OPTIMIZATION OF FERMENTATION STRATEGY FOR ENHANCED PRODUCTION OF THERMOSTABLE XYLANASE BY RECOMBINANT *Escherichia coli*

SUBEESH KUNHI KANDIYIL

A thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy (Bioprocess Engineering)

School of Chemical and Energy Engineering Faculty of Engineering Universiti Teknologi Malaysia

AUGUST 2019

DEDICATION

This study is wholeheartedly dedicated to my beloved parents, wife, siblings, teachers and friends who have been the source of inspiration, continually provide their moral, spiritual, emotional, financial and technical supports.

ACKNOWLEDGEMENT

Primarily, I would like to thank my thesis supervisor Prof. Dr. rer. Nat. Hesham A. El Enshasy, the Director of Institute of Bioproduct Development (IBD), Universiti Teknologi Malaysia, for his esteemed scientific guidance and moral supports that helped me to complete this study with great passion and joy. My sincere thanks and gratitude go to Prof. Dr. Rajni Hatti Kaul, the head of biotechnology department, Lund University, Sweden, for the collaboration with Institute of Bioproduct Development (IBD), her kind supports and technical guidance throughout this study. I would also like to thank Prof. Ramlan b. Aziz, and Prof. Dr. Mohd Roji b. Sarmidi, of Institute of Bioproduct Development (IBD), Universiti Teknologi Malaysia, for their supports. To all my fellow researchers and friends at IBD, with a special mention to Ms. Roslinda bt. Abd. Malek, Mr. Solleh bin Ramli, Ms, Khairun Hani Natasya, and Mr. Abas b. Rahmat, let me take this opportunity to express my heartfelt thanks to you all for your encouragement and supports throughout my study. I had a great time with you all.

Finally, I must express my very profound gratitude to my beloved wife, parents, and to my siblings for providing me with unfailing support and continuous encouragement throughout my years of study and through the process of researching and writing this thesis. This accomplishment would not have been possible without them. Thank you all.

ABSTRACT

Xylan is the second most abundant polysaccharide in plant cell wall which is hydrolyzed by the group of enzymes called hemicellulase. β -1, 4 endo xylanase is considered as the most important among the xylanase enzymes, due to its wide industrial applications. Escherichia coli BL21 with a plasmid vector pET-22b (+) carrying xylanase coding gene, which was isolated from the extremely thermophilic bacterium called Thermotoga neapolitana, was used in the current study to enhance xylanase production. In phase 1 of this study, using the statistical approach called response surface methodology, the optimum media composition for enhanced xylanase production was successfully identified. Up to 800 IU mL⁻¹ xylanase activity was observed in optimized media, which is around 3 folds higher compared to the activity achieved in unoptimized medium. In phase 2, optimization of lactose-based induction strategy was carried out to enhance the xylanase production. As a result of this induction optimization, the intracellular xylanase production was enhanced up to 2600 IU mL⁻¹. In phase 3, as a part of process scale up, the study was focused on developing suitable fed-batch fermentation conditions, by optimizing nutrients and inducer feeding strategy. With the optimized fed batch fermentation conditions in 16 L stirred tank bioreactor, the xylanase activity was enhanced up to 11000 IU mL⁻¹, which is 4 to 5 folds higher compared to activity reported in previous studies. During physicochemical characterization in phase 4 of the current study, the optimum temperature and pH of xylanse enzyme was found to be 80°C and 6.5, respectively. Among the metal ions and chelating agents tested, zinc sulfate and ethylenediaminetetraacetic acid were found to have the highest inhibitory effect on xylanase enzyme in this study.

ABSTRAK

Xilan merupakan polisakarida kedua terbanyak di dalam sel dinding tumbuhan yang dihidrolisis oleh kumpulan enzim hemicellulase. β -1, 4 endo xilanase dianggap sebagai enzim xilanase yang paling penting diantara xilanase enzim lain disebabkan oleh aplikasinya didalam perindustrian. Escherichia coli BL21 dengan vektor plasmid pET-22b (+) yang membawa gen pengekodan xilanase, yang mana telah dipencilkan daripada bakteria lampau termofilik, Thermotoga neapolitana, telah digunakan di dalam kajian semasa ini untuk meningkatkan pengeluaran xilanase. Di dalam fasa pertama kajian, penggunaan kaedah statistik dinamakan sebagai tindakbalas sambutan permukaan, pengoptimuman komposisi medium untuk meningkatkan pengeluaran xilanase telah berjaya dikenalpasti. Sebanyak 800 IU mL⁻¹ aktiviti xilanase telah dicapai di dalam medium optimum, yang mana sekitar 3 kali ganda lebih tinggi berbanding aktiviti yang dicapai di dalam medium tanpa pengoptimuman. Di dalam fasa 2, pengoptimuman strategi induksi berasaskan laktosa telah dijalankan untuk meningkatkan penghasilan xilanase. Hasil daripada pengoptimuman induksi tersebut, penghasilan xilanase secara intrasel meningkat kepada 2600 IU mL⁻¹. Di dalam fasa 3, sebagai sebahagian daripada proses pengskalaan, kajian telah memfokuskan kepada pembangunan kondisi bagi fermentasi suapan kelompok yang sesuai, dengan mengoptimumkan nutrien dan strategi induksi suapan. Dengan pengoptimuman fermentasi suapan kelompok dalam bioreaktor teraduk 16 L, aktiviti xilanase telah meningkat kepada 11000 IU mL⁻¹, yang mana 4 hingga 5 kali ganda lebih tinggi berbanding aktiviti di dalam kajian-kajian terdahulu. Semasa pencirian fizikokimia di dalam fasa 4 kajian, suhu optimum dan pH xilanase masing-masing adalah 80 °C dan 6.5. Diantara kesemua ion logam dan agen penggabungan yang diuji, zink sulfat dan asid etilenadiaminatetraasetik didapati mempunyai kesan perencatan yang lebih tinggi terhadap enzim xilanase didalam kajian ini.

TABLE OF CONTENTS

	TITLE	PAGE
DEC	LARATION	ii
DED	ICATION	iii
ACK	NOWLEDGEMENT	iv
ABS	ГКАСТ	V
ABS	ГКАСК	vi
TAB	LE OF CONTENTS	vii
LIST	OF TABLES	xiii
LIST	OF FIGURES	xviii
LIST	OF ABBREVIATIONS	XX
LIST	OF SYMBOLS	xxii
LIST	OF APPENDICES	XXV
CHAPTER 1 INTRODUCTION		1
1.1	Background	1
1.2	Problem Statement	2
1.3	Aim	3
1.4	Objectives	4
1.5	Scope	4
1.6	Thesis Outline	5
CHAPTER 2	LITERATURE REVIEW	7
2.1	Xylanase	7
2.2	Classification and Structures of Xylanase	10
	2.2.1 Glycosyl Hydrolase 10 (GH10) Xylanases	12
	2.2.2 Glycosyl Hydrolase 11 (GH11) Xylanases	14
2.3	Endo-1,4-β-Xylanase	15

	2.4	•	nthesis and Regulation of Microbial Endo Xylanase	16
	2.5	Endo-1	1,4-β-Xylanase of Extremophilic Origin	18
		2.5.1	Thermostable Endo-1,4-β-Xylanase	19
	2.6	Recom	ıbinant Endo-1,4-β-Xylanase	20
		2.6.1	Cloning and Expression of Bacterial Endo 1,4- β- Xylanase Gene	21
		2.6.2	Overexpression in Escherichia coli	22
	2.7	Endo-1	1,4-β-Xylanase Production	27
		2.7.1	Physical and Nutritional Parameters Effecting Endo 1,4-β Xylanase Production	28
		2.7.2	Optimization of Endo-1,4-β-Xylanase Production	30
		2.7.3	Application of Response Surface Methodology (RSM) in Optimization of Endo-1,4-β-Xylanase Production	32
		2.7.4	Production in Solid State and Submerge Fermentation	34
		2.7.5	Xylanase Production Kinetics in Submerged Fermentation	35
		2.7.6	Fed Batch Fermentation for Enhanced Production of recombinant Protein	37
		2.7.7	Feeding Strategies in Fed Batch Cultivation	39
	2.8	Induct Produc	ion Strategies for Recombinant Protein ction	41
		2.8.1	Lactose as Inducer	43
		2.8.2	Induction Time and Post Induction Temperature Control	44
	2.9	Partial	Purification of Endo-1,4-β-Xylanase	44
	2.10	Applic	ations of Endo-1,4-β-Xylanase	46
СНАРТЕР	R 3	RESE	ARCH METHODOLOGY	51
	3.1	Microo	organism	51
	3.2	Cell B	anking	53
	3.3	Schem	atic Flow of Research	54
	3.4	Phase	1: Media Optimization	55

	3.4.1	Base M Optimiz	edia for Cultivation (Pre vation)	55
	3.4.2		Optimization - One Factorial at DFAT) Approach	56
		3.4.2.1	Carbon and Nitrogen Source Selection	56
		3.4.2.2	Confirmation of Carbon Source Selected	57
		3.4.2.3	Comparison of Enzyme Activity Cytoplasmic Vs Periplasmic	58
	3.4.3	Media (Optimization - Statistical Approach	60
	3.4.4		t–Burman Design - To Identify the eant Media Components	60
	3.4.5	Optimu	Linear Model - To Identify the m Concentration Ranges of eant Media Components	62
	3.4.6	Optimu	ehnken Design – To Identify the m Concentration of Significant Components	63
	3.4.7	Media (ion of Statistically Predicted Composition in Shake Flask and tor Level (Batch Cultivation)	64
3.5	Phase	2 : Induc	tion Optimization	69
	3.5.1	-	zation of Lactose based Induction es at Shake Flask Level	69
	3.5.2		e and Lactose Intake by chia coli	69
	3.5.3	-	zation of Inducer Concentration uction Initiation Time	70
	3.5.4	Optimiz Temper	zation of Post Induction Incubation ature	71
	3.5.5		ion of Optimized Induction on in Batch Cultivation at tor	71
3.6	Phase	3: Enhan	ced Production in Bioreactor	72
	3.6.1	Cultiva Fermen	tion in Bioreactor - Fed-batch tation	72
	3.6.2	Optimiz	zation of Feeding	74
	3.6.3	Optimiz	zation of Inducer Feeding strategy	76

	3.6.4	Comparison of Optimized Conditions – With vs Without Ampicillin in Production Media	77
3.7	Phase Xylan	4: Physicochemical Characterization of ase	78
	3.7.1	Identification of Temperature Optima and Thermal Stability	78
	3.7.2	Identification of Optimum pH and pH Stability	78
	3.7.3	Substrate Specificity of Endo-β-1,4-	79
	3.7.4	xylanase Effect of Metal Ions on Xylanase Stability	79
	3.7.5	Effect of Chelating Agents on Endo-β- 1,4-xylanase Stability	80
3.8	Analy	tical Procedures	80
	3.8.1	Cell Biomass Determination	80
	3.8.2	Partial Purification of Xylanase	81
	3.8.3	Determination of Xylanase Activity	81
	3.8.4	Determination of Residual Maltose and Lactose Concentration	82
	3.8.5	Determination of Plasmid Stability	83
	3.8.6	Determination of Xylanase Molecular Weight using SDS-PAGE	84
	3.8.7	Detection of Biological Activity of Partial Purified Xylanase Using Zymography	85
	3.8.8	Determination of Total Protein Content	85
CHAPTER 4	RESU	LTS AND DISCUSSION	86
4.1	Introd	uction	86
4.2	Phase	1: Media Optimization	87
	4.2.1	Media Optimization - One Factorial at Time (OFAT) Approach	88
		4.2.1.1 Carbon and Nitrogen Source Selection	88
	4.2.2	Effect of Media pH on Cultivation and Xylanase Production	92
	4.2.3	Comparison of Enzyme Activity - Periplasmic Vs Cytoplasmic	93

