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Abstract

Spontaneous prediction of malignant ventricular arrhythmia (MVA) is useful to avoid delay

in rescue operations. Recently, researchers have developed several algorithms to predict

MVA using various features derived from electrocardiogram (ECG). However, there are

several unresolved issues regarding MVA prediction such as the effect of number of ECG

features on a prediction remaining unclear, possibility that an alert for occurring MVA may

arrive very late and uncertainty in the performance of the algorithm predicting MVA min-

utes before onset. To overcome the aforementioned problems, this research conducts an

in-depth study on the number and types of ECG features that are implemented in a deci-

sion tree classifier. In addition, this research also investigates an algorithm’s execution

time before the occurrence of MVA to minimize delays in warnings for MVA. Lastly, this

research aims to study both the sensitivity and specificity of an algorithm to reveal the per-

formance of MVA prediction algorithms from time to time. To strengthen the results of

analysis, several classifiers such as support vector machine and naive Bayes are also

examined for the purpose of comparison study. There are three phases required to

achieve the objectives. The first phase is literature review on existing relevant studies. The

second phase deals with design and development of four modules for predicting MVA.

Rigorous experiments are performed in the feature selection and classification modules.

The results show that eight ECG features with decision tree classifier achieved good pre-

diction performance in terms of execution time and sensitivity. In addition, the results show

that the highest percentage for sensitivity and specificity is 95% and 90% respectively, in

the fourth 5-minute interval (15.1 minutes–20 minutes) that preceded the onset of an

arrhythmia event. Such results imply that the fourth 5-minute interval would be the best

time to perform prediction.
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Introduction

Patients with MVA, either ventricular tachycardia (VT) or ventricular fibrillation (VF), always

have a risk of sudden cardiac death (SCD). MVA is abnormal heart rate rhythms that occur on

the bottom chambers of the heart. Heart rhythm abnormalities are caused by the heart ventri-

cles beating faster than normal. VT may progress to VF. Sustained VT/VF that lasts longer

than 30 seconds in duration is malignant, because hemodynamic compromise may happen

during the time and could lead to SCD [1].

For detection of the onset of MVA, ECG signal analysis is the most effective method [2]. Fig

1 illustrates the components of an ECG beat. Numerous features derived from intervals, ampli-

tudes and waveform morphology of ECG components are useful to detect underlying VT/VF.

For example, mean of RR intervals (mRR), QRS duration (QRSd), mean of QT intervals, and

T-wave alternans could be associated with increased risk of MVA [3, 4, 5, 6, 7, 8]. The features

may prolong, reduce or precede VT/VF.

ECG is not only useful for detection but also prediction of MVA. Prediction is vital to pro-

vide a warning for those who are at risk of VT/VF. Even with a few minutes advance notice of

an arrhythmic event, people can do to protect themselves from VT/VF. A notice is helpful

because MVA could be treated immediately with medication, electric cardioversion and/or

cardiopulmonary resuscitation [10].

In the past, ECG-based long-term risk prediction for the onset of MVA has been the main

concern of most researchers [11, 4, 6]. The prediction is to determine whether a patient is at

risk for VT/VF over a few months or years. For instance, patient data from years 2007 to 2009

are used to examine the ability of ECG features in predicting the recurrence of VT/VF [6].

Using these features, researchers are able to establish approximate risk stratification, which

categorizes patients as belonging to either high or low VT/VF risk group. According to Ragu-

pathi et al. [12], patients with high risk are advised to have an implantable cardioverter defi-

brillator (ICD). The ICD can give electrical pulses or shocks immediately to get the heart

rhythm back to normal when VT/VF occurs.

However, in recent years, researchers have also been interested in the relationship between

ECG features and imminent VT/VF, as well as the development of algorithms that can predict

an upcoming arrhythmic event [13, 7, 2, 14]. In this study, imminent VT/VF refers to the initi-

ation of VT/VF after a few minutes or hours as stated in previous researches [15, 2, 13].

Researchers were interested in predicting imminent arrhythmia to prevent delays in providing

medical assistance to primarily non-ICD patients or people who have no prior history of VT/

VF. Furthermore, VT/VF cases are no longer rare, and there are many instances in which VT/

VF is proven to be the cause of death [16].

With the rapid development of information and communication technology, giving an

early warning to prevent delays in notification for VT/VF can be performed using beeps on

any telemedicine devices such as smartphones and smartwatches. The use of smartphones is

increasingly popular, because the price of the device is getting cheaper and the device itself

has good design [17]. In addition, several communication technologies such as bluetooth are

used on Colunas et al. [18, 19, 20]; while Lee et al. [21] utilizes WIFI technology to transmit

messages.

As studies on the prediction of an imminent VT/VF episode are few, three questions

remain unsolved. First, either single or combinatorial features that perform better prediction is

unknown. A different number of ECG features has been implemented in earlier studies for the

prediction, and reported results are encouraging. According to these results, single features

such as heart rate variability (HRV) or QRSd is a highly specific feature for monitoring imme-

diate risks of fatal VT/VF [4, 5]. On the other hand, combinatorial features with at least three
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ECG features have higher sensitivity than single feature [3, 13, 7, 2]. However, reported results

of the studies cannot be directly compared because these studies are based on various ECG

data sources and prediction algorithms. Hence, the performance of the single feature and com-

binatorial features for prediction remains unclear.

