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ABSTRACT 

 

 

 

 

Xylan is the second most abundant polysaccharide in plant cell wall which is 

hydrolyzed by the group of enzymes called hemicellulase.  β -1, 4 endo xylanase is 

considered as the most important among the xylanase enzymes, due to its wide 

industrial applications. Escherichia coli BL21 with a plasmid vector pET-22b (+) 

carrying xylanase coding gene, which was isolated from the extremely thermophilic 

bacterium called Thermotoga neapolitana, was used in the current study to enhance 

xylanase production. In phase 1 of this study, using the statistical approach called 

response surface methodology, the optimum media composition for enhanced 

xylanase production was successfully identified. Up to 800 IU mL-1 xylanase activity 

was observed in optimized media, which is around 3 folds higher compared to the 

activity achieved in unoptimized medium. In phase 2, optimization of lactose-based 

induction strategy was carried out to enhance the xylanase production. As a result of 

this induction optimization, the intracellular xylanase production was enhanced up to 

2600 IU mL-1. In phase 3, as a part of process scale up, the study was focused on 

developing suitable fed-batch fermentation conditions, by optimizing nutrients and 

inducer feeding strategy. With the optimized fed batch fermentation conditions in 16 

L stirred tank bioreactor, the xylanase activity was enhanced up to 11000 IU mL-1, 

which is 4 to 5 folds higher compared to activity reported in previous studies. During 

physicochemical characterization in phase 4 of the current study, the optimum 

temperature and pH of xylanse enzyme was found to be 80°C and 6.5, respectively. 

Among the metal ions and chelating agents tested, zinc sulfate and 

ethylenediaminetetraacetic acid were found to have the highest inhibitory effect on 

xylanase enzyme in this study. 
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ABSTRAK 

 

 

 

 

Xilan merupakan polisakarida kedua terbanyak di dalam sel dinding tumbuhan 

yang dihidrolisis oleh kumpulan enzim hemicellulase. β -1, 4 endo xilanase dianggap 

sebagai enzim xilanase yang paling penting diantara xilanase enzim lain disebabkan 

oleh aplikasinya didalam perindustrian.  Escherichia coli BL21 dengan vektor plasmid 

pET-22b (+) yang membawa gen pengekodan xilanase, yang mana telah dipencilkan 

daripada bakteria lampau termofilik, Thermotoga neapolitana, telah digunakan di 

dalam kajian semasa ini untuk meningkatkan pengeluaran xilanase. Di dalam fasa 

pertama kajian,  penggunaan kaedah statistik dinamakan sebagai tindakbalas sambutan 

permukaan, pengoptimuman komposisi medium untuk meningkatkan pengeluaran 

xilanase telah berjaya dikenalpasti. Sebanyak 800 IU mL-1 aktiviti xilanase telah 

dicapai di dalam medium optimum, yang mana sekitar 3 kali ganda lebih tinggi 

berbanding aktiviti yang dicapai di dalam medium tanpa pengoptimuman. Di dalam 

fasa 2, pengoptimuman strategi induksi berasaskan laktosa telah dijalankan untuk 

meningkatkan penghasilan xilanase. Hasil daripada pengoptimuman induksi tersebut, 

penghasilan xilanase secara intrasel meningkat kepada 2600 IU mL-1. Di dalam fasa 3, 

sebagai sebahagian daripada proses pengskalaan, kajian telah memfokuskan kepada 

pembangunan kondisi bagi fermentasi suapan kelompok yang sesuai, dengan 

mengoptimumkan nutrien dan strategi induksi suapan. Dengan pengoptimuman 

fermentasi suapan kelompok dalam bioreaktor teraduk 16 L, aktiviti xilanase telah 

meningkat kepada 11000 IU mL-1, yang mana 4 hingga 5 kali ganda lebih tinggi 

berbanding aktiviti di dalam kajian-kajian terdahulu. Semasa pencirian fizikokimia di 

dalam fasa 4 kajian, suhu optimum dan pH xilanase masing-masing adalah 80 °C dan 

6.5. Diantara kesemua ion logam dan agen penggabungan yang diuji, zink sulfat dan 

asid etilenadiaminatetraasetik didapati mempunyai kesan perencatan yang lebih tinggi 

terhadap enzim xilanase didalam kajian ini. 
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CHAPTER 1 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Background 