	4.2.4	Media	Optimization - Statistical Mathod	94
		4.2.4.1	Confirmation of Carbon and Nitrogen Sources Selected	96
		4.2.4.2	Plackett–Burman Design - To Identify the Significant Media Components	100
		4.2.4.3	General Linear Model - To Identify the Optimum Concentration Ranges of Significant Media Components	102
		4.2.4.4	Box –Behnken Design – To Identify the Optimum Concentration of Significant Media Components	107
	4.2.5		ion of Optimum Media sition Predicted	112
	4.2.6	Cell Bio	of Aeration rate (2 vs 3 vvm) on omass and Xylanase Production in Cultivation	120
4.3	Phase	2: Induct	ion Optimization	123
	4.3.1	Maltose	e and Lactose Intake	125
	4.3.2	1	zation of Inducer (IPTG vs) Concentration and Induction	128
	4.3.3	Effect of Temper	of Post Induction Incubation	134
	4.3.4		ion of Optimized Induction on in Bioreactor Cultivation	135
4.4		3: Enhan Fermenta	ced Production of Xylanase in Fed ation	138
	4.4.1	Cultivat Fermen	ion in Bioreactor - Fed-Batch tation	138
	4.4.2	Optimiz	ation of Feeding	142
	4.4.3	Inducer	Feeding Optimization	146
	4.4.4	1	zed of Fed Batch Conditions with out Ampicillin in Production	151
4.5	Phase	4: Physi Xylana	ochemical Characterization of use	154

	4.5.1	Determination of Xylanase Activity	154
	4.5.2	Determination of Molecular Weight Using SDS-PAGE	155
	4.5.3	Detection of Biological Activity of Partial Purified Xylanase Using Zymogram	157
	4.5.4	Optimum Temperature and Thermal stability	158
	4.5.5	Optimum pH and pH Stability	161
	4.5.6	Substrate Specificity	163
	4.5.7	Effect of Metal Ions on Xylanase Stability	164
	4.5.8	Effect of Chelating Agents on Xylanase Stability	166
CHAPTER 5	CONC	CLUSION	168
5.1	Conclu	usion	168
5.2	Impac	t of Current Research	170
5.3	Future	Prospective and Recommendations	171
REFERENCE			172
APPENDIX			192
LIST OF PUBI	JCATI	ONS	218

LIST OF TABLES

TABLE NO.	TITLE	PAGE
Table 2.1	The Hemicellulolytic Enzymes and their Substrates	8
Table 2.2	Xylolytic Enzymes and their Classification into CE, GH Families	11
Table 2.3	E. coli based Xylanase Expression System	23
Table 2.4	Cloning Vectors used in <i>Escherichia coli</i> based Xylanase Expression System	25
Table 2.5	Characteristics of Major Endo β-1, 4-Xylanase Enzymes Expressed in <i>Escherichia coli</i>	26
Table 2.6	Major Commercial Xylanase Enzyme Produced by SmF Techniques	27
Table 2.7	Various Induction Strategies used for Enhanced Protein Expression	42
Table 2.8	Commonly Available Xylanase Preparations for Baking Industry	47
Table 2.9	Major Xylanase Supplier in Pulp Bleaching Industry	49
Table 3.1	Genotype of Microorganisms Used in Current Study	51
Table 3.2	Schematic Flow of Current Research	54
Table 3.3	Design Specification of Shaker Incubator used in Current Study	56
Table 3.4	Media Composition Used for Selection of Carbon and Nitrogen Sources based on Inducer (Lactose Vs IPTG)	57
Table 3.5	Confirmation of Carbon Source Selected based on Inducer (Lactose)	58
Table 3.6	Shake Flask Cultivation Conditions for estimation of Localization of Xylanase Expressed	59
Table 3.7	Plackett–Burman Design - Experimental Design and Cultivation Condition	61
Table 3.8	General Linear Model - Experimental Design and Cultivation Condition	62

Table 3.9	Box–Behnken Design - Experimental Design and Cultivation Condition	63
Table 3.10	Predicted Media Composition for Enhanced Production Xylanase Enzyme at Shake Flask	64
Table 3.11	Design Specification of Stirred Tank Bioreactor Used in Current Study	66
Table 3.12	Evaluation of Shake Flask Optimized Condition in Bioreactor (with and without ampicillin in Production Media)	67
Table 3.13	Impact of Aeration on Cell growth and Xylanase Production	67
Table 3.14	Equations Used for Growth and Production Kinetics Determination at Shake Flask and Bioreactor	68
Table 3.15	Experiment Design to Study the Maltose and Lactose	69
Table 3.16	General Linear Model - Induction Optimization	70
Table 3.17	OFAT based Post Induction Incubation Temperature Optimization	71
Table 3.18	Evaluation of Optimized Induction Condition at Bioreactor	72
Table 3.19	Non-Induced Fed Batch Fermentation Conditions	73
Table 3.20	Evaluation of Feeding Strategy	74
Table 3.21	Composition of Initial Media and Feeds Used	75
Table 3.22	Evaluation of Inducer Feeding Strategy	76
Table 3.23	Comparison of Optimized Fed Batch Cultivation Condition with and without Ampicillin in Production Media	77
Table 3.24	HPLC Analytical Condition for Residual Maltose and Lactose Content Estimation	83
Table 4.1	General Linear Model Design for Confirmation of Carbon and Nitrogen Sources Selected	96
Table 4.2	ANOVA Table of Xylanase Activity - General Liner Model Deign Executed for Confirmation Of Carbon and Nitrogen Sources Selected	97
Table 4.3	Plackett–Burman Experimental Design for Identification of Most Significant omponents in Media	99
Table 4.4	ANOVA Table of Xylanase Activity - Plackett– Burman Experimental Design for Identification of Most Significant components in Media	100

Table 4.5	General Linear Model Design and Response to Identify the Optimum Concentration Ranges of Significant Media Components	102
Table 4.6	ANOVA Table of Xylanase Activity - General Linear Model Design and Response to Identify the Optimum Concentration Ranges of Significant Media Components	105
Table 4.7	Box –Behnken Experimental Design to Identify the Optimum Concentration of Significant Media Components	107
Table 4.8	ANOVA Table of Xylanase Activity - Box-Behnken Experimental Design to Identify the Optimum Concentration of Significant Media Components	109
Table 4.9	Comparison of Un Optimized and Optimized Media	113
Table 4.10	Comparison of Cell Growth and Xylanase Production Kinetics in LB, Un Optimized and Optimized Media at Shake Flask Level	114
Table 4.11	Comparison of Cell Growth and Xylanase Production Kinetics in Batch Cultivation with and without Ampicillin in Production Media	116
Table 4.12	Comparison of Plasmid Stability in Amp+ and Amp- Media	119
Table 4.13	Comparison of Cell Growth and Xylanase Production Kinetics in Batch Fermentation with Different Aeration Rate	122
Table 4.14	Comparison of Plasmid Stability Profile in batch Cultivation with Different Aeration Rate	122
Table 4.15	Substrate (Carbon) Utilization Hierarchy and its Effect on Cell Growth & Xylanase Production	126
Table 4.16	General Linear Model based Experimental Design – Xylanse Expression Induced by IPTG	128
Table 4.17	ANOVA Table of Xylanase Activity - When the Expression was Induced by IPTG	129
Table 4.18	General Linear Model based Experimental Design – Xylanse Expression Induced by Lactose	130
Table 4.19	ANOVA Table of Xylanase Activity - When the Expression was Induced by Lactose	131
Table 4.20	Comparison of Cell Biomass and Xylanase Production Kinetics in Batch Fermentation	135
Table 4.21	Plasmid Stability Profile Comparison between Optimized and Unoptimized Induction strategy	137

Table 4.22	Composition of Initial Media and Feeds Used during Fed Batch Cultivation	139
Table 4.23	Average Residual Maltose Concentration During Batch Phase	139
Table 4.24	Cell Growth Xylanase Production Kinetics in Un Induced Fed Batch Cultivation	141
Table 4.25	Comparison of Cell Biomass and Xylanase Production Kinetics in Fed Batch Fermentation with Different Feeding Strategy	144
Table 4.26	Comparison of Plasmid Stability Profile in Fed Batch Cultivation with Different Feeding Strategy During Fed Batch Fermentation	145
Table 4.27	Residual Lactose Concentration During Batch Phase	147
Table 4.28	Comparison of Cell Biomass and Xylanase Production Kinetics in Fed Batch Fermentation with Different Inducer Feeding Strategy	149
Table 4.29	Plasmid Stability Profile in Inducer Feeing Optimization Batches	150
Table 4.30	Comparison of Cell Biomass and Xylanase Production Kinetics in Optimized Fed Batch Fermentation Conditions – with and without Ampicillin in Production Media	151
Table 4.31	Plasmid Stability Profile in Optimized Fed Batch Cultivation Conditions with and without Ampicillin	153
Table 4.32	Details of Sample Loaded on SDS PAGE Gel	156
Table 4.33	Details of Sample Loaded on SDS PAGE Gel for Zymography	158
Table 4.34	Xylanase Enzyme Activity on Various Substrates Tested	163
Table 4.35	Xylanase Activity in Presence of Metal Ions	165
Table 4.36	Xylanase Activity in Presence of Chelating Agents	166

LIST OF FIGURES

FIGURE NO.	TITLE	PAGE
Figure 2.1	Enzymatic Hydrolysis of Xylan	9
Figure 2.2	Structures of Major GH Family Xylanase	12
Figure 2.3	Salad Bowl View Exposing the Substrate Binding Cleft of Endo-1,4-β-Xylanase from <i>T. aurantiacus</i>	13
Figure 2.4	Metabolic pathway of acetate synthesis in <i>Escherichia</i> coli	39
Figure 3.1	pET-22b(+) Plasmid Vector Sequence	52
Figure 3.2	16 L of Stirred Tank Bioreactor Used in Current Study	66
Figure 4.1	OFAT based Screening of Carbon & Nitrogen Sources for Enhanced Xylanase Production.	89
Figure 4.2	Maltose Utilization Pathway in Escherichia coli	91
Figure 4.3	Schematic Diagram of Possible Metabolic Pathway of Lactose as an Inducer and Carbon Source <i>Escherichia coli</i>	92
Figure 4.4	Impact of Production Media pH on Cell Biomass and Xylanase Production	93
Figure 4.5	Comparison of Xylanase Activity in Periplasmic and Cytoplasmic Fractions	94
Figure 4.6	Interaction Plot of CDW (top) and Xylanase Activity (bottom)	98
Figure 4.7	Pareto Chart for Screening the Significant Media Component Effecting Xylanase Expression	101
Figure 4.8	Main Effect Plot of Enzyme Activity from the General Linear Model based Experiments at Shake Flask Level to Identify the Optimum Concentration of Significant Media Components	106
Figure 4.9	Contour Plots of Enzyme Activity at Optimum Concentration of Significant Media Components	111
Figure 4.10	Profiler (Response Maximizing Tool) based Prediction for Enhancement of Xylanase Activity	110