Second, the time required for an algorithm to execute a prediction for imminent MVA is

also unknown, because it is usually neglected in existing studies [15, 13, 7, 2, 8]. Instead of

Fig 1. Components of an ECG beat, source: [9].

https://doi.org/10.1371/journal.pone.0231635.g001
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execution time (exT), the performance of prediction algorithms is evaluated in terms of accu-

racy, sensitivity (SE) and specificity (SP). Neglect of exT may cause a delay in providing alert

for imminent VT/VF. In particular, both longest possible prediction time and best timing to

perform the prediction, so far, have been uncertain. The uncertainty is due to different possible

prediction times before the onset of imminent VT/VF that are demonstrated in the past stud-

ies. The time would be one hour, several minutes or even a few seconds preceding the onset

[15, 13, 8, 14]. If possible prediction time is short, self-rescue time of potential patients is also

short. Therefore, any delay that further reduces time to rescue patients from VT/VF should be

minimized.

Third, the performance of the algorithm in terms of prediction of time is questionable.

According to Ebrahimzadeh et al. [15], the performance of ECG-based prediction for SCD has

decreased over time. As SCD is always caused by VT/VF, a similar problem may also arise in

predicting the arrhythmic event. Besides, a change in mRR starts at least 20 minutes before the

onset of VT/VF, and no significant difference could be observed in an earlier time, unless com-

binatorial features are used [7]. Although 20 minutes will be shortened to several minutes

using combinatorial features, such observation indicates there is a certain period that an ECG-

based prediction is useless. On the contrary, combinatorial features in the research of Bayasi

et al. [2] succeeded in predicting VT/VF up to three hours before its initiation, but if the pre-

diction was always accurate within hours is unknown. Thus, there is a chance that the algo-

rithm will fail to predict minutes before the onset.

In order to answer these three questions, this study aims to propose a fast ECG-based pre-

diction algorithm for imminent VT/VF using a decision tree (DT) while maintaining good

sensitivity and specificity. In accordance to the aim of this study, three research objectives are

formulated as follows:

1. To identify the optimal number of ECG features that can reduce the exT for predicting

imminent VT/VF with low or no reduction in SE and SP.

2. To develop an algorithm for prediction of an arrhythmic event by applying an optimal fea-

ture set into a classifier.

3. To evaluate the performance of proposed algorithm in five 5-minute intervals, which are 5

minutes, 10 minutes, 15 minutes, 20 minutes, and 25 minutes before the onset of a what

could be fatal arrhythmic event.

Databases

This study acquired ECG records from two databases namely MIT-BIH Normal Sinus Rhythm

Database (NSRDB) and MIT-BIH Malignant Ventricular Ectopy Database (VFDB), which are

public data sources from Physionet [22]. There are reference annotation files supplied for the

databases to aid users in locating events of interest. VT/VF onset annotations mark only the

rough beginnings of VT/VF episodes. The NSRDB includes records of subjects from Boston’s

Beth Israel Hospital (now the Beth Israel Deaconess Medical Center) who have no significant

arrhythmias, with a sampling rate of 128 Hz. The database has 18 records, each consists of

11,730,944 samples (slightly less than 25.5 hours). The subjects from the database are five men

aged 26–45 and 13 women aged 20–50. On the other hand, the VFDB has 22 records with a

sampling rate of 250 Hz, and each contains 525,000 samples (35 minutes). Unlike the NSRDB,

the VFDB lacks gender and age information from the records. The two databases have a total

of 40 records.

However, only 18 of the 40 records were involved in this study, because only nine VFDB

records with apparently normal beats have identifiable QRS complexes preceded VT/VF
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episodes were required in order to find out subtle changes in normal beats. The records indi-

cate that patients seemed like normal, but most were in need of prediction for imminent VT/

VF. Other records from VFDB were excluded because of unidentified QRS complexes in most

ECG signal beats in the records. According to the annotation files of the VFDB on Physionet,

the unidentified QRS complexes are caused by the occurrence of VT, first-degree heart block,

ventricular bigeminy, nodal rhythm, or supraventricular tachycardia [22]. Another nine rec-

ords that represent normal beats are acquired from NSRDB.

Table 1 lists the records used in this study. Before importing into MATLAB, the records

with .dat format were converted into the .mat format that fits with MATLAB. The conversion

was done using a program from Physionet named wfdb2mat.

Methods

The algorithm consists of four modules: ECG preprocessing followed by feature extraction,

feature selection, and feature classification.

ECG preprocessing

The ECG preprocessing module includes two major steps namely ECG filtering and fiducial

point detection. ECG filtering involves transformation of raw ECG signals into a comprehensive

and noiseless format. Raw data are always noisy, unreliable or comprises much irrelevant and

redundant information [13]. On the other hand, fiducial point detection aims to detect fiducial

points of ECG, which are the R-peak, onset point of Q-wave (Qon) and offset point of S-wave

(Soff). In an ECG signal, R-peaks are the most significant waveform, as illustrated in Fig 1.

