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INTRODUCTION   

In nuclear reactor operation, the core power control is a crucial system for a nuclear reactor, which directly affects the 

safe operation of a nuclear reactor either reactor power or research reactor. For both types of reactors, it is important to 

ensure that the nuclear reactor is always operated under optimum and safe operating condition [1]. Therefore, continuous 

research and improvement of the core power control technology for a nuclear reactor is necessary. Among different ways 

to control the nuclear reaction in fission reactors, the use of control rods can be regarded as the most intuitive. In Training, 

Research, Isotopes, General Atomics (TRIGA) research reactor, the control rods that containing a solid boron carbide 

(B4C) [2] is used to control reactivity during changing in reactor power level and as the main safety mechanism for reactor 

shut-down. Each control rod is connected to its drive unit called a control rod drive mechanism (CRDM) [3-4]. The 

CRDM is the hardware unit consists of a motor with reducing gearing a rack-and-pinion to lift (or lowering) the control 

rods. A potentiometer is connected to the pinion to generate the control rod position indication. As the movement of the 

control rod at nuclear reactor is mechanically limited, the acceptable ranges for velocity and delay time of the control rod 

movement must be considered at the design stage [5]. One of the key challenges in core power control is to control the 

displacement of the control rod accurately using CRDM [6]. In general, the manual controlling system has been used for 

controlling and tuning control rods in the nuclear reactor by the operator at low power (startup) and automatic controlling 

system with minimal supervision by operator most of the time at a high-power level for safety purpose. 

The TRIGA PUSPATI Reactor (RTP) has four control rods to act as compensating rods. The output signal from the 

controller will be sent to the control rod selector logic within a control rod speed constraint. The movement of 

compensating rods is decided by the control rod selector logic [7] known as Control Rod Selection Algorithm (CRSA). 

To the best of our knowledge, conventional CRSA compensates multiple rods [7] (4 control rods for RTP) or using a 

single Regulating rod as referring to [8-13] for introducing the external reactivity in TRIGA reactors. The conventional 

CRSA applied either by getting the minimum position or rod worth value of four control rods and select the lowest value 

to withdraw the control rod to increase the reactor’s power. However, this approach has disadvantage in making the best 

ABSTRACT – The 1 MWth TRIGA PUSPATI Reactor known as RTP undergoes more than 37 
years of operation in Malaysia. The current core power control utilized Feedback Control Algorithm 
(FCA) and a conventional Control Rod Selection Algorithm (CRSA). However, the current power 
tracking performance suffers and increase the workload on Control Rod Drive Mechanism (CRDM) 
if the range between minimum and maximum rod worth value for each control rod has a significant 
difference. Thus, it is requiring much time to keep the core power stable at the power demand value 
within the acceptable error bands for the safety requirement of the RTP. In conventional CRSA, 
regardless of the rod worth value, the lowest position of the control rod is selected for up-movement 
to regulate the reactor power with 2% chattering error. To improve this method, a new CRSA is 
introduced named Single Control Absorbing Rod (SCAR). In SCAR, only one rod with highest 
reactivity worth value will be selected for coast tuning during transient and the lowest reactivity 
worth value will be selected for fine-tuning rod movement during steady-state. The simulation 
model of the reactor core is represented based on point kinetics model, thermal-hydraulic models 
and reactivity model. The conventional CRSA model included with control rod position dynamic 
model and actual reactivity worth curve data from RTP. The FCA controller is designed based on 
Proportional-Integral (PI) controller using MATLAB Simulink simulation. The core power control 
system is represented by the integration of a reactor core model, CRSA model and FCA controller. 
To manifest the effectiveness of the proposed SCAR algorithm, the results are compared to the 
conventional CRSA in both simulation and experimentation. Overall, the results shows that the 
SCAR algorithm offers generally better results than the conventional CRSA with the reduction in 
rising time up to 44%, workload up to 35%, settling time up to 26% and chattering error up to 18% 
of the nominal value.     
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decision to control the nuclear reactor based on rod position or rod worth measurement without a systematic approach. 