Figure 4.11	Comparison of Cell Biomass and Xylanase Production Profile in LB, Un Optimized and Optimized Media at Shake Flask Level	114
Figure 4.12	Comparison of (a) Cell Biomass and Residual Carbon Source Profiles, (b) Xylanase Production and Residual Lactose Profiles in Batch Cultivation at Bioreactor when Maltose Replaced with Glucose in Optimized Media	115
Figure 4.13	Comparison of (a) Cell Biomass and Residual Maltose Profiles, (b) Xylanase Production and Residual Lactose Profiles between Amp+ and Amp- Batch Cultivation in Bioreactor	117
Figure 4.14	Comparison of Plasmid Stability Profile of Amp+ and Amp- Batches	119
Figure 4.15	Comparison of (a) Cell Biomass and Residual Maltose Profiles, (b) Xylanase Production and Residual Lactose Profiles between Different Air Flow rate (2 and 3 vvm) during Batch Cultivation in Bioreactor	121
Figure 4.16	Comparison of Plasmid Stability Profile of 2 & 3 vvm Airflow Batches	123
Figure 4.17	Comparison of Xylanase Production in Induced vs Un Induced Cultivation at Shake Flask Level	127
Figure 4.18	Contour Plots of Xylanase Activity Indicates Optimum Induction Time vs IPTG Concentration	132
Figure 4.19	Contour Plots of Xylanase Activity Indicates Optimum Induction Time vs Lactose Concentration	132
Figure 4.20	Cell Biomass , Media pH (final) and Xylanase Activity Observed in Shake Flask Level Cultivation at Different Post Induction Temperature	134
Figure 4.21	Comparison of (a) Cell Biomass and Residual Maltose Profiles, (b) Xylanase Production and Residual Lactose Profiles between Optimized and Un Optimized Induction Strategies in Batch Cultivation in Bioreactor	136
Figure 4.22	Plasmid Stability During Batch Cultivation - Comparison between Optimized and Unoptimized Induction Strategy	137
Figure 4.23	Cell Biomass and Xylanase Production Profile in Un Induced Fed Batch Cultivation	140

Figure 4.24	Comparison of (a) Cell Biomass and Residual Maltose Profiles, (b) Xylanase Production and Residual Lactose Profiles between Three Different Feeding Strategies (Constant, Pulse and Stepwise Increase) Evaluated during Fed Batch Cultivation in Bioreactor	143
Figure 4.25	Effect of Feeding Strategy on Plasmid Stability	146
Figure 4.26	Comparison of (a) Cell Biomass and Residual Maltose Profiles, (b) Xylanase Production and Residual Lactose Profiles between Different Inducer Feeding Strategies (Constant, Pulse and Stepwise Increase) Evaluated during Fed Batch Cultivation in Bioreactor	148
Figure 4.27	Plasmid Stability Profile During Fed Batch Cultivation with Different Inducer Feeding Strategies	150
Figure 4.28	Comparison of (a) Cell Biomass and Residual Maltose Profiles, (b) Xylanase Production and Residual Lactose Profiles in Optimized Fed Batch Cultivation Conditions with and without Ampicillin in Production Media	152
Figure 4.29	Plasmid Stability Profile Comparison in Optimized Fed Batch Cultivation Conditions with and without Ampicillin in Production Media	153
Figure 4.30	Xylanase Assay on LB plates with 0.2% birchwood xylan (Sigma-Aldrich, USA)	155
Figure 4.31	SDS PAGE Analysis Partially Purified Xylanase Expressed by recombinant Escherichia coli BL21(DE3)	156
Figure 4.32	Clear Zone on Zymogram Corresponds to The Protein Band Confirms Biological Activity Xylanase	157
Figure 4.33	Xylanase Activity Profile at Different Temperature	158
Figure 4.34	Thermal Stability Profile of Xylanase Enzyme at Different Incubation Temperature	160
Figure 4.35	Xylanase Activity Profile at Different pH	162
Figure 4.36	pH Stability Profile of Xylanase at Different Incubation pH	162
Figure 4.37	Substrate Specificity Profile of Xylanase	164
Figure 4.38	Effect of Metal Ions and their Concentration on Xylanase Activity	165
Figure 4.39	Effect of Chelating Agents and their Concentration on Xylanase Activity	167

LIST OF ABBRIVIATIONS

Adj MS	-	Adjusted Mean Square
Adj. R ²	-	Adjusted R ²
Adj SS	-	Adjusted Sump of Squares
ANOVA	-	Analysis of variance
С	-	Carbon
CCD	-	Central Composite Design
CDW	-	Cell Dry Weight
CFU	-	Colony Forming Unit
CO_2	-	Carbon Dioxide
DF	-	Total Degrees of Freedom
DO	-	Dissolved Oxygen
DOE	-	Design of Experiment
E. coli	-	Escherichia coli
EC	-	Enzyme Commission
FDA-US	-	Food and Drug Administration - United States
GH	-	Glycoside Hydrolases
GM	-	Genetically Modified
HCD	-	High Dell Density Cultivation
HPLC	-	High Performance Liquid Chromatography
IBD	-	Institute of Bioproduct Development
IBS	-	Inclusion Bodies
IU	-	International Unit for enzyme activity
Lac	-	Lactose Promoter
LB	-	Luria Broth
Ν	-	Nitrogen
O ₂	-	Oxygen
OD	-	Optical Density
OD 600nm	-	Optical Density at 600 Nano Meter
OFAT	-	One Factor at A Time

<i>p</i> -value		Probability Value
PBD	-	Placket Burman Design
PET	-	Plasmid of Expression by T7 polymerase
PI	-	Isoelectric Point
Pred. R ²	-	Predicted R ²
RNA	-	Ribonucleic Acid
rDNA	-	recombinant Deoxyribose Nucleic Acid
RSM	-	Response Surface Methodology
PAGE	-	Poly Acrylamide Gel Electrophoresis
Seq SS	-	Sequential Sum of Squares
SDS	-	Sodium Dodecyl Sulphate
SmF	-	Submerged Fermentation
sp.	-	Species
SSF	-	Solid State Fermentation
TAXI	-	Triticum Aestivum Xylanase Inhibitor
TES	-	Trace Element Solution
TCF	-	Total Chlorine Free
UTM	-	Universiti Teknologi Malaysia
MCB	-	Master cell bank
MW	-	Molecular Weight
WCB	-	Working Cell bank
WICC	-	Wellness Industry Culture Collection
XIP	-	Xylanase Inhibitor Protein

LIST OF SYMBOLS

AlCl ₃ .6H ₂ O	-	Aluminum Chloride Hexahydrate
Amp	-	Ampicillin
BaCl ₂	-	Barium Chloride
bar	-	bar pressure
CaCl ₂ .2H ₂ O	-	Calcium Chloride di Hydrate
CoCl ₂ .6H ₂ O	-	Cobalt Chloride Hexahydrate
CuSO ₄	-	Copper Sulphate
Df	-	Dilution factor
DNS	-	Dinitro Salicylic
EDTA	-	Ethylene Diamine Tetra acetic Acid
FeSO ₄ .7H ₂ O	-	Ferrous Sulphate Heptahydrate
g h ⁻¹	-	Gram / hour
h	-	Hour
H ₃ BO ₃	-	Boric Acid
IPTG	-	Isopropyl β -D-1-thiogalactopyranoside
K ₂ HPO ₄	-	di Potassium Hydrogen Phosphate
kDa	-	Kilo Dalton
KH ₂ PO ₄	-	Potassium di Hydrogen Phosphate
kHz	-	Kilo Hertz
L	-	Liter
Μ	-	Molar
MgSO ₄ .7H ₂ O	-	Magnesium Sulphate Heptahydrate
min	-	Minute
mL	-	Milli Liter
mM	-	Mille Molar
MnCl ₂ .4H ₂ O	-	Manganese Chloride Tetrahydrate
MnSO ₄ .7 H ₂ O	-	Manganese Sulphate Heptahydrate
Na ₂ MoO ₄ .2H ₂ O	-	Sodium Molybdate di Hydrate
NaCl	-	Sodium Chloride

NaOH	-	Sodium Hydroxide
NH ₄ Cl	-	Ammonium Chloride
NH ₄ NO ₃	-	Ammonium Nitrite
(NH ₄) H ₂ PO ₄	-	Ammonium di Hydrogen Phosphate
(NH ₄) ₂ SO ₄	-	di Ammonium Sulfate
NiCl ₂ .6H ₂ O	-	Nickel Chloride Hexahydrate
nm	-	Nanometer
P _{max}	-	Maximum Xylanase Activity (IU mL ⁻¹)
RPM	-	Rotation / Minute
t	-	Time of incubation (min ⁻¹)
TEMED	-	Tetramethylethylenediamine
TSB	-	Tryptone Soya Broth
$U g^{-1}$	-	Unit / gram
$\rm U~mg^{-1}$	-	Unit / Milligram
$\mathrm{U}~\mathrm{mL}^{-1}$	-	Unit / Milli Liter
V	-	Volte
V	-	Volume of enzyme solution used (mL ⁻¹)
v/v	-	Volume / Volume
vvm	-	Volume /Volume /Minute
W	-	Weight of xylose (µmoles mL ⁻¹)
w/v	-	Weight / Volume
Х	-	Cell Biomass (g L ⁻¹)
X _{max}	-	Maximum Cell Biomass (g L ⁻¹)
Xyl	-	Xylanase
Y _(pmax/x)	-	Specific Xylanase Activity (IU g ⁻¹)
ZnSO ₄ .7H ₂ O	-	Zinc Sulphate Heptahydrate
α	-	Alpha
β	-	Beta
λ	-	Lambda
-	-	Minus
%	-	Percentage
+	-	Plus
<	-	Less Than
>	-	Greater Than

±	-	Plus/Minus
°C	-	Degree Celsius
μ	-	Specific Growth Rate (h ⁻¹)
μg	-	Micro Gram
μ_{max}	-	Maximum Specific Growth Rate (h ⁻¹)

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
Appendix 1	Maltose Standard Graph and Estimation of Xylanase Activity	192
Appendix 2	Total Protein Estimation – Bradford Assay	194
Appendix 3	Residual Lactose Content Estimation	196
Appendix 4	Residual Maltose Content Estimation	196
Appendix 5	Carbon and Nitrogen Source Selection for optimum xylanase production	198
Appendix 6	Impact of Production media Initial pH on Xylanase Production	199
Appendix 7	Comparison of Xylanase Activity – Periplasmic Vs Cytoplasmic	199
Appendix 8	Comparison of Un Optimized and Optimized Media	200
Appendix 9	Cell Biomass and Xylanase Production Profile when Maltose Replaced with Glucose in Optimized Media	200
Appendix 10	Comparison of Cell Biomass and Xylanase Production Profile between Amp+ and Amp- Batch Fermentation	201
Appendix 11	Impact of Aeration on Cell Growth and Xylanase Production	203
Appendix 12	Comparison of Xylanase Production - Induced vs Un Induced	205
Appendix 13	Optimization of Post Induction Incubation Temperature	205
Appendix 14	Evaluation of Optimized Induction Condition in Bioreactor – Batch Fermentation	206
Appendix 15	Cell Biomass and Xylanase Production Profile in Un Inducer Fed Batch Fermentation	208
Appendix 16	Feeding Strategy Optimization in Fed Batch Fermentation	208

Appendix 17	Inducer Feeding Strategy Optimization in Fed Batch Fermentation	211
Appendix 18	Optimized Fed Batch Fermentation Conditions with and Without Ampicillin in Production Media	213
Appendix 19	SDS PAGE Gel Electrophoresis	216
Appendix 20	Sample Dilution Followed for Plasmid Stability Estimation	217

CHAPTER 1

INTRODUCTION

1.1 Background

Xylanase enzymes have been isolated and purified from a wide range of microorganisms such as bacteria, fungi and actinomycetes that are present in normal environmental conditions. However, most of these xylanase does not show any unique characteristics such as high alkaline and thermal stability. Therefore, the xylanase from microbes that grows in extreme environmental conditions such as low / high pH and low / high temperature have gained more attention for commercial applications, due to their novel characteristics. Simulating the extreme growing conditions of these microbial species in laboratory / industry set up, is found to be very difficult or extreemly expensive, to scale up the production of xylanase. Nowadays, the recombinant DNA technology brought a solution for this problem by introducing recombinant strains such as *Escherichia coli* BL21 (DE3) that can produce the xylanase enzyme with novel characteristics, under normal growing conditions. However, the expression level of xylanase gene in a recombinant strain depends on several aspects such as the cloning strategies used, gene copy number, plasmid stability and the host cell's metabolism.