This module was developed based on the adaption of MATLAB Pan Tompkins algorithm

(PT) by Sedghamiz [23]. PT incorporated several fundamental techniques such as filtration

using a bandpass filter, squaring, adaptive thresholding, and windowing. The module kept fil-

ters (bandpass filter and derivative filter) and R-peaks detection methods in the original work.

Before filtration, a total of 18 ECG records from NSRDB and VFDB were truncated to 35 min-

utes (maximum length of each record in VFDB) in order to maintain the consistency of the

records in length. Then the module replaces outliers in each 35-minute length ECG record

with their respective previous value before filtration to maximize the detection rate of fiducial

points in the next module. After that, the module partitions each ECG record from either

NSRDB or VFDB into thirty-five 1-minute segments. The reason for choosing the one-minute

interval is that only VT/VF episodes that sustained longer than 30 seconds were considered

malignant. All the segments after the first one-minute segment with sustained VT/VF were

excluded from the experiment, because this study only analyzes signal beats from before the

onset of VT/VF. Due to different sampling rates, the one-minute segments that originated

from NSRDB and VFDB have different sample size, which is 7,680 and 15,000 respectively.

With each detected R-peak, respective Qon and Soff could be identified using simple search

windows and zero slope detectors. Using the backward and forward search windows of R-

peaks, the local minima before and after each R-peak is the Q and S points, respectively [13].

According to Bayasi et al. [2], the point that has a nearly zero slope and precedes an R-peak is

Table 1. List of records used in this study.

Database Records

VFDB 420, 421, 422, 423, 425, 426, 427, 605, 612

NSRDB 16265, 16272, 16273, 16420, 16483, 16539, 16773, 16786, 17052

https://doi.org/10.1371/journal.pone.0231635.t001
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known as the onset point, whereas the point that has a nearly zero slope after the R-peak is

determined as the offset point.

Feature extraction

The feature extraction module aims to extract features from fiducial points of ECG signals.

Previous studies have preferred to use techniques that require complex transformation or anal-

ysis of extraction modules such as neural network and support vector machine (SVM) [24, 25,

26]. Such techniques usually extract with high accuracy but also increase the overall cost of

algorithm [2]. Therefore, in recent years, some studies have tended to use simple extraction

methods such as mathematical ECG morphology, which is fast but maintains good accuracy

[13, 2]. The mathematical ECG morphology technique computes ECG features based on peaks

and onset and offset points.

In this study, the mathematical morphology technique was selected to extract 12 features

due to its good tradeoff between speed and accuracy [27, 28]. The first five features were time-

domain R-peaks related features in the experiment named mRR, mean of heart rate (mHR),

standard deviation of normal-to-normal RR intervals (SDNN), root mean square of the succes-

sive differences (RMSSD), and mean of QRS duration (mQRSd). To explore deeper into the

change in Q-R-S points that precede the onset of VT/VF, the study included another seven

features derived from the mean and standard deviations of intervals and amplitude of Q-R-S

points. In addition to the standard deviation of QRS duration (sdQRSd), another six features

were mean and standard deviation for the amplitude of Q (mQamp and sdQamp), R (mRamp

and sdRamp), and S Points (mSamp and sdSamp). The features were measured in different

units; for instance, heart rate was in beats per minute unit, duration features were in second

time unit, whereas amplitude features were in millivolt unit.

Eqs 1 to 4 show computation of features that could not be obtained directly from the mor-

phology of ECG. Note that RR interval (RRi) referred to the interval between the R-peak in a

beat and the R-peak in the next beat.

1. HR is the number of times the heart beats per minute, and its calculation is as shown in Eq

1 [29].

HR ¼ 60=ð
P

RRi=fsÞ; ð1Þ

where fs = sampling frequency.

2. mRR is the mean of all RR intervals, which can be calculated using Eq 2 [15].

RRmean ¼ 1=n
P

RRi; ð2Þ

where n = total number of beats.

3. RMSSD is the square root of the mean squares of differences between adjacent RR intervals,

which can be computed using Eq 3 [15].

RMSSD ¼
p

1=n
P
ðRRiþ1 � RRiÞ

2
; ð3Þ

where n = total number of beats.

4. SDNN is the standard deviation of all RR intervals, and its calculation is as indicated in Eq

4 [15].

SDNN ¼
p

1=n
P
ðRRi � RRmeanÞ

2
; ð4Þ

where n = total number of beats.
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Feature selection

The feature selection module aims to choose the best-describing subset of input features from

the original set of ECG features. The module is important because the performance of the pro-

posed prediction algorithm can be strongly affected by the number and relevance of the input

features [13]. Without selection, redundant features can increase exT and decrease the general

performance of the algorithm [15].

In this study, a MATLAB function, estimates of predictor importance (Imp) and 10-fold

cross-validation (CV) were chosen to select the optimal feature set because these methods are

suitable for the study that involves a small number of input datasets. Such CV was repeated

five times using random number generator (RNG) = 1–5 to ensure the reliability of results.

Numbers 1-5 are the seeds to generate random numbers that are repeatable. Every time the

generator is initialized using the same seed, the same experiment result will be produced [30].

Imp is a method that considers both interactions and correlations of features [31]. Based on

MATLAB manual [30], the Imp is a MATLAB built-in function that is available for DT. The

Imp function computes estimates for the DT by summing up changes in the mean squared

error (MSE) due to splits in every feature and dividing the sum by the number of branch

nodes of the DT. Then the function outputs a sequence of features from the most important to

the least important.