After the control rod selection process, the rod will be moved up and down based on the rod drive unit using stepper 

motor or servomotor.  

In general, the rod drive dynamics (control rod position dynamics) is assumed to be ideal which represents by a pure 

integral function in mathematical form [14-20]. To ensure the rapid process of the rod selection, the conventional CRSA 

is established by the simplest form of logical sequence control rod movement based on the rod position regardless of the 

control rod worth value. For instance, simplifying a group of control rods to one control rod [21], taking rod worth curve 

fitting by using sine wave equation in [22-24], using differential equation based on rod position [25-26], using empirical 

static function [27], using two control rod model [28] and using control rod withdrawal percentage [7]. Unfortunately, 

the presented control rod position dynamic model did not consider the actual CDRM and difference between rod worth 

values for each individual control rods (non-linear function) due to fuel burnup for long time operation in the case of big 

margin which may lead to inaccuracy result. Moreover, the mismatch CRDM model in design stage may lead to damage 

of actuator drive due to the high stress of the gearing system (aggressive actuation signal to CRDM) provided by the 

controller. The work to predict the losses in the gear drive mechanism can be found in [29] which is not considered in 

this paper. 

At RTP, the core power control system uses the Feedback Control Algorithm (FCA) based on the Proportional-Integral 

(PI) controller to control the reactor core power. According to [30], the controller must be designed to be as simple as 

possible and easy to be implemented for a nuclear reactor. However, the design process of this common non-model based 

controller [13] usually not considered the CRSA model which consequently affects the overall tracking performance. 

Based on previous studies, there is no significant study conducted in investigating the relationship between the power 

controller and the CRSA. Therefore, in designing the CRSA, the more accurate CRDM or control rod position dynamic 

model need to be modelled first in the best practice to study the impact on the input actuation signal. After that, the control 

rod position dynamics model with rod worth values is required to verify the effectiveness of the integration of an improved 

CRSA for power tracking. The allowable range for power variation in the design criteria must be ±1% (different 

acceptable range in the case of for PWR-type nuclear reactor up to ±6% [31]) for a nuclear reactor. The rate of power 

increment limiter must also be considered to avoid the reactor automatic shutdown (Trip). However, this limiter creates 

unnecessary control rod drive movement which consequently produced undesired power oscillations and longer periods 

of time to attain power demand [32]. 

In this study, the mathematical models of the nuclear reactor core in RTP are presented with point-kinetic equations 

of six-group delayed neutrons, reactivity equations, thermal-hydraulic temperature feedback, FCA controller and CRSA. 

The MATLAB Simulink used for purpose of controller design and modelled the reactor core before experimental setup 

[33]. A new CRSA is designed based on the CRDM limits where only one rod can move at one time in practice and 

consider the difference rod worth values for each individual control rods (reactivity worth curve data). The effectiveness 

of the proposed CRSA is compared with the conventional CRSA and tested on both numerical simulations and 

experimentation.  

MODELLING OF TRIGA PUSPATI REACTOR 

In this section, the mathematical models of the nuclear reactor core in RTP are presented with point-kinetic equations 

of six delayed neutron precursor groups, thermal-hydraulic equations, fission product poisoning feedback, and reactivity 

equation. 

The dynamic behaviour of the TRIGA nuclear reactor in Figure 1 can be defined by combining the equation of point 

kinetic, thermal-hydraulic, xenon concentration feedback and reactivity [26]. The equations are defined as follows: 

 

The point kinetic equations of six delayed neutron precursors groups are described in Equation. (1) [15] and [16]: 
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where, 𝜓 is relative neutron density, 𝜌 is total reactivity, 𝛽 is the total fraction of effective delayed neutron, 𝛬 is mean 

neutron generation time, 𝜆𝑖 is decay constant of the i-th group of delay neutron precursor, 𝜂𝑖 is the i-th group of normalized 

precursor concentration and 𝛽𝑖 is the i-th group of delayed neutron. 
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Figure 1. Core power control at RTP. 

