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ABSTRACT 

White rot fungi have attracted global attention because of their potential 

application in biotechnology industry. Of all ligninolytic exoenzymes produced by 

white rot fungi, laccases are one of the most investigated enzymes related to a variety 

of green oxidation processes. The study of ligninolytic enzymes has been hampered 

by the difficulty in producing these enzymes in sufficient quantities due to a large 

number of factors contribute to the development of morphological forms that will 

influence the enzymes production optimization. In this study, the identification of 

white rot fungi producing ligninolytic enzymes from local soils, optimization study, 

purification and characterization work aiming to laccase were carried out. Eight 

isolates white rot fungi were identified as potentially useful over 119 isolates 

screened. Cerrena sp. WICC F39 was chosen based on the high laccase activity of 

enzyme production. Optimization was carried out using one-factor-at-time (OFAT) 

and statistical approach using response surface methodology (RSM). Laccase 

enzymes produced in selected unoptimized screened medium composed of (g L
-1

): 

mannitol, 10.0; ammonium tartrate, 2.0; potassium dihydrogen phosphate, KH2PO4, 

0.8; dipotassium hydrogen phosphate, K2HPO4, 0.6; magnesium sulphate 

heptahydrate,  MgSO4·7H2O, 0.5; copper sulphate pentahydrate, CuSO4·5H2O, 0.1 

mM; Manganese sulphate pentahydrate, MnSO4·5H2O, 0.1 mM and yeast extract, 3.0 

(pH 6.0), which produced highest laccase at 199.67 U ml
-1

. The medium optimized 

using OFAT composed of (g L
-1

): rice straw, 200.0; starch, 5.0; peptone, 1.5; 

ammonium tartrate, 2.0; potassium dihydrogen phosphate, KH2PO4, 0.8; K2HPO4, 

0.6; MgSO4, 0.5; CuSO4 (1 mM); MnSO4 (1 mM) produced laccase of 552.31 U ml
-

1
. Next, optimization using RSM contributed to maximum laccase production of 

496.89 U ml
-1

 with optimum medium concentration (in g L
-1

): rice straw, 179.3; 

starch, 11.8; peptone meat, 3.5; ammonium tartrate, 0.1 and KH2PO4, 0.2. Further 

cultivation of Cerrena sp. WICC F39 was carried out using batch mode in a 5-L 

bioreactor. Using OFAT optimized medium, copper added resulted maximum 

laccase production 478 U ml
-1

 after 72 hours cultivation while non-copper added 

medium produced 189 U ml
-1

 after 48 hours cultivation. Laccase from Cerrena sp. 

WICC F39 was purified by anion-exchange chromatography and gel filtration 

chromatography resulted with the fold of purification about 5834.68 times and 

158.6% recovery and molecular weight of 62 kDa. The calculated Km and Vmax value 

of the enzyme using ABTS as substrate were 0.107 mM and 77101.00 S
-1

 mM
-1

, 

respectively.  The optimum pH, optimum temperature, pH stability and thermal 

stability of laccases were 2.5, 60°C, 4–6, 20-80°C, respectively. Sodium azide was 

an inhibitor for laccases from Cerrena sp. WICC F39. In accordance to the results 

showed in this study, such high level secretion of laccase and other ligninolytic 

enzymes make Cerrena sp. WICC F39 as a potential candidate for enhanced 

bioremediation. 
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ABSTRAK 

 Kulat reput putih telah menarik perhatian global kerana potensinya dalam 

aplikasi industri bioteknologi. Daripada semua eksoenzim ligninolitik yang 

dihasilkan oleh kulat reput putih, lakase yang merupakan enzim yang kerap dikaji di 