On the other hand, the CV is a widely used method for estimating test errors if there is lim-

ited input datasets for algorithm evaluation [15]. The k-fold CV is a better choice for time-

series data because there is no overlapping between data. The CV is repeated k-times, leaving

one different fold for each testing time. In other words, k-1 folds are used for training, and the

last fold is used for evaluation or testing. k = 5 or 10 provides good compromise in bias-vari-

ance tradeoff [32]. If the number of datasets for the evaluation is lesser, then a smaller number

of k is used [15]. There are two variants of the k-fold CV, which are performing feature selec-

tion before splitting data into folds (OUT) and performing feature selection k-times inside the

CV Loop (IN) [33, 34]. The OUT involves both training and testing sets, whereas the IN only

looks at the training set. According to Refaeilzadeh et al. [33], the OUT is a better choice for

the feature selection module, even if it demonstrates a larger bias than IN in estimating accu-

racy, because OUT has a lower bias imbalance. Besides, if the number of input datasets is lim-

ited, the IN method could cause a large variance in the performance of feature selection.

Feature classification

The feature classification module aims to discriminate normal and abnormal ECG that reflects

the risk of VT/VF. The DT was selected as classifier because of its fastest worst-case time com-

plexity. The fast worst-case time of the DT could provide more time for a patient to rescue

oneself from fatal VT/VF. Moreover, the OUT based 5-fold CV method was chosen for evalua-

tion in the classification module. The number of folds for the CV was less than those in the fea-

ture selection module because of a lesser number of available datasets for classification. During

classification, the feature sets obtained from the feature selection module are analyzed based

on a 5-minute interval, because such interval is recommended for short-term analysis of R-

related components [35, 14]. This study compared the DT with naive Bayes (NB) and SVM,

which are two different classifiers used in literature published in the last five years. In a

MATLAB environment, the functions to train the DT, NB, and SVM classifiers are fitctree,

fitcnb, and fitcsvm, respectively, whereas the function to test is predict. The evaluation for the

two situations was repeated five times using a function, RNG = 1, 2, 3, 4, 5. The repetition was

to achieve a reliable evaluation by averaged resulting values, whereas the RNG was to control

the random number generation on MATLAB.
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Results

In this paper, a DT based prediction algorithm with an optimal feature set is proposed. To

examine the number of features for generating the optimal feature set (in feature selection

module) and for demonstrating better performance of the proposed algorithm if the DT classi-

fier was applied (in feature classification module), the results of the evaluation are collected

based on the following situations:

1. Estimates of MSE of different numbers of features with 10-fold CV

2. Different sizes of feature set and DT with 5-fold CV

3. Different classifiers with 5-fold CV and optimal feature set.

In this study, the error-based measures (SE and SP) and exT are selected as performance

measures for evaluation. The error-based measures are better choices for an evaluation that

involved a comparison of several classifiers. Besides, both SE and SP provide distinction

between false positive (FP) and false negative (FN), as shown in Eqs 5 and 6. On the other

hand, for the measurement of the exT of the proposed prediction algorithm, the MATLAB

timeit function, was selected to measure the exT required to run the proposed algorithm.

1. The SE is a proportion of patients with a positive test, where

SE ¼
TP

TPþ FN
ð5Þ

and TP is true positive.

2. SP is the proportion of healthy individuals with a negative test, where

SP ¼
TN

TNþ FP
ð6Þ

and TN is true negative.

Interpretation of the three performance measures for the evaluation result was different.

For SE and SP, the interpretation was that the higher the percentage, the better the SE or SP.

For exT, the interpretation was that the shorter or lower exT, the faster the proposed algo-

rithm. In this study, high SE was the top priority performance measure, followed by low exT

and high SP. High SE indicates high rate of correct warning for people who are at risk of immi-

nent VT/VF. Low exT means the time required by an algorithm to generate a critical warning

is short. High SP represents a low rate of receiving false warning. In other words, SE affects the

chance of survival; exT has an impact on the available time to prevent a patient from dying;

and SP influences the credibility of the prediction algorithm. Both SE and SP were expressed

in percentage, whereas exT was presented in millisecond (ms).

Selection of optimal feature set

In the first situation, the module implemented MATLAB function Imp to estimate the relative

importance of each feature in the prediction of imminent VT/VF. Imp zero represents the

smallest possible importance [30]. According to the result of Imp, the features from most

important to least important are mQRS, followed by sdSamp, mQamp, mHR, mSamp, mRR,

sdQamp, SDNN, RMSSD, sdQRSd, mRamp, and sdRamp. Table 2 shows estimates of Imp for

the aforementioned 12 features. As stated in MATLAB manual [30], Imp indicates the relative

importance of each feature for prediction; Imp zero represents the smallest possible importance.
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Hence, four features with Imp zero in the study namely RMSSD, sdQRSd, mRamp, and

sdRamp are assumed to have less or no impact on the prediction of onset of VT/VF.

This study further confirmed the assumption by conducting estimations of MSE using the

10-fold CV to find out the number of features needed for prediction of imminent VT/VF.