 

 

Xylanase enzymes have been isolated and purified from a wide range of 

microorganisms such as bacteria, fungi and actinomycetes that are present in normal 

environmental conditions.  However, most of these xylanase does not show any unique 

characteristics such as high alkaline and thermal stability. Therefore, the xylanase from 

microbes that grows in extreme environmental conditions such as low / high pH and 

low / high temperature have gained more attention for commercial applications, due 

to their novel characteristics. Simulating the extreme growing conditions of these 

microbial species in laboratory / industry set up, is found to be very difficult or 

extreemly expensive, to scale up the production of xylanase.  Nowadays, the 

recombinant DNA technology brought a solution for this problem by introducing 

recombinant strains such as Escherichia coli BL21 (DE3) that can produce the 

xylanase enzyme with novel characteristics, under normal growing conditions.  

However, the expression level of xylanase gene in a recombinant strain depends on 

several aspects such as the cloning strategies used, gene copy number, plasmid stability 

and the host cell’s metabolism.  

 

 

To enhance the xylanase production, Mamo et al. (2007) constructed a clone 

of Escherichia coli BL21 (DE3) with a plasmid vector pET-22b(+) carrying xylanase 

coding gene, which is isolated from an extreme thermophilic bacteria, Thermotoga 

neopolitana DSM-4359.  This has opened several new areas for further researches on 
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developing optimum fermentation and induction strategies to enhance the xylanase 

production.  

 

 

 

 

1.2 Problem Statement  

 

 

 In submerged fermentation, the fermentation media composition plays 

important role in yield of xylanase production. An economically viable fermentation 

media formulation which can support the maximum xylanase production is necessary 

for industrial scale xylanase production. In such media, the nutritional sources are 

major and most important factor effecting xylanase production. Therefore, it is 

necessary to develop and optimize the fermentation medium, for enhanced production 

of recombinant. The conventional media optimization method is step by step process 

that involves varying one variable at a time while keeping the other variables constant 

which is tedious, time consuming and less reliable. Hence, it is ideal to apply Response 

Surface Methodology (RSM) based statistical approach, which is very reliable and less 

time consuming, in media optimization trials.   

 

 

Xylanase expression in recombinant strain is greatly depending on the gene 

inducers present in the fermentation media. Isopropyl β-D-1- thiogalactopyranoside 

(IPTG) is the most widely used chemical inducer for ‘lac’ based expression system. 

However, it is expensive and toxic in nature to the host cell at its higher concentration. 

Therefore, it is not recommended for the large scale production of recombinant 

proteins. Nowadays, researchers are using lactose as an alternative to IPTG. However, 

when compared to IPTG, lactose mediated induction was reported to be slightly slow 

and it is due to the catabolic repression by the expression host. Generally, the lactose-

based induction carried out at log phase of cell growth, post achieving the high cell 

density, which results in relatively low product yield. The probable root cause for low 

product yield in above mentioned scenario is the poor intake of lactose at log phase of 
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cell growth. Therefore, it is important to develop a optimal lactose based induction 

strategy to enhance the xylanase production.   

 

 

The conventional production strategies followed are found to be less effective 

to meet the growing need in the present xylanase market. Though, there are lots of 

researches going on in developing recombinant strains for xylanase production, a very 

limited number of these recombinant strains are used for the commercial scale 

production of xylanase due to the lack of industrially feasible production process. 

