal dialysis. *Nephrology Dialysis Transplantation*, 16(3), 669–671. https://doi.org/10.1093/ndt/16.3.669
- Peattie, K. (2001). Towards sustainability: the third age of green marketing. *The Marketing Review*, 2, 129–146. https://doi.org/10.1362/026725798784867743
- Penttilä, H. (2006). Describing the changes in architectural information technology to understand design complexity and free-form architectural expression. *Electronic Journal of Information Technology in Construction*, 11(January), 395–408.
- Petre, M. (1995). Readership skills and graphical programming. *Communications of the ACM*, 38(6), 33–44. Retrieved from http://rtsys.informatik.uni-kiel.de/teaching/ws03-04/s-synth/papers/p33-petre.pdf

- Pitt, M., Tucker, M., Riley, M., and Longden, J. (2009). Towards sustainable construction: Promotion and best practices. *Construction Innovation*, 9(2), 201–224. https://doi.org/10.1108/14714170910950830
- Porwal, A., and Hewage, K. N. (2013). Building Information Modeling (BIM) partnering framework for public construction projects. *Automation in Construction*, 31, 204–214. https://doi.org/10.1016/j.autcon.2012.12.004
- Preidel, C., and Borrmann, A. (2015). Automated Code Compliance Checking Based on a Visual Language and Building Information Modeling. *Proceedings of the* 32nd International Symposium of Automation and Robotics in Construction, 256– 263. https://doi.org/10.13140/RG.2.1.1542.2805
- Rahmani Asl, M., Zarrinmehr, S., Bergin, M., and Yan, W. (2015). BPOpt: A framework for BIM-based performance optimization. *Energy and Buildings*, *108*, 401–412. https://doi.org/10.1016/J.ENBUILD.2015.09.011
- Randy Deutsch. (2014). Google's BIM-busting App for Design and Construction | BIM + Integrated Design. Retrieved November 18, 2018, from https://bimandintegrateddesign.com/2014/10/24/googles-bim-busting-app-fordesign-and-construction/
- Rea, L. M., and Parker, R. A. (2015). Designing and conducting survey research: a comprehensive guide. Journal of Visual Communication and Image Representation (Vol. 126). https://doi.org/10.1109/JBHI.2014.2352119
- Reed, R., Bilos, A., and Wilkinson, S. (2009). International Comparison of S u s t a i n a b l e R a t i n g To o l s Authors, (1).
- Reed, T. J., Clouston, P. L., Hoque, S., and Fisette, P. R. (2010). An Analysis of LEED and BREEAM Assessment Methods for Educational Institutions. *Journal of Green Building*, 5(1), 132–154. https://doi.org/10.3992/jgb.5.1.132
- REHDA. (2015). Residential Building and Landed Home, (October).
- REHDA. (2017). Rating Tools GreenRE. Retrieved April 29, 2018, from https://greenre.org/rating-tools.html
- Rezgui, Y. (2007). Knowledge systems and value creation: An action research investigation. *Industrial Management and Data Systems*, 107(2), 166–182. https://doi.org/10.1108/02635570710723796
- Rezgui, Y., Beach, T., and Rana, O. (2013). a Governance Approach for Bim Management Across Lifecycle and Supply Chains Using Mixed-Modes of Information Delivery. *Journal of Civil Engineering and Management*, 19(2), 239–258. https://doi.org/10.3846/13923730.2012.760480
- Rogers, J. P. (2013). The strategic adoption of building information modelling by Malaysian engineering consulting services firms.
- Russell, P. A. G. (2009). Energy Related Environmental Impact of Buildings-IEA Annex-31. Ottawa, Canada.
- Sadineni, S. B., Madala, S., and Boehm, R. F. (2011). Passive building energy savings: A review of building envelope components. *Renewable and Sustainable Energy Reviews*, 15(8), 3617–3631. https://doi.org/10.1016/j.rser.2011.07.014