Every estimation was performed by adding one new feature in the sequence. Such trial was

repeated five times, and results were collected. Fig 2 illustrates the relationship between the

number of features and the estimates of MSE, with the details listed in Table 3. In general, the

MSE would be reduced by an increasing number of features and less fluctuated during trials.

Table 3 shows the reduction in the average column and fluctuation in the standard deviation

(SD) column, the closer the MSE to zero, the higher the rate of correct prediction for impending

Table 2. Estimates of Imp for 12 features.

No. Features Imp

1 mQRSd 0.0145

2 sdSamp 0.0060

3 mQamp 0.0041

4 mHR 0.0037

5 mSamp 0.0021

6 mRR 0.0021

7 sdQamp 0.0013

8 SDNN 0.0012

9 RMSSD 0

10 sdQRSd 0

11 mRamp 0

12 sdRamp 0

https://doi.org/10.1371/journal.pone.0231635.t002

Fig 2. Estimates of MSE of different number of features.

https://doi.org/10.1371/journal.pone.0231635.g002
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VT/VF; the higher the SD, the larger the fluctuation of MSE. However, the MSE did not always

decrease with every additional feature.

Fig 2 depicts that there is a sharp decrease in the MSE when a couple of features are used.

On average, Table 3 shows that the MSE is reduced from 0.2125 to 0.1595. However, the MSE

increased if more than three features were used. The MSE even reached the second highest

peak of 0.1667 when the number of features was five. Then, the MSE decreased below its lowest

value before the first rise and succeeded to achieve the minimum of 0.1244 averagely when

nine features were involved. Any additional feature after this had no impact on the reduction

of MSE. The result was according to Imp in Table 2. The ninth feature, which is RMSSD, had

the least importance. However, trials with nine features were more fluctuated compared with

trials with eight features, and their respective SD were 0.0039 and 0.0016. The fluctuation indi-

cates that the former has less consistent MSE, and some trials may have higher MSE than the

latter.

Thus, there was another experimental test on the impact of different numbers of features

on the proposed algorithm in terms of SE, SP, and exT. Table 4 shows that the DT imple-

mented with eight and nine features have identical SE but slightly different SP, whereas exT of

the DT increases as the number of features increases. In this study, high SE is the priority mea-

sure, followed by low exT and last is high SP. In this case, the study is better to group eight fea-

tures as optimal feature set. With the optimal feature set, the exT of the algorithm could reduce

17.95% of the exT in exchange for 0.56% SP reduction when eight features were grouped.

Performance of decision tree with different sizes of feature set

In the second situation, the study evaluates the proposed algorithm when it applied the DT

classifier with different sizes of feature sets, which is the optimal set and the full set in predict-

ing imminent VT/VF. Note that the DT of the optimal set is denoted as oDT, whereas the DT

Table 3. Estimates of MSE of different number of features.

No. of features MSE

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Average SD

1 0.2113 0.2143 0.2113 0.2143 0.2113 0.2125 0.0016

2 0.1607 0.1577 0.1577 0.1607 0.1607 0.1595 0.0016

3 0.1548 0.1548 0.1548 0.1548 0.1607 0.1560 0.0027

4 0.1607 0.1577 0.1607 0.1637 0.1607 0.1607 0.0021

5 0.1696 0.1667 0.1667 0.1637 0.1667 0.1667 0.0021

6 0.1488 0.1518 0.1548 0.1518 0.1577 0.1530 0.0034

7 0.1310 0.1310 0.1280 0.1339 0.1369 0.1321 0.0034

8 0.1250 0.1250 0.1280 0.1280 0.1280 0.1268 0.0016

9 0.1220 0.1220 0.1250 0.1220 0.1310 0.1244 0.0039

10 0.1220 0.1190 0.1339 0.1220 0.1310 0.1256 0.0065

11 0.1220 0.1220 0.1339 0.1190 0.1310 0.1256 0.0065

12 0.1220 0.1250 0.1190 0.1220 0.1339 0.1244 0.0057

https://doi.org/10.1371/journal.pone.0231635.t003

Table 4. Average performance of DT with different numbers of features.

Number of features SE (%) SP (%) exT (ms)

8 89.28 79.33 0.64

9 89.28 79.78 0.78

https://doi.org/10.1371/journal.pone.0231635.t004
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of the full set is referred to as fDT. Table 5 provides a comprehensive comparison of SE, SP,

and exT between oDT and fDT at five 5-minute intervals that precede the onset of VT/VF. Per-

formance measures were used to determine which feature set could improve the performance

of the proposed algorithm. The oDT showed good tradeoff among the three performance mea-

sures. On average, the proposed algorithm with oDT could greatly reduce the exT required

(20.50%) and slightly improve SE (0.44%) in exchange for small SP reduction (5.81%). More-

over, the oDT had more consistent performance than the fDT because of its lower SD in all

performance measures, indicating that the oDT is less spread out on average.

Fig 3 outlines the SE of oDT and fDT in five 5-minute intervals before a VT/VF event, with

details listed in Table 5. In the first 5-minute interval, the oDT had higher SE than fDT, 86.7%

versus 80%. The percentage indicated that 86.7% of patients was correctly identified using

the oDT but only 80% were correctly detected if the fDT was used. However, in the next two

5-minute intervals, which was the 5.1 minutes–15 minutes interval that preceded the event,

the oDT demonstrated slightly lower SE than the fDT. During the intervals, at least 11.1% of

Table 5. Comparison of performance of oDT and fDT.