 

The thermal-hydraulic Equation. (2) takes into account the behaviour of moderator as a coolant and fuel temperature 

feedback according to [22], [31] and [34]. In nuclear reactor, the heat exchanger between fuel and coolant moderator 

within the primary cooling system and the conservation of energy equation between coolant moderator and the secondary 

cooling system can expressed as: 
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where, 𝑇𝑚 is average temperature of coolant, 𝑃𝑜 is nominal core power, 𝑓 is fraction of power deposited in the fuel, 

𝑀𝑚 is moderator total mass, 𝐶𝑚 is moderator specific heat capacity, 𝑇𝑓 is average temperature of fuel, 𝐾 is global heat 

transfer coefficient, 𝛤 is coolant mass flow rate, 𝑇𝑖𝑛 is average inlet temperature of coolant, 𝑀𝑓 is fuel total mass, 𝐶𝑓 is 

fuel specific heat capacity, 𝑤 is weighting factor for computation of moderator temperature, and 𝑇𝑜𝑢𝑡  is average outlet 

temperature of coolant. 

In TRIGA type reactors, the average inlet temperature of the coolant is normally constant at about 28oC. So the 

physical parameter for average of inlet coolant moderator can be initialised to be constant as long as the heat exchanger 

run during operation.  

The effect of fission product poisoning is considered in TRIGA where the xenon concentration feedback can be 

defined as: 

 

{
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where, 𝑋 is the concentration of xenon, 𝜆𝐼 is the decay constant of xenon, 𝐼 is the concentration of iodine, 𝛾𝑋 is xenon 

yield per fission, ∑𝑓 is macroscopic fission cross section of fuel, 𝜎𝑋 is microscopic absorption cross section of xenon, 𝑋0 

is the concentration of xenon at initial equilibrium state, 𝑉 is mean velocity of thermal neutron, 𝜓0 is relative neutron 

density at initial equilibrium state, 𝜆𝑋 is the decay constant of xenon, 𝛾𝐼 is iodine yield per fission and 𝜆𝐼 is the decay 

constant of iodine. 

The reactivity equation for TRIGA in Equation. (4) is expressed as the sum of reactivity due to control rod 

movement, reactivity due to two temperature feedback [19], [34-35], and for long time operation; reactivity due to xenon 

concentration feedback [36] need to be included. 

 

𝜌 = 𝑎ℎ𝛥ℎ𝑐𝑟 + 𝛼𝑚(𝑇𝑚 − 𝑇𝑚
0) + 𝛼𝑓(𝑇𝑓 − 𝑇𝑓

0) + 𝜎𝑋(𝑋 − 𝑋0)  

 

         (4) 

0where, 𝑎ℎ is reactivity worth of the control rod, ℎ𝑐𝑟  is control rod position, 𝛼𝑚 is reactivity due to change in 

temperature moderator, 𝑇𝑚
0  is the average temperature of moderator at initial equilibrium state, 𝛼𝑓 is reactivity due to 

change in temperature fuel and 𝑇𝑓
0 is average temperature of fuel at initial equilibrium state. 

The linearization process of the non-linear dynamic TRIGA model based on Equations. (1-4) using perturbation 

theory is presented in [37]. In this study, the non-linear equations of the RTP model and all the model parameters with 

physical quantities of the model parameters can be referred to [38]. 

FEEDBACK CONTROL ALGORITHM 

In this section, the Feedback Control Algorithm (FCA) based on Proportional-Integral (PI) controller is briefly 

described below. 
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The closed-loop of RTP power control system is depicted in Figure 2 [39]. By referring to Figure 2, variable G1, 

G2, G3 and G4 act as control gains used to limit the power change rate below 12.5%/s bound, and E is an error deviation 

(%) which can be expressed as Equation. (5). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Feedback Control Algorithm (FCA) for automatic control mode. 