- Sakamoto, Y., Yashiro, T., Iwamura, K., Bogaki, K., Oka, T., Sato, M., ... Corporation, K. (2002). Comprehensive Assessment System of Building Environmental Efficiency in Japan. *Proceedings of the Fifth International Conference on Ecobalances*, 575–578.
- Sakikhales, M. H., and Stravoravdis, S. (n.d.). Using BIM to facilitate iterative design. 2015, 149, 9–19. https://doi.org/10.2495/BIM150021
- Samari, M., Godrati, N., Esmaeilifar, R., Olfat, P., and Shafiei, M. W. M. (2013). The investigation of the barriers in developing green building in Malaysia. *Modern Applied Science*, 7(2), 1–10. https://doi.org/10.5539/mas.v7n2p1
- Saunders, M., Lewis, P., and Thornill, A. (2007). *Research methods for business students (4th ed.)*. Harlow: Pearson Education Ltd.
- Schiffer, S. (1998). Visuelle Programmierung Potential und Grenzen, 1–24.
- Schlueter, A., and Thesseling, F. (2009). Building information model based energy/exergy performance assessment in early design stages. *Automation in Construction*, 18(2), 153–163. https://doi.org/10.1016/j.autcon.2008.07.003
- Sekaran, U., and Bougie, R. (2009). *Research Methods for Business: A Skill Building Approach 5th Edition*. New York: John Wiley and Sons.
- Sgambelluri, M. (2015). Simply Complex: WHAT IS DYNAMO? Retrieved January 28, 2017, from http://therevitcomplex.blogspot.my/2015/01/what-is-dynamo.html
- Sharaf, F. M., and Al-Salaymeh, A. (2012). A comparative study of the use of energy conservation techniques in office building: Passive and solar energy applications: The case of Jordan. *Sustainable Cities and Society*, 5(1), 16–22. https://doi.org/10.1016/j.scs.2012.08.001
- Sharon Jamison. (2014). Mode Lab | Two answers for "Why Dynamo"? Retrieved January 25, 2017, from https://modelab.is/two-answers-for-why-dynamo/
- Smith, D. (1977). A Computer program to Model and Stimulate Creative Thought. Birkhauser.
- Smith, D. K., and Tardiff, M. (2009). Building Information Modeling: A Strategic Implementation Guide for Architects, Engineers, Constructors, and Real Estate Asset Managers. Building Information Modeling: A Strategic Implementation Guide for Architects, Engineers, Constructors, and Real Estate Asset Managers, 1–186. https://doi.org/10.1002/9780470432846
- Smith, P. (2014). BIM implementation Global strategies. *Procedia Engineering*, 85, 482–492. https://doi.org/10.1016/j.proeng.2014.10.575
- Stadel, A., Eboli, J., Ryberg, A., Mitchell, J., and Spatari, S. (2011). Intelligent sustainable design: Integration of carbon accounting and building information modeling. *Journal of Professional Issues in Engineering Education and Practice*, 137(2), 51–54. https://doi.org/10.1061/(ASCE)EI.1943-5541.0000053
- Stephanie Vierra. (2014). Green Building Standards and Certification Systems | Whole Building Design Guide. Retrieved September 9, 2016, from https://www.wbdg.org/resources/gbs.php

- Stephen Kennett. (2009). BREEAM and LEED to work together on new global standard | Online News | Building. Retrieved September 17, 2016, from http://www.building.co.uk/breeam-and-leed-to-work-together-on-new-global-standard/3135155.article
- Succar, B. (2009). Building information modelling framework: A research and delivery foundation for industry stakeholders. *Automation in Construction*, 18(3), 357–375. https://doi.org/10.1016/j.autcon.2008.10.003
- Sukreet, S., and Kensek, K. (2014). Early design analysis using optimization techniques in design/practice. *ASHRAE/IBPSA-USA, Building Simulation Conference.*
- Sutherland, I. (1966). Online graphical specification of procedures.
- Sutherland, I. E. (2003). *Sketchpad: A man-machine graphical communication system*. https://doi.org/10.1177/003754976400200514
- Sutherland, W. (1964). Sketch pad a man-machine graphical communication system, 268, 40–46.
- Tashakkori, A. M., and Teddlie, C. B. (1998). *Mixed methodology: Combining qualitative and quantitative approaches*. Sage Publications, Inc.
- Tashakkori, A. M., and Teddlie, C. B. (2003). *Handbook of mixed methods in social and behavioral research*. Sage Publications, Inc.
- Taylor, J. E., A.M.ASCE;, and Bernstein, P. G. (2009). Paradigm Trajectories of Building Information Modeling Practice in Project Networks. *Journal of Management in Engineering* 25.
- Taylor, J. E., and Levitt, R. (2007). Innovation Alignment and Project Network Dynamics: An Integrative Model for Change. *Project Management Journal*, 38(3), 22–35. https://doi.org/10.1002/pmj
- Terzidis, K. (2006). *Algorithmic architecture* (1st ed). Amsterdam; Boston: Architectural Press.
- Ticehurst, G. W., and Veal, A. J. (2000). 'Questionnaire surveys'. Business Research Methods: A Managerial Approach.
- Todd, J. A., Crawley, D., Geissler, S., and Lindsey, G. (2001). Comparative assessment of environmental performance tools and the role of the Green Building Challenge. *Building Research and Information*, 29(5), 324–335. https://doi.org/10.1080/09613210110064268
- Tolman, F. P. (1999). Product modeling standards for the building and construction industry: Past, present and future. *Automation in Construction*, 8(3), 227–235. https://doi.org/10.1016/S0926-5805(98)00073-9
- Trusty, W. (2003). Understanding the Green Building Toolkit: Picking the Right Tool for the Job. USGBC Greenbuilding International Conference and Expo, 1–8.
- Trusty, W. B. (2000). Introducing An Assessment Tool Classification System. *Advanced Building Newsletter*, 25, 18. Retrieved from http://aesl.hyu.ac.kr/resource/blcc/assess-typology-tool.pdf