dalam proses pengoksidaan hijau. Kajian terhadap enzim ligninolitik ini adalah 

terhad berikutan kesukaran menghasilkan enzim-enzim ini didalam kuantiti yang 

mencukupi disebabkan oleh pelbagai faktor yang mempengaruhi pembentukan 

morfologi kulat yang akan mempengaruhi pengoptimuman enzim. Dalam kajian ini, 

penentuan kulat reput putih yang menghasilkan enzim ligninolitik dari tanah 

tempatan, proses pengoptimuman, penulenan dan pencirian terhadap enzim lakase 

telah dijalankan. Lapan pencilan kulat reput putih telah dikenal pasti sebagai 

berpotensi digunakan daripada 119 pencilan yang dipilih. Cerrena sp. WICC F39 

telah dipilih berdasarkan kepada aktiviti pengeluaran lakase enzim yang paling 

tinggi. Pengoptimuman telah dijalankan menggunakan kaedah satu-faktor-dalam-

satu-masa (OFAT) dan kaedah statistik sambutan permukaan (RSM). Enzim lakase 

yang dihasilkan dalam penyaringan media terpilih sebelum pengoptimuman 

mengandungi (g L
-1

): manitol, 10.0; ammonium tartrat, 2.0; kalium dihidrogen fosfat, 

KH2PO4, 0.8; kalium hidrogen fosfat, K2HPO4, 0.6; magnesium sulfat heptahidrat,  

MgSO4·7H2O, 0.5; kuprum sulfat pentadhidrat, CuSO4·5H2O, 0.1 mM; mangan 

sulfat pentahidrat, MnSO4·5H2O, 0.1 mM dan yis ekstrak, 3.0 (pH 6.0) ialah 199.67 

U ml
-1

. Medium yang telah dioptimumkan menggunakan OFAT mengandungi (g L
-

1
): jerami padi, 200.0; kanji, 5.0; pepton, 1.5; ammonium tartrat, 2.0; kalium 

dihidrogen fosfat, KH2PO4, 0.8; kalium hidrogen fosfat, K2HPO4, 0.6; magnesium 

sulfat heptahidrat,  MgSO4·7H2O, 0.5; kuprum sulfat pentadhidrat, CuSO4·5H2O (1 

mM); mangan sulfat pentahidrat, MnSO4·5H2O (1 mM) menghasilkan lakase pada 

552.31 U ml
-1

. Seterusnya, pengoptimuman menggunakan RSM menyumbang 

kepada pengeluaran maksimum enzim lakase pada 496.89 U ml
-1

 dengan kepekatan 

medium optimum (g L
-1

): jerami padi, 179.3; kanji, 11.8; pepton meat, 3.5; 

ammonium tartrat, 0.1 dan kalium dihidrogen fosfat, KH2PO4, 0.2. Pengkulturan 

Cerrena sp. WICC F39 selanjutnya telah dijalankan menggunakan mod kelompok 

dalam tangki teraduk 5-L. Menggunakan medium optimum OFAT,  penambahan 

kuprum menghasilkan maksimum lakase 478 U ml
-1 

selepas 72 jam pengkulturan 

manakala medium yang tiada penambahan kuprum menghasilkan lakase 189 U ml
-1

 

selepas 48 jam pengkulturan. Lakase daripada Cerrena sp. WICC F39 telah 

ditulenkan menggunakan kromatografi penukar ion dan kromatografi penapisan gel 

menghasilkan jumlah penulenan kira-kira 5834.68 kali dan 158.6% pemulihan dan 

jisim molekul lakase pada 62 kDa. Pengiraan nilai Km dan Vmax enzim menggunakan 

ABTS sebagai substrat ialah masing-masing 0.107 mM dan 77101.00 S
-1

 mM
-1

. PH 

dan suhu optimum, kestabilan pH dan kestabilan termal lakase yang diperolehi 

adalah masing-masing pada 2.5, 60 ° C, 4-6, 20-80 ° C. Natrium azide merupakan 

perencat untuk lakase Cerrena sp. WICC F39. Selaras dengan keputusan yang 

ditunjukkan didalam kajian ini, rembesan tahap tinggi lakase dan enzim ligninolitik 

lain menjadikan Cerrena sp. WICC F39 berpotensi sebagai agen bioremediasi yang 

boleh dipertingkatkan. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background of the Study 

Fungi have been reported as a good producer for lignin-degrading enzymes 

(Harith et al., 2014). The well-known fungi which degrade lignin to their certain 

extent are white, brown, soft-rot fungi, and Deuteromycetes (Bugg and Rahmanpour, 