Minutes before VT/VF oDT fDT

SE (%) SP (%) exT (ms) SE (%) SP (%) exT (ms)

� 5 86.67 77.78 0.6419 80.00 88.89 0.8256

� 10 88.89 68.89 0.6498 91.11 75.56 0.8138

� 15 82.50 80.00 0.6491 85.00 80.00 0.7912

� 20 95.00 90.00 0.6416 95.00 90.00 0.7920

� 25 93.33 80.00 0.6394 93.33 86.67 0.8305

Average 89.28 79.33 0.6444 88.89 84.22 0.8106

SD 5.05 7.52 0.0048 6.25 6.21 0.0184

https://doi.org/10.1371/journal.pone.0231635.t005

Fig 3. Comparison of SE for DT with different sizes of feature set.

https://doi.org/10.1371/journal.pone.0231635.g003
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patients was falsely recognized as normal. The oDT achieved the highest percentage of SE in

the fourth 5-minute interval. Moreover, the oDT had the same SE as the fDT starting from the

fourth 5-minute interval, implying that the oDT was as sensitive as the fDT 15.1 minutes

before VT/VF.

Fig 4 illustrates the SP of the oDT and fDT in five 5-minute intervals prior to the onset of

VT/VF, with details listed in Table 5. Overall, the oDT was less specific than the fDT in recog-

nizing individuals without fatal VT/VF. However, the oDT was still considered very specific

to such prediction beginning between the third 5-minute interval and afterward because it

achieved at least 80% of the SP. In the fourth 5-minute interval, the highest SP of 90% was

reported, the higher the percentage, the lower the rate of FP. The percentage of SP indicated

that 90% of healthy individuals was correctly recognized as normal using the oDT 15.1 min-

utes–20 minutes before onset.

Fig 5 depicts exT of the oDT and fDT to perform prediction in five 5-minute intervals

before VT/VF. The oDT required much shorter exT compared to the fDT for all intervals

before the arrhythmic event. The oDT needed about 0.64 ms to perform a prediction of immi-

nent VT/VF. On the other hand, the fDT consumed more than 0.79 ms to carry out a classifi-

cation task for prediction purpose. The result indicated that the number of features had a

direct impact on exT.

Performance of decision tree against other classifiers

In the third situation, the study evaluates the performance of the oDT and two other classifiers,

which are NB and SVM, in predicting imminent VT/VF. The performance of the three classifi-

ers was evaluated based on the same optimal features, type of CV as well as performance mea-

sures. Table 6 shows a comparison of performance measures among the three classifiers,

namely oDT, NB, and SVM. The comparison results revealed that the oDT had better tradeoff

in terms of SE, SP, and exT. On average, the oDT had an increase of at least 15.29% in SE

Fig 4. Comparison of SP for DT with different sizes of feature set.

https://doi.org/10.1371/journal.pone.0231635.g004
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compared with NB and SVM. Besides, the oDT reduced 79.03% of exT compared with NB.

Although the oDT had the lowest SP among the classifiers, it was still considered specific to

the prediction of imminent VT/VF, because its average SP was nearly 80%. Therefore, the oDT

was considered as a fast classifier that could yield a good SE gain in exchange for an acceptable

SP loss (not more than 13.54%). The performance of the oDT was fairly consistent during the

five 5-minute intervals. The consistency could be viewed from the SD values of the oDT. The

oDT had the least SD of SE (5.05%), less fluctuated SP compared with SVM (7.52% and 9.14%)

and much lesser fluctuation of exT than NB (0.0048 and 0.0597).

Fig 6 shows the SE of three classifiers namely oDT, NB, and SVM in five 5-minute intervals

before VT/VF event. Among the classifiers, the oDT maintained its SE superiority in all inter-

vals, which ranged from 82.5% to 95%. The result indicated that at least 82.5% of patients with

imminent VT/VF were correctly recognized. On the other hand, the SVM had the lowest SE in

such prediction of as low as 28.9% at the first 5 minutes before VT/VF. The low SE implied

Fig 5. Comparison of exT for DT with different sizes of feature set.

https://doi.org/10.1371/journal.pone.0231635.g005

Table 6. Comparison of performance among DT, NB, and SVM.

Minutes before VT/VF oDT NB SVM

SE (%) SP (%) exT (ms) SE (%) SP (%) exT (ms) SE (%) SP (%) exT (ms)

� 5 86.67 77.78 0.6419 71.11 95.56 3.0353 28.89 100.00 0.5785

� 10 88.89 68.89 0.6498 77.78 88.89 3.0548 37.78 84.44 0.5798

� 15 82.50 80.00 0.6491 70.00 97.14 3.0387 50.00 94.29 0.5769

� 20 95.00 90.00 0.6416 75.00 90.00 3.0575 60.00 80.00 0.5728

� 25 93.33 80.00 0.6394 93.33 86.67 3.1782 73.33 100.00 0.5725

Average 89.28 79.33 0.6444 77.44 91.65 3.0729 50.00 91.75 0.5761

SD 5.05 7.52 0.0048 9.41 4.49 0.0597 17.6 9.14 0.0033

https://doi.org/10.1371/journal.pone.0231635.t006
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that the SVM would produce more FN alerts than the other two classifiers. Interestingly, the

SE of SVM was increasing gradually with time, so the SVM may be the most sensitive classifier

at least half an hour before the initiation of VT/VF.