- UNEP DTIE. (2009). Common Carbon Metric. UNEP Sustainable Buildings and Climate Initiative.
- Urge-Vorsatz, D., Ksenia Petrichenko, Miklos Antal, Maja Staniec, Eren Ozden, and Elena Labzina. (2012). Best Practice Policies for Low Carbon and Energy Buildings Based on Scenario Analysis. Retrieved from http://www.gbpn.org/reports/best-practice-policies-low-carbon-energybuildings-based-scenario-analysis
- Usman, A. M., and Abdullah, K. (2018). Comparative Study on the Malaysian Sustainable Building Assessment Tools. *International Journal of Integrated Engineering*, *10*(3). https://doi.org/10.30880/ijie.2018.10.03.012
- van Nederveen, G. A., and Tolman, F. P. (1992). Modelling multiple views on buildings. *Automation in Construction*, 1(3), 215–224. https://doi.org/10.1016/0926-5805(92)90014-B
- Vandezande, J., and Krygiel, E. (2015). *Mastering Autodesk Revit Architecture 2016*. *Autodesk Official Press-Sybex*. https://doi.org/10.1017/CBO9781107415324.004
- Vangimalla, P. R., Olbina, S. J., Issa, R. R., and Hinze, J. (2011). VALIDATION OF AUTODESK ECOTECTTM ACCURACY FOR THERMAL AND DAYLIGHTING SIMULATIONS. Proceedings of the 2011 Winter Simulation Conference, 11-14 Dec, (2005), 2194–2205. https://doi.org/10.1109/WSC.2011.6148117
- Vectorworks. (2017). Switching from grasshopper to vectorworks. USA.
- Vinod Kumar. (2013). Personal Technology Excel Tip: Comparing Excel Files SQL Authority with Pinal Dave. Retrieved November 18, 2018, from https://blog.sqlauthority.com/2013/07/02/personal-technology-excel-tipcomparing-excel-files/
- Wang, C., Cho, Y. K., and Kim, C. (2015). Automation in Construction Automatic BIM component extraction from point clouds of existing buildings for sustainability applications. *Automation in Construction*, 56, 1–13. https://doi.org/10.1016/j.autcon.2015.04.001
- WBCSB. (2009). Energy Efficiency in Buildings Transforming the Market. *Buildings*, 72.
- Wong, J. K.-W., and Kuan, K.-L. (2014). Implementing 'BEAM Plus' for BIM-based sustainability analysis. Automation in Construction, 44, 163–175. https://doi.org/10.1016/j.autcon.2014.04.003
- Wu, W, and Issa, R. R. A. (2010). Feasibility of integrating building information modeling and LEED® certification process. *Proceedings International Conference on Computing in Civil and Building Engineering (ICCCBE 2010), Nottingham, UK, June 30-July 2, 2010,* 161–168.
- Wu, Wei. (2010). Integrating building information modeling and green building certification: The BIM - LEED application model development. Retrieved from http://medcontent.metapress.com/index/A65RM03P4874243N.pdf
- Wu, Wei, and Issa, R. R. A. (2014). BIM Execution Planning in Green Building Projects: LEED as a Use Case. *Journal of Management in Engineering*, 31(1), 1–

18. https://doi.org/10.1061/(ASCE)ME.1943-5479.0000314.

- Zahrizan, Z., Ali, N. M., Haron, A. T., and Amanda Marshall-Ponting, Z. A. H. (2013). Exploring the adoption of Building Information Modelling (BIM) in the Malaysian construction industry: A qualitative approach. *International Journal* of Research in Engineering and Technology, 2(08), 384–395.
- Zhang, K., and Zhang, K.-B. (2003). *Graph Grammars for Visual Programming, in Software Visualization.* Springer.
- Zikmund, W. . (2003). Business Research Methods. Ohio: Cengage Learning.
- Zikmund, W., Babin, B., Carr, J., and Griffin, M. (2010). Business Research Methods. *Cengage Learning.*, 668.