2015).  Amongst these, white rot fungi are extensively reviewed as the most efficient 

bio-degrader in nature (Manavalan et al., 2015). The unique characteristic that 

differentiates from most other microorganisms is their capability to mineralize all 

components of lignin to carbon dioxide and water (Sigoillot et al., 2012). White rot 

fungi degrade lignin and cellulose that commonly cause the rotted wood to become 

moist, soft, spongy or stringy with white or yellow appearance during the 

deterioration process (Godliving and Mtui, 2012). A perusal of literature revealed 

various studies dealing with lignin biodegradation of white rot fungi (Datta et al., 

2017; Madadi and Abbas, 2017).  

In biotechnology, white rot fungi turn into an important interest when the 

lignin degradation was being systematically explored and its mechanisms are 

revealed (Novotný et al., 2009).  White rot fungi constitute the biodegradation by 

penetrating the wood with its versatile machinery of enzymes.  These multi 

enzymatic processes led to easily metabolize carbohydrates complexes and attack 

directly the lignin barrier with separate or cooperative enzymes function (Acharya et 

al., 2010). The powerful extracellular heme peroxidases enzymes which included in 

lignin biodegradation are lignin peroxidase, LiP (EC 1.11.1.14) (Tien and Kirk, 

1988), manganese peroxidase, MnP  (EC 1.11.1.13) (Paszczyński et al., 1988) and 

one glycosylated blue multi-copper phenol oxidase known as laccases, Lac (EC 

1.10.3.2) (Mayer and Staples, 2002).  
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The degradation of lignin is dependent on carbohydrate-active enzymes, 

whose functions do not overlap. Therefore, usually more than one lignin-modifying 

enzymes (LMEs) are secreted by white-rot fungi in addition to other compounds for 

effective lignin degradation (Coconi-Linares et al., 2014).  Due to their metabolic 

diversity, high production capacity, secretion efficiency and adaptable to post-

translational modifications, white rot fungi have been widely used in the 

fermentation industry (Krull et al., 2013). Furthermore, heightened interest in 

industrial relevance for using ligninolytic enzymes as biocatalyst in chemical 

substituting processes such as in the textile, pulp and paper as well as in 

pharmaceutical field promoted safe and green chemical removal of lignin (Mate and 

Alcalde, 2016). The novelty of the present study is the identification of new isolated 

white rot fungus of Cerrena sp. WICC F39 and its efficient, low-cost schemes and 

optimized fermentation process; focusing on availability, high enzyme activity 

productivity and purity of laccase obtained. 

1.2 Problem Statements 

In past years, white rot fungi are well known as a source of powerful enzymes 

(Quintanilla et al., 2015). This filamentous structures (hyphae) can explore large 

volumes of substrates and given wide contact area for nutrient uptake (Liu et al., 

2008). However, screening for ligninolytic enzymes in local soil is limited and 

hence, little is known about these enzymes from Malaysian soil (Cheng et al., 2016). 

Even there have been many efforts empirically precise about the application of these 

fungi (Ibrahim, 2008; Mangamuri et al., 2012; Mohamed et al., 2013), however, 

there is still largely unexplored and many novel ligninolytic enzymes may await 

discovery.  Since compile literature on the instability of Phanerochaete 

chrysosporium during production and poor understanding of its degradation 

mechanism have been reported, the response of other potential organism need to be 

discovered (Chen et al., 2011; Singh and Chen, 2008). However, the application of 

enzyme extracts into commercially successful instruments has been hampered mainly 

by their poor stability and high operation cost. Furthermore, even it is well known 
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that lignin biodegradation is carried out mainly by white rot fungi, but in fact actual 

knowledge in the production of these enzymes in large scales still reveals large gaps.  

Development of a novel economic design of the full-scale submerged 

fermentation process is required for the economic feasibility of the process (Babič et 

al., 2012). However, the process performed by the filamentous fungi embraced 

difficulties mainly in unravelling the link between morphology and its physiology 

during cultivation. In submerged cultures, the growth morphological of filamentous 

fungi could vary from compact pellet to suspension of dispersed mycelia (filaments). 