Fig 7 exhibits the SP of the three classifiers in five 5-minute intervals that precede the onset

of VT/VF. Results revealed that the oDT had a relatively lower SP than the NB and SVM. The

oDT even reached a minimum of 68.9% in the second 5-minute interval, which was the 5.1

minutes–10 minutes that preceded the onset of VT/VF. The percentage meant that 31.1% of

healthy individuals was incorrectly identified as patient at risk of VT/VF. However, in the

fourth interval, the SP of the oDT was as good as the NB and better than SVM. Therefore, the

oDT was considered highly specific 15.1 minutes–20 minutes before onset.

Fig 8 illustrates the exT required by the three classifiers to carry out prediction in five

5-minute intervals before VT/VF. Among the classifiers, the DT required the second shortest

exT to complete a prediction, which was approximately 0.64 ms. Such result was slightly worse

than the SVM but better than the NB that spent at least 3.04 ms to accomplish the same task.

Discussion

Table 7 shows a list of studies on prediction of imminent VT/VF in the past decade. Most per-

formance results of the studies are either highly sensitive or highly specific (SE/SP� 80%) but

not both except for the Riasi et al. study [13]. However, the features in the study are extracted

within the last 20 seconds of ECG signals before VT and control records, and such period may

be insufficient for a patient to take action.

Results in the “Selection of optimal feature set” section revealed that a good prediction algo-

rithm for imminent VT/VF preferred combinatorial features to single feature. The results sug-

gested that eight features derived from QRS complexes could be combined as an informative

set for prediction. The eight features were mQRSd, sdSamp, mQamp, mHR, mSamp, mRR,

sdQamp, and SDNN. If only one feature was used, the highest MSE was generated, but the

Fig 6. Comparison of SE among oDT, NB and SVM.

https://doi.org/10.1371/journal.pone.0231635.g006
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MSE dropped obviously when at least two features were involved. The high MSE may imply a

high failure rate of a single feature in such prediction. For example, a study by Sachdev et al.

[36] showed many single features derived from ECG components such as mHR, mRR, and QT

interval failed to predict impending VT/VF. Even though prior studies [6, 7] had succeeded in

Fig 8. Comparison of exT among oDT, NB and SVM.

https://doi.org/10.1371/journal.pone.0231635.g008

Fig 7. Comparison of SP among oDT, NB and SVM.

https://doi.org/10.1371/journal.pone.0231635.g007
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predicting arrhythmia using a single feature, their reported SE and SP were much lower than

studies with combinatorial features [13, 2]. The reported SE and SP in the former was about

50% compared to above 85% in the latter.

Moreover, the results recommended that a combinatorial feature should be grouped with at

least six features if a couple of features were not sufficient to provide the most optimal predic-

tion performance. There was a dramatic fall in MSE when pairs of a feature were used. The

MSE did not always reduce, although features were added sequentially according to the most

important to least important sequence. The reason for the MSE not reducing with increasing

features might be explained by the dependence of feature(s) at the front of the sequence to gen-

erate lower MSE. The dependence is reduced when the number of features is six and above.

The recommendation is according to previous studies that performed prediction using differ-

ent numbers of features, which was either two or greater than five [15, 13, 2, 8].

According to the results in both “Performance of DT with different sizes of feature set” sec-

tion and “Performance of DT against other classifiers” section, this study discovered that the

oDT was highly sensitive and specific in predicting VT/VF in the fourth 5-minute interval,

which was 15.1 minutes–20 minutes prior to onset of VT/VF. During the interval, the highest

SE and SP of the oDT were observed at 95% and 90%, respectively. The results indicated that

a test would be positive 95% if an individual was at risk of imminent VT/VF, and that a test

would be negative 90% if an individual was healthy. The oDT outperformed or performed as

best as its competitors during the interval. The oDT had much better SE than the fDT, NB,

and SVM and higher SP than the SVM, and the second fastest exT.

As have been mentioned, the oDT performed best in the fourth 5-minute interval before

the onset of VT/VF. In other intervals, the performance of the oDT was also fairly satisfactory.

The oDT could predict VT/VF in any 5-minute interval, although the number of false alerts

may be higher in intervals other than the fourth one. This finding did not seem to be consistent

with the previous research by Wollmann et al. [7], which stated that abnormality of the mRR

could only be found at least 20 minutes before the onset of VT/VF. A possible explanation for

this is that may be the study had included multiple features derived from Qon and Soff in addi-

tion to R-peaks, which made the abnormality noticeable in an earlier time.

Overall, the oDT had better SE than SP. A small SP loss was still acceptable, because the SE

could be a more useful performance indicator than SP in the prediction of imminent VT/VF.

An oDT with fairly higher SE but lower SP indicates that the oDT is good for catching upcom-

ing ventricular arrhythmic episodes but may receive a relatively high rate of FP. A higher SE

implies that more individuals with risk of VT/VF can be identified correctly, whereas the

lower SP means more individuals who are arrhythmia-free had been told of a possibility that

VT/VF will happen soon [37]. A higher SE has higher priority than a lower SP, as an individual

is better to receive one false alert than miss a warning that could save his life.