To enhance the xylanase production, Mamo *et al.* (2007) constructed a clone of *Escherichia coli* BL21 (DE3) with a plasmid vector pET-22b(+) carrying xylanase coding gene, which is isolated from an extreme thermophilic bacteria, *Thermotoga neopolitana* DSM-4359. This has opened several new areas for further researches on

developing optimum fermentation and induction strategies to enhance the xylanase production.

1.2 Problem Statement

In submerged fermentation, the fermentation media composition plays important role in yield of xylanase production. An economically viable fermentation media formulation which can support the maximum xylanase production is necessary for industrial scale xylanase production. In such media, the nutritional sources are major and most important factor effecting xylanase production. Therefore, it is necessary to develop and optimize the fermentation medium, for enhanced production of recombinant. The conventional media optimization method is step by step process that involves varying one variable at a time while keeping the other variables constant which is tedious, time consuming and less reliable. Hence, it is ideal to apply Response Surface Methodology (RSM) based statistical approach, which is very reliable and less time consuming, in media optimization trials.

Xylanase expression in recombinant strain is greatly depending on the gene inducers present in the fermentation media. Isopropyl β -D-1- thiogalactopyranoside (IPTG) is the most widely used chemical inducer for *'lac'* based expression system. However, it is expensive and toxic in nature to the host cell at its higher concentration. Therefore, it is not recommended for the large scale production of recombinant proteins. Nowadays, researchers are using lactose as an alternative to IPTG. However, when compared to IPTG, lactose mediated induction was reported to be slightly slow and it is due to the catabolic repression by the expression host. Generally, the lactose-based induction carried out at log phase of cell growth, post achieving the high cell density, which results in relatively low product yield. The probable root cause for low product yield in above mentioned scenario is the poor intake of lactose at log phase of

cell growth. Therefore, it is important to develop a optimal lactose based induction strategy to enhance the xylanase production.

The conventional production strategies followed are found to be less effective to meet the growing need in the present xylanase market. Though, there are lots of researches going on in developing recombinant strains for xylanase production, a very limited number of these recombinant strains are used for the commercial scale production of xylanase due to the lack of industrially feasible production process. Therefore, it is important to investigate on alternative fermentation and induction strategies which enhances the xylanase production. For commercial applications, xylanase must be ideally produced in large quantities and simultaneously over a short period of time. Various fermentation strategies have been used to achieve the High Cell Density Cultivation (HCDC), as it is key to enhance the xylanase production. In a batch fermentation of Escherichia coli, it was found to be difficult to achieve the high cell density, due to several factors such as nutrient limitation, cell growth inhibition caused by secondary metabolites formation etc., Hence, fed batch fermentation with suitable feeding strategy have been used to overcome many of the above mentioned challenges. Substrate inhibition due to improper feeding and accumulation of acetate during high metabolic activity are the problems associated with fed batch fermentation. These factors may affect the plasmid stability also and results the low production. An optimized feeding strategy enables the control on specific growth rate in the fed batch fermentation shall results in better cell growths as well as xylanase production.

1.3 Aim

This study is aimed to enhance the production of Endo-1,4- β -Xylanase enzyme by recombinant *Escherichia coli* BL21 (DE3) at semi industrial scale (16 L bioreactor) using optimized fed batch cultivations system.

1.4 Objectives

The following objectives will be addressed to achieve the aim of the current research;

- 1.4.1 To optimize the production media for the enhanced production of xylanase enzyme through OFAT and DOE approach. Also, to optimize the lactose based induction strategy in optimized media for enhanced production of xylanase in shake flask culture.
- 1.4.2 To validate the optimized conditions at batch fermentation and to identify the optimum growing conditions of *Escherichia coli* BL21 (DE3) in 16 L stirred tank bioreactor.
- 1.4.3 To enhance the xylanase production in fed batch fermentation and to study and compare the effects of various feeding strategies on cell biomass and xylanase production. Also, to study the effects of lactose based induction on xylanase production in optimized fed batch fermentation conditions.
- 1.4.4 To partially purify and characterize the xylanase enzyme.

1.5 Scope

To achieve above mentioned objectives, this research is framed with the following five major scopes.

1.5.1 Media Optimization by One Factorial at Time (OFAT) approach followed by Response Surface Methodology (RSM) based statistical approach and then the validation of statistically predicted model at shake flask and 16 L stirred tank bioreactor (in batch fermentation).

- 1.5.2 Lactose based induction strategy (Inducer concentration, induction initiation time and post induction incubation temperature) optimization and comparison with IPTG based induction. Followed by, the evaluation of Optimized Induction Condition at 16 L stirred tank bioreactor
- 1.5.3 Batch cultivation with optimized growth parameters to determine the cell growth and xylanase production kinetics in 16 L stirred tank bioreactor and then the evaluation of impact of pH and dissolved oxygen level on cell growth and xylanase production.
- 1.5.4 Enhanced production of xylanase enzyme by fed batch fermentation using optimized media feeding (constant / pulse / stepwise increased) and inducer feeding (pulse / stepwise increased) strategies.
- 1.5.5 Partially purify the xylanase and characterize it by identifying the optimum temperature and pH, estimating thermal and alkali stability, molecular weight by SDS PAGE, impact of metal ions and chelating agents on enzyme activity and finally the substrate specificity.

1.6 Thesis Outline

In this thesis, chapter 1 describes the research background, problem statement, objective, scopes of current study. Chapter 2 covers the review of literatures related to xylanase enzyme, its commercial applications, approaches to enhance the production through various optimization studies and various production strategies followed. Chapter 3 describes the materials, methods and experimental designs used in current study for the optimization of xylanase production, scaling up to production, partial purification and physiochemical characterization. Chapter 4 discuss the results

of experiments carried out and it is also compared with the observations reported by other researchers in past. Chapter 5, which is the final chapter covers the conclusion and limitations of current study and it also details the recommendations for future exploration.

REFERENCE

- Akesson, M., Karlsson, E. N., Hagander, P., Axelsson, J. P., & Tocaj, A. (1999). Online detection of acetate formation in *Escherichia coli* cultures using dissolved oxygen responses to feed transients. *Biotechnology and Bioengineering*, 64: 590-598.
- Andrade, S.V., Polizeli, MLTM., Terenzi, H. F., & Jorge, J. A. (2004). Effect of carbon source on the biochemical properties of β-xylosidases produced by *Aspergillus* versicolor. Process Biochemistry, 39: 931-938.
- Andrews, S.R., Charnock, S.J., Lakey, J.H., Davies, G.J., Claeyssens, M., Nerinckx, V., Underwood, M., Sinnott, M.L., Warren, R.A., & Gilbert, H. J. (2000). Substrate specificity in glycoside hydrolase family 10, Tyrosine 87 and leucine 314 play a pivotal role in discriminating between glucose and xylose binding in the proximal active site of *Pseudomonas cellulosa* xylanase 10A. *Journal of Biological Chemistry*, 275(30): 23027-23033.
- Anuradha, P., Vijayalakshmi, K., Prasanna, N.D., & Sridevi, K. (2007). Production and properties of alkaline xylanases from *Bacillus sp.* isolated from sugarcane fields. Current Science, 92 (9): 1283-1286.
- Archana, A., & Satyanarayana, T. (1998). Cellulase-free xylanase production by thermophilic *Bacillus licheniformis* A99. *Indian Journal of Microbiology*, 38: 135-139.
- Avalos, O.P., Noyola, T.P., Plaza, I.M., & Torre, M. (1996). Induction of xylanase and β-xylosidase in *Cellulomonas flavigena* growing on different carbon sources. *Applied Microbiology and Biotchnology*, 46: 405-409.
- Babeipoura, V., Shojjaosadatib, S. A., Robatijzi, S. M., Khalilzadeh, R. & Maghsoudie, N. (2007). Overproduction of human interferon -γ by HCDC of recombinant *E. coli. Process Biochemistry*, 42: 112-117.
- Bai, Y., Wang, J., Zhang, Z., Yang, P., Shi, P., Luo, H., Meng, K., Huang H, & Yao,
 B. (2010). A new xylanase from thermoacidophilic *Alicyclobacillus sp.* A4 with broad-range pH activity and pH stability. *Journal of Industrial Microbiology and Biotechnology*, 37(2): 187-194.

- Bailey, M.J., Biely, P., & Poutanen, K. (1992). Interlaboratory testing of methods for assay of xylanase activity. *Journal of Biotechnology*, 23: 257-270.
- Bajpai, P., & Bajpai, P.K. (2001). Development of a process for the production of dissolving kraft pulp using xylanase enzyme, *Appita Journal*, 54(4): 381-384.
- Balakrishnan, H., Srinivasan, M.C., Rele, M.V., Chaudhari, K., & Chandwadkar, A.J. (2000). Effect of synthetic zeolites on xylanase production from an alkalophilic *Bacillus sp. Current Science* 79(1): 95-97.
- Basar, B., Shamzi, M.M., Rosfarizan, M., Puspaningsih, N.N.T., & Ariff, A.B. (2010).
 Enhanced Production of Thermophilic Xylanase by Recombinant *Escherichia coli* DH5α through Optimization of Medium and Dissolved Oxygen Level.
 International Journal of Agricultural and Biological Engineering, 12: 321-328.
- Basaran, P., Hang Y.D., Basaran, N., & Worobo, R.W. (2001). Cloning and heterologous expression of xylanase from *Pichia stipitis* in *Escherichia coli*. *Journal of Applied Microbiology*, 90(2): 248-255.
- Beaugrand, J., Pa^ees, G., Reis, D., Takahashi, M., Debeire, P., O'Donohue, M.J., & Chabbert, B. (2005). Probing the cell wall heterogeneity of micro-dissected wheat caryopsis using both active and inactive forms of a GH11 xylanase. *Planta*, 222: 246-257.
- Bedford, M.R., & Classen, H.L. (1992). Reduction of intestinal viscosity through manipulation of dietary rye and pentosanase concentration is affected through changes in the carbohydrate composition of the intestinal aqueous phase and results in improved growth rate and food conversion efficiency of broiler chicks. *Journal of Nutrition*, 122: 560-569.
- Beg, Q.K, Bhushan, B., Kappor, M., & Hoondal, G. (2000). Production and characterization of thermostable xylanase and pectinase from *Streptomyces sp.* QG-11-3. *Journal of Industrial Microbiology and Biotechnology*, 24: 396-402.
- Beg, Q.K., Kapoor, M., Mahajan, L., & Hoondal, G.S. (2001). Microbial xylanases and their industrial applications: a review. *Applied Microbiology and Biotechnology*, 56(3-4): 326-338.
- Bergquist, P., Te'o, V., Gibbs, M., Cziferszky, A., de Faria, F.P., Azevedo, M., & Nevalainen, H. (2002). Expression of xylanase enzymes from thermophilic microorganisms in fungal hosts. *Extremophiles*, 6(3): 177-184.