Therefore, it is important to investigate on alternative fermentation and induction 

strategies which enhances the xylanase production. For commercial applications, 

xylanase must be ideally produced in large quantities and simultaneously over a short 

period of time. Various fermentation strategies have been used to achieve the High 

Cell Density Cultivation (HCDC), as it is key to enhance the xylanase production. In 

a batch fermentation of Escherichia coli, it was found to be difficult to achieve the 

high cell density, due to several factors such as nutrient limitation, cell growth 

inhibition caused by secondary metabolites formation etc., Hence, fed batch 

fermentation with  suitable feeding strategy have been used to overcome many of the 

above mentioned challenges.  Substrate inhibition due to improper feeding and 

accumulation of acetate during high metabolic activity are the problems associated 

with fed batch fermentation.  These factors may affect the plasmid stability also and 

results the low production.  An optimized feeding strategy enables the control on 

specific growth rate in the fed batch fermentation shall results in better cell growths as 

well as xylanase production. 

 

 

 

 

1.3 Aim  

 

 

This study is aimed to enhance the production of Endo-1,4-β-Xylanase enzyme 

by recombinant Escherichia coli BL21 (DE3) at semi industrial scale (16 L bioreactor) 

using optimized fed batch cultivations system.   
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1.4 Objectives  

 

 

The following objectives will be addressed to achieve the aim of the current research; 

 

1.4.1 To optimize the production media for the enhanced production of xylanase 

enzyme through OFAT and DOE approach. Also, to optimize the lactose based 

induction strategy in optimized media for enhanced production of xylanase in 

shake flask culture.  

 

1.4.2 To validate the optimized conditions at batch fermentation and to identify the 

optimum growing conditions of Escherichia coli BL21 (DE3) in 16 L stirred 

tank bioreactor.  

 

1.4.3 To enhance the xylanase production in fed batch fermentation and to study and 

compare the effects of various feeding strategies on cell biomass and xylanase 

production. Also, to study the effects of lactose based induction on xylanase 

production in optimized fed batch fermentation conditions. 

 

1.4.4 To partially purify and characterize the xylanase enzyme.  

 

 

 

 

1.5 Scope  

 

 

To achieve above mentioned objectives, this research is framed with the following five 

major scopes. 

 

1.5.1 Media Optimization by One Factorial at Time (OFAT) approach followed by 

Response Surface Methodology (RSM) based statistical approach and then the 

validation of statistically predicted model at shake flask and 16 L stirred tank 

bioreactor (in batch fermentation).   
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1.5.2 Lactose based induction strategy (Inducer concentration, induction initiation 

time and post induction incubation temperature) optimization and comparison 

with IPTG based induction. Followed by, the evaluation of Optimized 

Induction Condition at 16 L stirred tank bioreactor  

 

1.5.3 Batch cultivation with optimized growth parameters to determine the cell 

growth and xylanase production kinetics in 16 L stirred tank bioreactor and 

then the evaluation of impact of pH and dissolved oxygen level on cell growth 

and xylanase production.  

 

1.5.4 Enhanced production of xylanase enzyme by fed batch fermentation using 

optimized media feeding (constant / pulse / stepwise increased) and inducer 

feeding (pulse / stepwise increased) strategies. 

 

1.5.5 Partially purify the xylanase and characterize it by identifying the optimum 

temperature and pH, estimating thermal and alkali stability, molecular weight 

by SDS PAGE, impact of metal ions and chelating agents on enzyme activity 

and finally the substrate specificity.   

 

 

 

 

1.6 Thesis Outline  

 

 

In this thesis, chapter 1 describes the research background, problem statement, 

objective, scopes of current study.  Chapter 2 covers the review of literatures related 

to xylanase enzyme, its commercial applications, approaches to enhance the 

production through various optimization studies and various production strategies 

followed. Chapter 3 describes the materials, methods and experimental designs used 

in current study for the optimization of xylanase production, scaling up to production, 

partial purification and physiochemical characterization.  Chapter 4 discuss the results 
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of experiments carried out and it is also compared with the observations reported by 

other researchers in past. Chapter 5, which is the final chapter covers the conclusion 

and limitations of current study and it also details the recommendations for future 

exploration. 
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