Filaments leads to high viscosity of the cultivation growth and insufficient mixing 

thus resulted in low nutrient supply (Krull et al., 2010). While distinct pellets showed 

Newtonian flow behaviour raised to limited nutrient availability within the inner part 

of the bio-pellets. Even many studies opposing important concerns of good control of 

mycelial morphology during the fermentation process and yet, limited to certain 

types of strains only (Papagianni, 2014; Xiong et al., 2012).  

As the complex relationship between morphology and productivity always 

become a bottleneck in the process using filamentous fungi, the monitoring and 

morphological control during the cultivation process required identification of the 

following parameters; the dependent strain characterization, medium composition 

and cultural condition. These results may represent significant progress toward the 

stable production of ligninolytic enzymes and the development of an effective fungal 

strain with promising biotechnological applications. 

Previous studies describe that enzymes are manufactured in practice for 

commercial use. Some applications such as dye decolourization, phenol degradation, 

and bio-bleaching require only crude preparations of the enzyme. However, in 

certain cases, crude enzymes have to be purified for further use. Such application 

including in the production of sweetening agents, modification of antibiotics, 

ingredients in cleaning products, forensic and other applications (Robinson, 2015). 

Therefore, protein purification is vital to acquire knowledge about its functional 

properties, structure and interactions in order to foretell the potential applications. 
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1.3 Objectives  

In order to tackle the problems discuss above, the objectives of this study 

could be summarized as follows:- 

1.3.1 To isolate and identify a novel new-biofactories belong to white rot fungi 

from local soil with a high potency of lignin-degrading enzymes. 

1.3.2 To optimize the culture medium for ligninolytic enzyme production using 

One Factor at Time Approach (OFAT) and statistical method and their 

correlation with cell morphology. 

1.3.3 To optimize the productivity of ligninolytic enzymes through batch 

fermentation using 5-L stirred tank bioreactor. 

1.3.5 To isolate, purify and characterize the produced enzyme from selected white 

rot fungus isolates. 

1.4 Scope of Research 

In order to achieve the objectives of the research, the work is focused as 

below: 

1.4.1  Isolation, screening and selecting of the most potent lignin degrading white 

rot fungi from different niches of soil samples. 

1.4.2 Molecular identification of potent ligninolytic enzyme producer of white rot 

fungal isolates.  

1.4.3 Media optimization for enhancement of the ligninolytic enzyme productivity 

using One Factor at Time and statistical approaches. 
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1.4.4 Growth kinetics of the selected strain in shake flasks cultivation in 5-L stirred 

tank bioreactor. 

1.4.5 Characterization of cell morphology using image analysis and biological 

staining methods and their correlative effect on growth and productivity 

resulted from different stages of cultivation. 

1.4.6 Purification laccase from the white-rot fungus Cerrena sp. WICC F39 using 

anion-exchange chromatography and gel filtration technique. 

1.4.7 Determination of the laccase enzyme properties included molecular mass, the 

effect of temperature, pH, reaction temperature, storage stability, metal 

cation, chelating agents, inhibitors, solvent, decolourization, substrate 

specificity as well as their kinetic characteristics towards laccase activity.  

1.5 Organization of the Thesis 

 This thesis is divided into 5 chapters. Each chapter describes the sequence of 

the research and represent a valuable as well as tangible information about the 

research study. 

Chapter 1 briefs the general background, statement of the problems, objectives of the 

study, the significance and the organization of the study.  

Chapter 2 deals with the review of the related literature and studies. The chapter 

explains about white rot fungi and their principles enzymes in detail including the 

source of fungi, isolation and identification, enzymes properties, enzyme applications 

and scale up studies for enzyme production correlated with macro- and 

micromorphology of growth.  

Chapter 3 concerned with the methodology adapted to the study to be carried out.  
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Chapter 4 presents the results relating to each research question. 

Chapter 5 summarized the research work performed. It develops a clear view of the 

contributions of the study and critique of the findings. Finally, the future works 

arising from these studies are discussed. The remaining part of the thesis proceeds as 

references and appendixes. 
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