Moreover, the oDT took a fairly short time to predict imminent VT/VF, which was 0.64 ms

on average. In the real world, 100% accurate prediction is unrealistic, and the oDT cannot

Table 7. List of prediction studies for imminent VT/VF.

Authors ECG features Classifiers Performance

SE (%) SP (%)

Joo et al. [3] 11 HRV features NN 82.9 71.4

Rozen et al. [5] HRV - 50 91.6

Riasi et al. [13] 10 features from QRS SVM 88 100

Wollmann et al. [7] 3 HRV features - 94.4 50.6

Bayasi et al. [2] 7 features from intervals of P-QRS NB 99.83 -

https://doi.org/10.1371/journal.pone.0231635.t007
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predict the exact time of a VT/VF onset. Thus, the shorter the exT of the oDT, the more

approaches can be made to avoid or rescue oneself from suffering VT/VF. For instance, a

patient may take a deep breath to calm any possible heart rate acceleration or even go the near-

est medical center. The prediction result of the oDT may be further investigated to increase

the number of correct alerts. Examples of an investigation are blood pressure and photo-

plethysmography [14].

Conclusion

This research aimed to propose a fast algorithm for predicting imminent VT/VF while main-

taining good SE and SP. At the end of this study, all the objectives had been achieved. This sec-

tion presents key results that indicate the achievement of objectives.

The first objective of this study was to identify the optimal number of ECG features for pre-

diction of imminent VT/VF, and it was achieved as the “Selection of optimal feature set” sec-

tion suggested that eight features could be combined for an optimal set. The features were

mQRSd, sdSamp, mQamp, mHR, mSamp, mRR, sdQamp, and SDNN. The proposed algo-

rithm with optimal feature set was able to improve 17.95% of exT in exchange for a small

increase in MSE (0.0024) and a small decrease in SP (0.45%). Before implementation, this

study applied a MATLAB function, Imp, to investigate 12 features derived from QRS com-

plexes. Then, the study selected eight features based on the evaluation results of the effect of

features number on SE, SP, and exT of DT. The selection was to avoid redundancy of informa-

tion for prediction. On the other hand, the purpose of applying the function was to ensure that

the eight features were supportive of each other and did not reduce the correct rate of predic-

tion. The optimal set with more than one feature supported the idea raised in other researches

[13, 2], which was combinatorial features outperformed single features in prediction.

The second objective of this study was to develop an algorithm for predicting imminent

VT/VF. The objective was reached as the “Methods” section demonstrated the development of

the algorithm in MATLAB to realize prediction. Before the development, this study first exam-

ined essential modules. There were four essential modules, and each module represented dif-

ferent task(s) in the algorithm. The tasks were ECG filtering, fiducial points detection, feature

extraction, feature selection, and feature classification. This study applied different methods to

the four modules to accomplish the tasks. In the ECG filtering module, this study adapted PT

to obtain filtered ECG data and R-peaks of ECG beats. In the fiducial point detection module,

the study developed three methods to acquire Qon and Soff of ECG beats correctly. The meth-

ods were search windows respective to R-peaks, zero slope detection, and validators. In the fea-

ture extraction module, the study used mathematical morphology techniques to compute 12

features that may be associated with VT/VF. In the feature selection module, the study imple-

mented the Imp function and 10-fold CV to choose eight optimal features. Lastly, in the classi-

fication module, the study applied the 5-fold CV to train and test three classifiers, which were

DT, NB, and SVM. The reasons why these methods were chosen were due to their popularity,

short exT or ability to estimate the performance of the proposed algorithm with a limited num-

ber of ECG records.

The third objective of this study was to evaluate the performance of the proposed algorithm

in five 5-minute intervals, which were 5 minutes, 10 minutes, 15 minutes, 20 minutes, and 25

minutes before initiation of VT/VF. The objective was fulfilled as the “Results” section

described the stability of the algorithm in terms of exT but with small fluctuation in terms of

SE and SP in all the 5-minute intervals before onset of the arrhythmic event. In this study, high

SE was the top priority performance measure, followed by low exT and lastly high SP, because

high SE was the most related to high chance of survival. Fluctuation was reflected by the SD of
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oDT in Table 6, which was 5.05% (SE), 7.52% (SP) and 0.0048 ms (exT). In average, the oDT

was a fast classifier (exT = 0.64ms) with good SE (89.28%) and SP (79.33%). In addition, this

study recommended that the best timing to predict imminent VT/VF was the 15.1 minutes–20

minutes that preceded the onset. During that time, both the SE and SP of the proposed algo-

rithm succeeded in reaching their peaks at the fourth 5-minute interval, which were 95% and

90% respectively. Performance of the algorithm was evaluated in two situations. The first situa-

tion was DT with different feature set (optimal and full feature set), whereas the second one

was DT with different classifiers (NB and SVM). From the comparison results, the study found

that the exT of oDT was 79.03% faster than NB and its SE was 78.56% higher than SVM, which

was a tradeoff for a small SP decrease (not more than 13.54%) compared to its counterparts.
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