- Biswas, R., Sahai, V., Mishra, S., & Bisaria, V.S. (2010). Bioprocess strategies for enhanced production of xylanase by *Melanocarpus albomyces* IITD3A on agroresidual extract. *Journal of Bioscience and Bioengineering*, 110(6): 702-708.
- Bocchini, D.A., Alves-Prado, H.F., Baida, L.C., Roberto, I.C., Gomes, E., Da-Silva,
 R. (2002). Optimization of xylanase production by *Bacillus circulans* D1 in submerged fermentation using response surface methodology. *Process Biochemistry*, 38: 727-731.
- Bolam, D.N., Xie, H.F., White, P., Simpson, P.J., Hancock, S.M., Williamson, M.P., & Gilbert, H.J. (2001). Evidence for synergy between family 2b carbohydrate binding modules in *Cellulomonas fimi* xylanase 11A. *Biochemistry*, 40(8): 2468-2477.
- Boraston, A.B., McLean, B.W., Chen, V., Li, A., Warren, R.A., & Kilburn, D.G. (2002). Co-operative binding of triplicate carbohydrate-binding modules from a thermophilic xylanase. *Molecular Microbiology*, 43(1): 187-194.
- Boraston, A.B., Tomme, P., Amandoron, E.A., & Kilburn, D.G. (2000). A novel mechanism of xylan binding by a lectin-like module from *Streptomyces lividans* xylanase 10A. *Biochemical Journal*, 350(3): 933-941.
- Bradford, M.M. (1976). Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. *Analytical Biochemistry*, 72, 248-254.
- Brijs, K., Ingelbrecht, J.A., Courtin, C.M., Schlichting, L., Marchylo, B.A., & Delcour, J.A. (2004). Combined effects of endoxylanases and reduced water levels in pasta production. *Cereal Chemistry*, 81: 361-368.
- Butt, M.S., Nadeem, M.T., Ahmad, Z., & Sultan, M.T. (2008). Xylanases and their applications in baking industry. *Food Technology and Biotechnology*, 46(1): 22-31.
- Cannio, R., Di Prizito, N., Rossi, M., & Morana, A. (2004). A xylan-degrading strain of *Sulfolobus solfataricus*: isolation and characterization of the xylanase activity. Extremophiles 8(2), 117-124.
- Cantarel, B.L., Coutinho, P.M., Rancurel, C., Bernard, T., Lombard, V., & Henrissat,
 B. (2009). The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics. *Nucleic Acids Research*, 37: 233-238.
- Carmona, E.C., Fialho, M.B., Buchgnani, E.B., Coelho, G.D., Brocheto-Braga, M.R.,& Jorge, J.A. (2005). Production, purification and characterization of a minor

form of xylanase from Aspergillus versicolor. *Process Biochemistry*, 40(1): 359-364.

- Cervera-Tison, M.C., Andre-Leroux, G., Lafond, M., Georis, J., Juge, N., & Berrin, J.G. (2009). Molecular determinants of substrate and inhibitor specificities of the *Penicillium griseofulvum* family 11 xylanases. *Biochimica et Biophysica Acta*, 1794: 438-445.
- Charnock, S.J., Lakey, J.H., Virden, R., Hughes, N., Sinnott, M.L., Hazlewood, G.P., Pickersgill, R., & Gilbert, H.J. (1997). Key residues in subsite F play a critical role in the activity of Pseudomonas fluorescens subspecies *Cellulosa* xylanase A against xylooligosaccharides but not against highly polymeric substrates such as xylan. *Journal of Biological Chemistry*, 272(5): 2942-2951.
- Chauhan, K., Trivedi, U., & Patel, K.C. (2007). Statistical screening of medium components by Plackett-Burman design for lactic acid production by *Lactobacillus sp.* KCP01 using date juice. *Bioresources Technology*, 98: 98-103.
- Chen, S., Larsson, M., Robinson, R. C., & Chen, S. L. (2017). Direct and convenient measurement of plasmid stability in lab and clinical isolates of *E. coli. Nature Scientific Reports*, 4788(7): 2045-2322.
- Cheng, Y.F., Yang, C.H., & Liu, W.H. (2005). Cloning and expression of *Thermo* bifida xylanase gene in the methylotrophic yeast *Pichia pastoris*. Enzyme and Microbial Technology, 37(5): 541-546.
- Chiku, K., Uzawa, J., Seki, H., Amachi, S., Fujii, T., & Shinoyama, H. (2008). Characterization of a novel polyphenol-specific oligoxyloside transfer reaction by a family 11 xylanase from *Bacillus sp.* KT12. *Bioscience Biotechnology and Biochemistry*, 72(9): 2285-2293.
- Chithra, M., & Muralikrishna, G. (2008). Characterization of purified xylanase from finger millet (Eleusine coracana-Indaf 15) malt. *European Food Research and Technology*, 227(2): 587-597.
- Clarkson, K., Jones, B., Bott, R., Bower, B., Chotani, G., & Becker, T. (2001). Enzymes: screening, expression, design and production, *Enzymes in farm animal nutrition*, 315-352.
- Cleemput, G., Hessing, M., Van Oort, M., Deconynck, M., & Delcour, J.A, (1997). Purification and Characterization of a [beta]-D-Xylosidase and an Endo-Xylanase from Wheat Flour. *Plant Physiology*, 113(2): 377-386.

- Collins, T., De Vos, D., Hoyoux, A., Savvides, S.N., Gerday, C., Van Beeumen, J., & Feller, G. (2005). Study of the active site residues of a glycoside hydrolase family 8 xylanase. *Journal of Molecular Biology*, 354(2): 425-435.
- Collins, T., Gerday, C., & Feller, G. (2005). Xylanases, xylanases families and extremophilic xylanases. *FEMS Microbiology Review*, 29: 3-23.
- Coughlan, M.P., & Hazlewood, G.P. (1993). Beta-1,4-D-xylan-degrading enzymesystems - biochemistry, molecular-biology and applications. *Biotechnology and Applied Biochemistry*, 4: 259-289.
- Crepin, V.F., Faulds, C.B., & Connerton, I.F. (2004). Functional classification of the microbial feruloyl esterases. *Applied Microbiology and Biotechnology*, 63: 647-652.
- Csiszár, E., Urbánszki, K., & Szakás, G. (2001). Biotreatment of desized cotton fabric by commercial cellulase and xylanase enzymes. *Journal of Molecular Catalysis B Enzymatic*, 11: 1065-1072.
- Damiano, V.B., Bocchini, D.A., Gomes, E., & Silva, R.D. (2003). Application of crude xylanase from *Bacillus licheniformis* 77-2 to the bleaching of Eucalyptus kraft pulp. *World Journal of Microbiology and Biotechnology*, 19: 139 -144.
- De Lemos Esteves, F., Gouders, T., Lamotte-Brasseur, J., Rigali, S., & Frere, J.M. (2005). Improving the alkalophilic performances of the Xyl1 xylanase from *Streptomyces sp.* S38: structural comparison and mutational analysis. *Protein Science*, 14(2): 292-302.
- Deutscher, J. (2008). The mechanisms of carbon catabolite repression in bacteria. *Current Opinion in Microbiology*. 11(2): 87–93.
- De Mey, Marjan, De Maeseneire, S., Soetaert, W., & Vandamme, E. (2007). Minimizing acetate formation in *E. coli* fermentations. *Journal of industrial microbiology & biotechnology*, 34(11); 689–700.
- De Vos, D., Collins, T., Nerinckx, W., Savvides, S.N., Claeyssens, M., Gerday, C., Feller, G., & Van Beeumen, J. (2006). Oligosaccharide binding in family 8 glycosidases: crystal structures of active-site mutants of the beta-1,4-xylanase pXyl from *Pseudoaltermonas haloplanktis* TAH3a in complex with substrate and product. *Biochemistry*, 45(15): 4797-4807.
- Debyser, W., Derdelinckx, G., & Delcour, J.A. (1997). Arabinoxylan solubilization and inhibition of the barley malt xylanolytic system by wheat during mashing

with wheat whole meal adjunct: Evidence for a new class of enzyme inhibitors in wheat. *Journal of the American Society of Brewing Chemists*, 55: 153-156.

- Dey, D., Hinge, J., Shendye, A., & Rao, M. (1992). Purification and properties of extracellular endoxylanases from alkalophilic thermophilic *Bacillus* sp. *Canadian Journal of Microbiol*. 38: 436-442.
- Dheeran, P., Nandhagopal, N., Kumar, S., Jaiswal, Y.K., & Adhikari, D.K. (2012). A novel thermostable xylanase of *Paenibacillus macerans* IIPSP3 isolated from the termite gut. *Journal of Industrial Microbiology and Biotechnology*, 39(6): 851-860.
- Dhillon, A., Gupta, J.K., & Khanna, S. (2000). Enhanced production, purification and characterization of a novel cellulase-poor thermostable, alkali tolerant xylanase from *Bacillus circulans* AB 16. *Process Biochemistry*, 35(8): 849-856.
- Dhiman, S.S., Sharma, J., & Battan, B. (2008). Industrial Applications and future prospects of Microbial Xylanases: A Review. *Bio Resources*, 3(4): 1377-1402.
- Donovan, R. S., Robinson, C. W., & Glick, B. R. (1996). Review: Optimizing inducer and culture conditions for expression of foreign proteins under the control of the promoter. *Journal of Industrial Microbiology & Biotechnology*, 16: 145-154.
- Dvorackova, E., Snoblova, M., & Hrdlicka, P. (2014), Carbohydrate analysis: From sample preparation to HPLC on different stationary phases coupled with evaporative light-scattering detection. *Journal of Separation Science*, 37: 323-337.
- Ebanks, R., Dupont, M., Shareck, F., Morosoli, R., Kluepfel, D., & Dupont, C. (2000). Development of an *Escherichia coli* expression system and thermostability screening assay for libraries of mutant xylanase. *Journal of Industrial Microbiology and Biotechnology*, 25(6): 310-314.
- Elias C.B., Zeiser, A., Bedard, C., & Kamen, A.A. (2000). Enhanced growth of Sf-9 cells to a maximum density of 5.2x107 cells per ml and production of B-Galactosidase at high cell density by fed batch culture. *Biotechnology and Bioengineering*, 68: 381-388.
- Esteban, R., Villanueva, J.R., & Villa, T.G. (1982). β-D-xylanases of *Bacillus circulans* WL-12. *Canadian Journal of Microbiology*, 28: 733-739.
- Fang, H.Y., Chang, S.M., Lan, C.H., & Fang, T.J. (2008). Purification and characterization of a xylanase from *Aspergillus carneus* M34 and its potential use in photo protectant preparation. *Process Biochemistry*, 43(1): 49-55.

