Universiti Teknologi Malaysia Institutional Repository

Rheological and resistance properties of magnetorheological elastomer with cobalt for sensor application

Zainudin, A. A. and Yunus, N. A. and Mazlan, S. A. and Shabdin, M. K. and Aziz Abdul, S. A. and Nordin, N. A. and Nazmi, N. and Rahman, M. A. A. (2020) Rheological and resistance properties of magnetorheological elastomer with cobalt for sensor application. Applied Sciences (Switzerland), 10 (5). ISSN 2076-3417

[img]
Preview
PDF
3MB

Official URL: http://www.dx.doi.org/10.3390/app10051638

Abstract

Cobalt particles have been introduced as a filler due to the advantages of embedding their magnetic and electrical properties in magnetorheological elastomer (MRE). In the present research, the rheology and resistance of MRE are experimentally evaluated. Isotropic and anisotropic MRE samples containing silicone rubber and cobalt particles were fabricated. The magnetic properties of MRE are conducted using a vibrating sample magnetometer (VSM). The morphological aspects of MRE are observed by using field emission scanning electron microscopy (FESEM) and characterized by energy-dispersive X-ray spectroscopy (EDX). Rheological properties under various magnetic field strengths were measured for the magnetic field, strain amplitude, and frequency sweep test by using a parallel-plate rheometer. Subsequently, the resistance of MRE is tested under different applied forces and magnetic fields. The MRE storage modulus depicted an enhancement in field-dependent modulus across all the applied magnetic fields. The electrical resistance generated from the sample can be manipulated by external magnetic fields and mechanical loads. The conductivity of MRE is due to the existence of cobalt arrangements observed by FESEM. By introducing cobalt as filler and obtaining satisfactory results, the study might open new avenues for cobalt to be used as filler in MRE fabrication for future sensing applications.

Item Type:Article
Uncontrolled Keywords:magnetorheological elastomer, resistance properties, rheological properties
Subjects:T Technology > T Technology (General)
Divisions:Malaysia-Japan International Institute of Technology
ID Code:87029
Deposited By: Narimah Nawil
Deposited On:31 Oct 2020 12:16
Last Modified:31 Oct 2020 12:16

Repository Staff Only: item control page