- Farliahati, M.R., Mohamad, R., Puspaningsih, N.N.T., & Ariff, A.B. (2009). Kinetics of Xylanase Fermentation by Recombinant *Escherichia coli* DH5α in Shake Flask Culture, *American Journal of Biochemistry and Biotechnology*, 5(3): 110-118.
- Farliahati, M.R., Ramanan, R.N., Mohamad, R., Puspaningsih, N.N.T.M., & Ariff A.B. (2010). Enhanced production of xylanase by recombinant *Escherichia coli* DH5 alpha through optimization of medium composition using response surface methodology. *Annals of Microbiology*, 60(2): 279-285.
- Frederix, S.A., Courtin, C.M., & Delcour, J.A. (2004). Substrate selectivity and inhibitor sensitivity affect xylanase functionality in wheat flour gluten-starch separation. *Journal of Cereal Science*, 40: 41-49.
- Fushinobu, S., Ito, K., Konno, M., Wakagi, T., & Matsuzawa, H. (1998). Crystallographic and mutational analyses of an extremely acidophilic and acidstable xylanase: biased distribution of acidic residues and importance of Asp37 for catalysis at low pH. *Protein Engineering*, 11(12): 1121-1128.
- Glazyrina, J., Materne, E.M., Dreher, T., Storm, D., Junne, S., Adams, T., Greller, G & Neubauer, P. (2010). High cell density cultivation and recombinant protein production with *Escherichia coli* in a rocking-motion-type bioreactor. *Microbial Cell Factory*, 10: 9-42.
- Gao, J., Zhang, H.J., Yu, S.H., Wu, S.G., Yoon, I., Quigley, J., Gao, Y.P., & Qi, G.H.
 (2008). Effects of yeast culture in broiler diets on performance and immunomodulatory functions. *Poultry Science*, 87: 1377-1384.
- Garai, D., & Kumar, V. (2012). Response surface optimization for xylanase with high volumetric productivity by indigenous alkali tolerant *Aspergillus candidus* under submerged cultivation. *Biotechnology*, 3: 127-136.
- Gebruers, K., Brijs, K., Courtin, C.M., Fierens, K., Goesaert, H., Raedschelders, G., Robben, J., Sorensen, J.F., Van Campenhout, S., & Delcour, J.A. (2004).
 Properties of TAXI-type endoxylanase inhibitors. *Biochimica et Biophysica Acta*, 1696: 213-221.
- Gombert, A. K., & Kilikian, B. V. (1998). Recombinant gene expression in *Escherichia coli* cultivation using lactose as inducer. *Journal of Biotechnology*, 60: 47-54.

Gomes, D.J., Gomes, J., & Steiner, W. (1994). Factors Influencing the Induction of Endo-Xylanase by *Thermoascus aurantiacus*. *Journal of Biotechnology*, 33(1): 87-94.

- Gruber, K., Klintschar, G., Hayn, M., Schlacher, A., Steiner, W., & Kratky, C. (1998). Thermophilic xylanase from *Thermomyces lanuginosus*: high-resolution X-ray structure and modeling studies. *Biochemistry*, 37(39): 13475-13485.
- Guo, B., Chen, X.L., Sun, C.Y., Zhou, B.C., Zhang, Y.Z. (2009). Gene cloning, expression and characterization of a new cold-active and salt-tolerant endo-beta-1,4-xylanase from marine *Glaciecola mesophila* KMM 241. *Applied Microbiology and Biotechnology*, 84(6): 1107-1115.
- Gupta, S., Bhushan, B., & Hoondal, G.S. (2000). Isolation, purification and characterization of xylanase from *Staphylococcus* sp. SG-13 and its application in biobleaching of kraft pulp. *Journal of Applied Microbiology*, 88: 325-334.
- Haddadin, F. A. T., & Harcum, S. W. (2005). Transcriptome profiles for high-celldensity recombinant and wild-type *Escherichia coli*. *Biotechnology and Bioengineering*. 90: 127-153.
- Hakulinen, N., Tenkanen, M., & Rouvinen, J. (1998). Crystallization and preliminary X-ray diffraction studies of the catalytic core of acetyl xylan esterase from *Trichoderma reesei*. Acta Crystallographica Section D Biological Crystallography, 54(3): 430-432.
- Harris, G.W., Jenkins, J.A., Connerton, I., Cummings, N., Lo Leggio, L., Scott, M., Hazlewood, G.P., Laurie, J.I., Gilbert, H.J., & Pickergill, R.W. (1994). Structure of the catalytic core of the family F xylanase from *Pseudomonas fluorescens* and identification of the xylopentaose-binding sites. *Structure*, 2: 1107-1116.
- Henrissat, B., & Bairoch, A. (1993). New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. *Biochemical journal*, 293: 781-788.
- Honda, Y., & Kitaoka, M. (2004). A family 8 glycoside hydrolase from *Bacillus halodurans* C-125 (BH2105) is a reducing end xylose-releasing exooligoxylanase. *The Journal of Biological Chemistry*, 279: 55097-55103.
- Huang, J., Wang, G., & Xiao, L. (2006). Cloning, sequencing and expression of the xylanase gene from a *Bacillus subtilis* strain B10 in *Escherichia coli*. *Bioresources Technology*, 97: 802-808.
- Huang, J., Wang, G., & Xiao, L. (2006). Cloning, sequencing and expression of the xylanase gene from a *Bacillus subtilis* strain B10 in *Escherichia coli*. *Bioresources Technology*, 97: 802-808.

- Humphry, D.R., George, A., Black, G.W., & Cummings, S.P. (2001). Flavobacterium frigidarium sp. an aerobic, psychrophilic, xylanolytic and laminarinolytic bacterium from Antarctica. International journal of systematic and evolutionary microbiology, 51: 1235-1243.
- Hung, K.S., Liu, S.M., Fang, T.Y., Tzou, W.S., Lin, F.P., Sun, K.H., & Tang, S.J. (2011). Characterization of a salt-tolerant xylanase from *Thermoanaerobacterium saccharolyticum* NTOU1. *Biotechnology Letters*, 33(7): 1441-1447.
- Ingelbrecht, J.A., Moers, K., Abecassis, J., Rouau, X., & Delcour, J.A. (2001). Influence of arabinoxylans and endoxylanases on pasta processing and quality. Production of high-quality pasta with increased levels of soluble fiber. *Cereal Chemistry*, 78: 721-729.
- Jecu, L. (2000). Solid state fermentation of agricultural wastes for endoglucanase production. *Industrial Crops and Products*, 11: 1-5.
- Joshi, M.D., Hedberg, A., & McIntosh, L.P. (1997). Complete measurement of the pKa values of the carboxyl and imidazole groups in *Bacillus circulans* xylanase. *Protein Science*, 6 (12): 2667-2670.
- Jun, H., Bing, Y., Zhang, K., Ding, X., & Daiwen, C. (2008). Expression of a Trichoderma reesei B -xylanase gene in Escherichia coli and activity of the enzyme on fiber-bound substrates. Protein Expression and Purification, 67: 1-6.
- Kapoor, M., Nair, L.M., & Kuhad, R.C. (2008). Cost-effective xylanase production from free and immobilized *Bacillus pumilus* strain MK001 and its application in saccharification of Prosopis juliflora. *Biochemical Engineering Journal*. 38: 88– 97.
- Karlsson, E.N., BartonekRoxa, & E., Holst, O. (2004). Evidence for substrate binding of a recombinant thermostable xylanase originating from *Rhodothermus marinus*. *FEMS Microbiology*. *Letters*, 168(1): 1-7.
- Karlsson, E.N., Bartonek, E., & Holst, O. (1997). Cloning and sequence of a thermostable multidomain xylanase from the bacterium *Rhodothermus marinus*. *Biophysica Acta-Gene Structure and Expression*, 1353(2): 118-124.
- Katapodis, P., & Christakopoulos, P. (2008). Enzymatic production of feruloyl xylooligosaccharides from corn cobs by a family 10 xylanase from *Thermoascus aurantiacus*. *Lwt-Food Science and Technology*, 41(7): 1239-1243.

- Khandeparkar, R., & Bhosle, N.B., (2006). Purification and characterization of thermos alkalophilic xylanase isolated from the *Enterobacter sp.* MTCC 5112. *Research in Microbiology*, 157(4); 315-325.
- Khasin, A., Alchanati, I., & Shoham, Y. (1993). Purification and characterization of a thermostable xylanase from *Bacillus stearothermophilus* T-6. *Applied Environmental Microbiology*, 59(6): 1725-1730.
- Kimura, T., Ito, J., Kawano, A., Makino, T., Kondo, H., Karita, S., Sakka, K., & Ohmiya, K., (2000). Purification, characterization, and molecular cloning of acidophilic xylanase from *Penicillium sp.*40. *Bioscience, Biotechnology and Biochemistry*, 64(6): 1230-1237.
- Ko, C.H., Tsai, C.H., Tu, J., Yang, B.Y., Hsieh, D.L., Jane, W.N., & Shih, T.L. (2011).
 Identification of *Paenibacillus sp.* 2S-6 and application of its xylanase on biobleaching. *International Biodeterioration & Biodegradation*, 65: 334-339.
- Kohli, U., Nigam, P., Singh, D., & Chaudhary, K. (2001). Thermostable, alkalophilic and cellulase free xylanase production by *Thermoactinomyces thalophilus* subgroup C. *Enzyme and Microbial Technology*, 28(7-8): 606-610.
- Kolenova, K., Vrsanska, M., & Biely, P. (2006). Mode of action of endo-beta-1,4xylanases of families 10 and 11 on acidic xylooligosaccharides. *Journal of Biotechnology*, 121: 338-345.
- Korpimaki, T., Kurittu, J., & Karp, M. (2003). Surprisingly fast disappearance of betalactam selection pressure in cultivation as detected with novel biosensing approaches. *Journal of Microbiology Methods*, 53: 37–42.
- Krengel, U., & Dijkstra, B.W. (1996). Three-dimensional structure of Endo-1, 4-betaxylanase I from Aspergillus niger: molecular basis for its low pH optimum. Journal of Molecular Biology, 263(1): 70-78.
- Kui, H., Luo, H., Shi, P., Bai, Y., Yuan, T., Wang, Y., Yang, P., Dong, S., & Yao, B. (2010). Gene cloning, expression, and characterization of a thermostable xylanase from *Nesterenkonia xinjiangensis* CCTCC AA001025. *Applied Biochemistry and Biotechnology*, 162(4): 953-965.
- Kulkarni, N., Lakshmikumaran, & M., Rao, M. (1999). Xylanase II from an alkaliphilic thermophilic *Bacillus* with a distinctly different structure from other xylanases: evolutionary relationship to alkaliphilic xylanases. *Biochemical and Biophysical Research Communications*, 263(3): 640-645.

- Kumar, K.S., Manimaran, A., Permaul, K., & Singh, S. (2009). Production of βxylanase by a *Thermomyces lanuginosus* MC 134 mutant on corn cobs and its application in biobleaching of bagasse pulp. *Journal of Bioscience and Bioengineering*, 107(5): 494-498.
- Kumar, P.R., Eswaramoorthy, S., Vithayathil, P.J., & Viswamitra, M.A. (2000). The tertiary structure at 1.59 A resolution and the proposed amino acid sequence of a family-11 xylanase from the thermophilic fungus *Paecilomyces varioti bainier*. *Journal of Molecular Biology*, 295(3): 581-593.
- Kumar, V., & Satyanarayana, T. (2011). Applicability of thermo-alkali-stable and cellulase-free xylanase from a novel thermo-halo-alkaliphilic *Bacillus haloduransin* producing xylooligosaccharides. *Biotechnology Letters*, 33: 2279-2285.
- La Grange, D.C., Claeyssens, M., Pretorius, I.S., & Van Zyl, W.H. (2000). Co expression of the *Bacillus pumilus* beta-xylosidase (xynB) gene with the Trichoderma reesei beta xylanase 2 (xyn2) gene in the yeast *Saccharomyces cerevisiae*. *Applied Microbiology and Biotechnology*, 54(2): 195-200.
- Lagaert, S., Van Campenhout, S., Pollet, A., Bourgois, T.M., Delcour, J.A., Courtin, C.M., & Volckaert, G. (2007). Recombinant expression and characterization of a reducing-end xylose-releasing exo-oligoxylanase from *Bifidobacterium adolescentis*. *Applied Environmental Microbiology*, 73: 5374-5377.
- Lama, L., Calandrelli, V., Gambacorta, A., & Nicolaus, B. (2004). Purification and characterization of thermostable xylanase and beta-xylosidase by the thermophilic bacterium *Bacillus thermantarcticus*. *Research in Microbiology*, 155(4): 283-289.
- Lappalainen, A., Siika-aho, M., Kalkkinen, N., Fagerstrom, R., & Tenkanen, M. (2000). Endo-xylanase II from *Trichoderma reesei* has several isoforms with different isoelectric points. *Biotechnology and Applied Biochemistry*. 31: 61- 68.
- Larson, S.B., Day, J., Barba de la Rosa, A.P., Keen, N.T., McPherson, A. (2003). First crystallographic structure of a xylanase from glycoside hydrolase family 5: implications for catalysis. *Biochemistry*, 42(28): 8411-8422.
- Lee, T.H., Lim, P.O., & Lee, Y.E. (2007). Cloning, characterization, and expression of xylanase A gene from *Paenibacillus sp.* DG-22 in *Escherichia coli*. *Journal* of Microbiology and Biotechnology, 17(1): 29-36.

- Levasseur, A., Asther, M., & Record, E. (2005). Overproduction and characterization of xylanase B from Aspergillus niger. Canadian Journal of Microbiology, 51(2): 177-183.
- Lim, H. K., Kim, S. G., Jung, K.H., & Seo, J.H. (2004). Production of the kringle fragments of human apolipoprotein(a) by continuous lactose induction strategy. *Journal of Biotechnology*, 108: 271-278.
- Lo, Y.C., Lu, W.C., Chen, C.Y., Chen, W.M., & Chang, J.S. (2010). Characterization and high-level production of xylanase from an indigenous cellulolytic bacterium *Acinetobacter junii* F6-02 from southern Taiwan soil. *Biochemical Engineering Journal*, 53(1): 77-84.
- Luli, G. W., Schlasner, S. M., Ordaz, D. E., Mason, M., & Strohl, W. R. (1987). An automatic, on-line glucose analyzer for feed-back control of fed-batch growth of *Escherichia coli*. *Biotechnology Techniques*, 1: 225-230.
- Lundgren, K.R., Bergkvist, L., Hogman, S., Joves, H., Eriksson, G., Bartfai, T., Vanderlaan, J., Rosenberg, E., & Shoham, Y. (1994). Tcf Mill Trial on Softwood Pulp with Korsnas Thermostable and Alkaline Stable Xylanase T6. *FEMS Microbiology Reviews*, 13(2-3): 365-368.
- Luthi, E., Love, D.R., McAnulty, J., Wallace, C., Caughey, P.A., Saul, D., & Bergquist, P.L. (1990). Cloning, sequence analysis, and expression of genes encoding xylan-degrading enzymes from the thermophile *Caldocellum saccharolyticum*. *Applied Environmental Microbiology*, 56(4): 1017-1024.
- Mamo, G., Hatti-Kaul, R., & Mattiasson, B. (2006). A thermostable alkaline active endo-b-1-4-xylanase from *Bacillus halodurans* S7: Purification and characterization. *Enzyme and Microbial Technology*, 39: 1492-1498.
- Mamo, G., Hatti-Kaul, R., & Mattiasson, B. (2007). Fusion of carbohydrate binding modules from *Thermotoga neapolitana* with a family 10 xylanase from *Bacillus halodurans* S7. *Extremophiles*, 11: 169-177.
- Mamo, G., Kasture, S., Faryar, R., Hashim, S., & Hatti-Kaul, R. (2010). Surfactants from xylan: Production of n-octyl xylosides using a highly thermostable xylanase from *Thermotoga neapolitana*. *Process Biochemistry*, 45(5): 700-705.
- Margeot, A., Hahn-Hagerdal, B., Edlund, M., Slade, R., & Monot, F. (2009). New improvements for lignocellulosic ethanol. *Current Opinion in Biotechnology*, 20: 372-380.

- Matsumoto H., Haniu H., & Komori N. (2019). Determination of Protein Molecular Weights on SDS-PAGE. *Electrophoretic Separation of Proteins Methods in Molecular Biology*, 1855; 101-105.
- McCarthy, A. A., Morris, D. D., Bergquist, P. L., & Baker, E. N. (2000). Structure of XynB, a highly thermostable b-1,4-xylanase from *Dictyoglomus thermophilum* Rt46B.1, at 1.8 AÊ resolution, (*IUCr*) Archive of Acta Crystallographica, Section D: 1367-1375.
- Madigan, M. T., Martinko, J. M., Dunlap, P. V., & Clark, D. P. (2009). Brock biology of microorganisms. 12th ed. San Francisco, CA.
- Mergulhao, F. J. M., Summers, D. K., & Monteiro, G. A. (2005). Recombinant protein secretion in *Escherichia coli*. *Biotechnology Advances*, 23: 177-202.
- Mitreva-Dautova, M., Roze, E., Overmars, H., de Graaff, L., Schots, A., Helder, J., Goverse, A., Bakker, J., & Smant, G. (2006). A symbiont-independent endo-1,4beta-xylanase from the plant-parasitic nematode *Meloidogyne incognita*. *Molecular Plant-Microbe Interactions*, 19(5): 521-529.
- Moat, A.G., & Foster, J.W. (1995). Carbohydrate metabolism and energy production. *Microbial physiology, Wiley-Liss publisher, New York, USA 305.*
- Montgomery D.C. (2000), Design and analysis of experiments, 5th edition, New York: John Wiley & Sons Inc.
- Morris, D. D., Reeves, R. A., Gibbs, M. D., Saul, D. J., & Bergquist, P. L. (1996). Correction of the β-mannanase domain of the celC pseudogene from *Caldicellulosiruptor saccharolyticus* and activity of the gene product on kraft pulp. *Applied Environmental Microbiology*, 61: 2262-2269.
- Mullai, P., Fathima, N.S.A., & Rene, E.R., (2010). Statistical analysis of main and interaction effects to optimize xylanase production under submerged cultivation conditions. *Journal of Agricultural Science*, 2(1): 144-153.
- Nakamura, S., Wakabayashi, K., & Horikoshi, K., (1993). Purification and some properties of an alkaline xylanase from akaliphilic *Bacillus* sp. strain 41 M-1. *Applied Environmental Microbiology*, 59: 2311-2316.
- Narang, S., & Satyanarayana, T. (2001). Thermostable alpha-amylase production by an extreme thermophile *Bacillus thermooleovorans*. Lett. Appl. Microbiol, 32, 31-35
- Natesh, R., Bhanumoorthy, P., Vithayathil, P.J., Sekar, K., Ramakumar, S., & Viswamitra, M.A. (1999). Crystal structure at 1.8 angstrom resolution and

proposed amino acid sequence of a thermostable xylanase from *Thermoascus* aurantiacus. Journal of Molecular Biology, 288(5): 999-1012.

- Ogasawara, W., Shida, Y., Furukawa, T., Shimada, R., Nakagawa, S., Kawamura, M., Yagyu, T., Kosuge, A., Xu J., Nogawa, M., Okada, H., & Morikawa, Y. (2006).
 Cloning, functional expression and promoter analysis of xylanase III gene from *Trichoderma reesei*. *Applied Microbiology and Biotechnology*, 72(5): 995-1003.
- Olfa, E., Mondher, M., Issam, S., Ferid, L., & Nejib, N.M. (2007). Induction, properties and application of xylanase activity from *Sclerotinia sclerotiorum* S2 fungus. *Journal of Food Chemistry*, 31: 96-107.
- Paes, G., Berrin, J.G., & Beaugrand, J. (2012). GH11 xylanases: structure/function/properties relationships and applications. *Biotechnology Advances*, 30: 564-592.
- Panda, A. (2003). Bioprocessing of Therapeutic Proteins from the Inclusion Bodies of Escherichia coli. Biotechnology in India, 2: 43-93.
- Petrescu, I., Lamotte-Brasseur, J., Chessa, J.P., Ntarima, P., Claeyssens, M., Devreese, B., Marino, G., & Gerday, C. (2000). Xylanase from the psychrophilic yeast *Cryptococcus adeliae. Extremophiles*, 4(3): 137-144.
- Polizeli, M.L.T.M., Rizzatti, A.C.S., Monti, R., Terenzi, H.F., Jorge, J.A., & Amorim, D.S. (2005). Xylanases from fungi: properties and industrial applications. *Applied Microbiology and Biotechnology*, 67: 577-591.
- Polizeli, M.L.T.M., Rizzatti, A.C.S., Monti, R., Terenzi, H.F., Jorge, J.A., & Amorim,
 D.S. (2005). Xylanases from fungi: properties and industrial applications.
 Applied Microbiology and Biotechnology, 67: 577-591.
- Pollet, A., Schoepe, J., Dornez, E., Strelkov, S.V., Delcour, J.A., & Courtin, C.M. (2010). Functional analysis of glycosidehydrolase family 8 xylanases shows narrow but distinct substrate specificities and biotechnological potential. *Applied Microbiology and Biotechnology*, 87: 2125-2135.
- Puchkaev, A.V., Koo, L.S., & Ortiz de Montellano, P.R. (2003). Aromatic stacking as a determinant of the thermal stability of CYP119 from *Sulfolobus solfataricus*. *Archives of Biochemistry and Biophysics*, 409: 52-58.
- Riesenberg, D., Schulz, V., Knorre, W.A., Pohl, H. D., Korz, D., Sanders, E.A., Roß, A & Deckwer, W. D. (1991). High cell density cultivation of *Escherichia coli* at controlled specific growth rate. *Journal of Biotechnology*, 20(1):17-27.

- Rizzatti, A. S., Jorge, J. A., Terenzi, H. F., Rechia, CGV., & Polizeli, MLTM. (2001). Purification and properties of a thermostable extracellular β-xylosidase produced by a thermotolerant *Aspergillus phoenicis*. *Journal of Industrial Microbiology and Biotechnology*, 26: 156-160.
- Rose, S.H., and van Zyl, W.H. (2002). Constitutive expression of the *Trichoderma reesei* beta-1,4-xylanase gene (xyn2) and the beta-1,4-endoglucanase gene (egl) in *Aspergillus niger* in molasses and defined glucose media. *Applied Microbiology and Biotechnology*, 58(4): 461-468.
- Ruanglek, V., Sriprang, R., Ratanaphan, N., Tirawongsaroj, P., Chantasigh, D., Tanapongpipat, S., Pootanakit, K., & Eurwilaichitr, L. (2007). Cloning, expression, characterization, and high cell-density production of recombinant endo-1,4-beta-xylanase from *Aspergillus niger* in *Pichia pastoris*. *Enzyme and Microbial Technology*, 41(1-2): 19-25.
- Salles, B.C., Cunha, R.B., Fontes, W., Sousa, M.V., & Filho, E.X.F. (2000). Purification and characterization of a new xylanase from Acrophialophora nainiana. Journal of Biotechnology, 81(2-3): 199-204.
- Sandhu, J.S., & Kennedy, J.F. (1986). Molecular cloning of *Bacillus polymyxa* (1–4)-P-D-xylanase gene in *Escherichia coli*. Enzyme Microb Technol, 6, 271–274.
- Sanghi, A., Garg, N., Kuhar, K., Kuhad, R.C., & Gupta, V.K. (2009). Enhanced production of cellulase-free xylanase by alkalophilic *Bacillus subtilis* ASH and its application in biobleaching of kraft pulp. *Bio-Resources*, 4: 1109-1129.
- Sapre, M.P., Jha, H., & Patil, M.B. (2005). Purification and characterization of a thermos alkalophilic xylanase from *Bacillus sp. World Journal of Microbiology* & *Biotechnology*, 21(5): 649-654.
- Schlacher, A., Holzmann, K., Hayn, M., Steiner, W., & Schwab, H. (1996). Cloning and characterization of the gene for the thermostable xylanase XynA from *Thermomyces lanuginosus. Journal of Biotechnology*, 49(1-3): 211-218.
- Shallom, D., & Shoham, Y. (2003). Microbial hemicellulases. Current Opinion in Microbiology, 6(3): 219-228.
- Shapack, G.E., Russel, I., & Stewart, G.G. (1987). Thermophilic microbes in ethanol production. United States: CRC Press Inc, Boca Raton.
- Sharma, A., Adahikari, S., & Satyanarayana, T. (2007). Alkali-thermostable and cellulase-free xylanase production by an extreme thermophile *Geobacillus thermoleovorans*. *Journal of Microbiology and Biotechnology*, 23: 483-490.

- Shatalov, A. A., & Pereira, H. (2008). Effect of xylanases on peroxide bleachability of eucalypt (E. globulus) kraft pulp. *Journal of Biochemical Engineering*, 40(1):19-26.
- Shin, C.S., Hong, M.S., Bae, C.S., & Lee, J. (1997). Enhanced Production of Human Mini-Proinsulin in Fed-Batch Cultures at High Cell Density of *Escherichia coli BL21(DE3)* [pET-3aT2M2]. *Biotechnology Progress*, 13: 249-257.
- Shojaosadati, S.A. (2008). Recent advances in high cell density cultivation for production of recombinant protein. *International Journal of Biotechnology*, 6: 63-84.
- Shrinivas, D., Savitha, G., Raviranjan, K., & Naik, G.R. (2010). A highly thermostable alkaline cellulase-free xylanase from *thermoalkalophilic Bacillus* sp. JB 99 suitable for paper and pulp industry: purification and characterization. *Applied Biochemistry and Biotechnology*, 162(7): 2049-2057.
- Skerra, A., & Pluckthun, A. (1991). Secretion and in vivo folding of the Fab fragment of the antibody McPC603 in *Escherichia coli*: influence of di-sulphides and cisprolines. *Protein Engineering*, 4: 971-979.
- Srivastava, R., & Srivastava, A.K. (1993). Characterization of a Bacterial Xylanase Resistant to Repression by Glucose and Xylose. *Biotechnology Letters*, 15(8): 847-852.
- Sriyapai, T., Somyoonsap, P., Matsui, K., Kawai, F., & Chansiri, K. (2011). Cloning of a thermostable xylanase from Actinomadura sp. S14 and its expression in Escherichia coli and Pichia pastoris. Journal of Bioscience and Bioengineering, 111(5): 528-536.
- Sriyapai, T., Somyoonsap, P., Matsui, K., Kawai, F., & Chansiri, K. (2011). Cloning of a thermostable xylanase from Actinomadura sp. S14 and its expression in Escherichia coli and Pichia pastoris. Journal of Bioscience and Bioengineering, 111(5): 528-536.
- St John, F.J., Godwin, D.K., Preston, J.F., Pozharski, E., & Hurlbert, J.C. (2009). Crystallization and crystallographic analysis of *Bacillus subtilis* xylanase C. (*IUCr*) Archive of Acta Crystallographica Section F, 65(5): 499-503.
- Standbury P.F., Whitaker A., and Hall S.J. (2003). Principles of Fermentation Technology.Burlington: Butterworth-Heinemann.
- Subramaniyan, S. (2000). Studies on the Production of Bacterial Xylanases. Ph.D. Thesis, Cochin University of Science and Technology, Kerala, India.

- Subramaniyan, S., & Prema, P. (2002). Biotechnology of Microbial Xylanases: Enzymology, Molecular Biology and Application. *Critical review on Biotechnology*, 22: 33-46.
- Subramaniyan, S., Sandhia, G. S., & Prema, P. (2001). Control of xylanase production without protease activity in *Bacillus sp* by selection of nitrogen source. *Biotechnology Letters*, 23: 369-371.
- Suarez., D.C & Kilikian., B. (2000). Acetic acid accumulation in aerobic growth of recombinant *Escherichia coli*. *Process Biochemistry* 35(9):1051-1055.
- Taneja, K., Gupta, S., & Kuhad, R.C. (2002). Properties and application of a partially purified alkaline xylanase from an alkalophilic fungus *Aspergillus nidulans* KK-99. *Bioresource Technology*, 85(1): 39-42.
- Teng, C., Yan, Q.J., Jiang, Z.Q., Fan, G.S., and Shi, B. (2010). Production of xylooligosaccharides from the steam explosion liquor of corncobs coupled with enzymatic hydrolysis using a thermostable xylanase. *Bioresource Technology*, 101(19): 7679-7682.
- Theater, R.M., & Wood, P.J. (1982). Use of Congo Red-polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen. *Applied and Environmental Microbiology*, 43: 777-780.
- Tran, T., Mamo, G., Mattiasson, B., & Hatti-Kaul, R. (2010). A thermostable phytase from *Bacillus sp. MD2:* cloning, expression and high-level production in *Escherichia coli. Journal of Industrial Microbiology & Biotechnology*, 37: 279-287.
- Valenzuela, S.V., Diaz, P., & Javier Pastor, F.I. (2010). Recombinant expression of an alkali stable GH10 xylanase from *Paenibacillus barcinonensis*. *Journal of Agricultural and Food Chemistry*, 58(8): 4814-4818.
- Van Campenhout, S., Pollet, A., Bourgois, T.M., Rombouts, S., Beaugrand, J., Gebruers, K., De Backer, E., Courtin, C.M., Delcour, J.A., & Volckaert, G. (2007). Unprocessed barley aleurone endo-beta-1,4-xylanase X-I is an active enzyme. *Biochemical and Biophysical Research Communications*, 356(3): 799-804.
- Van Der Borght, A., Goesaert, H., Veraverbeke, W.S., & Delcour, J.A. (2005). Fractionation of wheat and wheat flour into starch and gluten: overview of the main processes and the factors involved. *Journal of Cereal Science*, 41: 221-237.

- Vandooren, J., Geurts, N., Martens, E., Steen, P.V., & Opdenakker, G. (2013). Zymography methods for visualizing hydrolytic enzymes. *Nature Methods*, 10, 211-220.
- van Hoek, P., de Hulster, E., van Dijken, J. P., & Pronk, J. T. (2000). Fermentative capacity in high-cell-density fed-batch cultures of baker's yeast. *Biotechnology and Bioengineering*, 68: 517-523.
- Van Petegem, F., Collins, T., Meuwis, M.A., Gerday, C., Feller, G., & Van Beeumen, J. (2003). The structure of a cold-adapted family 8 xylanase at 1.3 A resolution. Structural adaptations to cold and investigation of the active site. *Journal of Biological Chemistry*, 278(9): 7531-7539.
- Vandeplas, S., Dauphin, R.D., Thonart, P., Thewis, A., & Beckers, Y. (2010). Effect of the bacterial or fungal origin of exogenous xylanases supplemented to a wheat-based diet on performance of broiler chickens and nutrient digestibility of the diet. *Canadian Journal of Animal Science*, 90: 221-228.
- Verjans, P., Dornez, E., Delcour, J.A., & Courtin, C.M. (2010). Selectivity for waterunextractable arabinoxylan and inhibition sensitivity govern the strong bread improving potential of an acidophilic GH11 Aureobasidium pullulans xylanase. Food Chemistry, 123: 331-337.
- Verma, D., & Satyanarayana, T. (2012). Cloning, expression and applicability of thermo-alkali-stable xylanase of *Geobacillus thermoleovorans* in generating xylooligosaccharides from agro-residues. *Bioresource Technology*, 107: 333-338.
- Wang, J, S., Bai, Y. G., Yang, P. L., Shi, P.J., Luo, H.Y., Meng, K., Huang, H.Q., Yin, J., & Yao, B. (2010). A new xylanase from thermoalkaline *Anoxybacillus sp* E2 with high activity and stability over a broad pH range. *World Journal of Microbiology & Biotechnology*, 26(5): 917-924.
- Wang, J.S., Bai, Y.G., Yang, P.L., Shi, P.J., Luo, H.Y., Meng, K., Huang, H.Q., Yin, J., & Yao, B. (2010). A new xylanase from thermoalkaline *Anoxybacillus sp* E2 with high activity and stability over a broad pH range. *World Journal of Microbiology & Biotechnology*, 26(5): 917-924.
- Wilms, B., Hauck, A., Reuss, M., Syldatk, C., Mattes, R., Siemann, M., & Altenbuchner, J. (2001). High-cell-density fermentation for production of L-Ncarbamoylase using an expression system based on the *Escherichia coli* rha BAD promoter. *Biotechnology and Bioengineering*,73: 95-103.

- Wong, K.K., Tan, L.U., & Saddler, J.N. (1988). Multiplicity of beta-1, 4-xylanase in microorganisms: functions and applications. *Microbiology Review*, 52(3): 305-317.
- Wu, S.J., Liu, B., & Zhang, X.B (2006). Characterization of a recombinant thermostable xylanase from deep-sea thermophilic *Geobacillus sp* MT-1 in East Pacific. *Applied Microbiology and Biotechnology*, 72(6): 1210-1216.
- Yang, H.J., & Xie, C.Y. (2010). Assessment of fibrolytic activities of 18 commercial enzyme products and their abilities to degrade the cell wall fraction of corn stalks in in vitro enzymatic and ruminal batch cultures. *Animal Feed Science and Technology*, 159: 110 -121.
- Yarnura, I., Koga, T., Matsumoto, T., & Kato, T. (1997). Purification and some properties of endo-1,4-β-D-xylanse from a fresh water mollusc, *Pomacea insularus* (de Ordigny). *Bioscience, Biotechnology, and Biochemistry*, 61(4): 615-620.
- Yee, L., & Blanch, H. W. (1993). Recombinant trypsin production in high cell density fed-batch cultures in *Escherichia coli*. Biotechnology and Bioengineering, 41,781-790.
- Yim, S. Y., Jeong, K. J., Chang, H. C., and Lee, S. L. (2001). High-level secretory production of human granulocyte-colony stimulating factor by fed-batch culture of recombinant *Escherichia coli*. *Bioprocess and Biosystems Engineering*. 24: 249-254.
- Yin, L.J., Lin, H.H., Chiang, Y.I., & Jiang, S.T. (2010). Bioproperties and purification of xylanase from *Bacillus sp.* YJ6. *Journal of Agricultural and Food Chemistry*, 58(1): 557-562.
- Zhao, Y., Chany, C.J., Sims, P.F., & Sinnott, M.L. (1997). Definition of the substrate specificity of the 'sensing' xylanase of *Streptomyces cyaneus* using xylooligo saccharide and cellulooligosaccharide glycosides of 3,4-dinitrophenol. *Journal* of *Biotechnology*, 57(1-3): 181-190.
- Zhou, C., Bai, J., Deng, S., Wang, J., Zhu, J., Wu, M., & Wang, W. (2008). Cloning of a xylanase gene from Aspergillus usamii and its expression in Escherichia coli. Bioresources Technology, 99(4): 831-838.
- Zhou, C.Y., Bai, J.Y., Deng, S.S., Wang, J., Zhu, J., Wu, M.C., & Wang, W. (2008). Cloning of a xylanase gene from *Aspergillus usamii* and its expression in *Escherichia coli*. *Bioresource Technology*, 99: 831-838.

Zhou, C.Y., Li, D.F., Wu, M.C., & Wang, W. (2008). Optimized expression of an acid xylanase from *Aspergillus usamii*