 

The FCA controller is designed based on classical control law and to determine the control rod velocity (the motor 

control command), 𝑢𝑃𝐼 using error deviation between actual core power, 𝑁 from Neutron Measurement System (NMS) 

and power demand (PDM). The detail on FCA designed can be found in [38]. 
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CONTROL ROD SELECTION ALGORITHM (CRSA) 

The FCA control performance has been tested at RTP from low power about 1% Full Power (FP) to nominal power 

operation about 75% FP. The overall power control performance analysis was done by using the gathered operation data 

from RTP. The steady-state error or noise measure (power fluctuation) after power stable at desired power demand is 

observed and shown in Figure 3. According to [25], in the presence of switching imperfections, such as switching time 

delays and small time constants in the actuators, the discontinuity in the feedback control produces a particular dynamic 

behaviour in the vicinity of the surface, which is commonly referred to as chattering error. This phenomenon is a serious 

disadvantage (problem) and will produce a high-frequency oscillation of a controlled system, which degrades the 

performance of the system and may even lead to instability. 

Referring to Figure 3, the performance of power control has chattering error (ece) of 2% of full power [40]. The reactor 

power tracking performance and chattering error at RTP are the main issues that need to be solved in this research study. 

For the power control system at RTP, by using the FCA, the control rod speed is limited to ±23 steps per cycle (labelled 

as V3) equivalent to ±2.0355 mm/s as shown in Figure 4.  

To date, the CRSA at RTP is the conventional CRSA method where it is applied by getting the minimum position of 

control rods and select the lowest control rod for up-movement (increase power) or the other way around to regulate 

reactor power with 2% chattering error. The advantage of this conventional CRSA is to minimize the moving distance of 

each control rod or known as balancing position control rod method. However, it suffers during transient and fine-tuning 

in steady-state to regulate reactor power due to differences in control rod worth value for each control rod at RTP and can 

be found in [41].  

The data control rod worth value is very important as a reference for the reactor operator to control the reactivity in 

the nuclear reactor. The reactor power can be increased by withdrawing the control rods from the reactor core. In 

conventional CRSA, the lowest position control rod is selected to be withdrawal first regardless of its rod worth value. If 

the selected control rod at that time is the highest rod worth value, the more positive reactivity will be given to the reactor 

consequently the more power is produced. More power produced than the demand, the FCA will suffer to correct the 

error by selecting the highest position of the control rod to be inserted into the core to provide negative reactivity in order 

to reduce the reactor power. The detail conventional CRSA algorithm at RTP can be found in [26] and the simplified 

algorithm block diagram shown in Figure 5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Chattering error (ece) at 75% full power. 

 

Another type of conventional CRSA method is proposed in [7] for the Egyptian Second Testing Research Reactor 

(ETRR-2). Instead of taking the lowest rod position to be withdrawal, the control rod with the lowest worth value is 

selected to increase the reactor power or vice versa. The control rod position of each control rod will be not the same by 

using this approach (difference rod worth value for each control rod). However, this rod selection strategic will be no 

guarantee provided the same result in the case of RTP due to a big difference between a minimum and maximum control 

rod worth value. 

 

 

 

 

 



Mohd Sabri Minhat et al. │ Journal of Mechanical Engineering and Sciences │ Vol. 14, Issue 1 (2020) 

6367   journal.ump.edu.my/jmes ◄ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. FCA-CRSA performance at RTP.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Conventional CRSA algorithm block diagram. 

 

Both conventional CRSA methods (RTP and ETRR-2) have the disadvantage to make the best decision to control 

power in the nuclear reactor. In addition, the controller action in both methods is solely based on the error equation and 

the output of the controller (velocity) will be sent to the CRSA system without considering the dynamic control rods 

behavior. Consequently, it will reduce the tracking performance due to conventional CRSA stick to rely on either rod 

position or rod worth values to compensate for four control rods.  

 

 

 

 

 

 

 



Mohd Sabri Minhat et al. │ Journal of Mechanical Engineering and Sciences │ Vol. 14, Issue 1 (2020) 

6368   journal.ump.edu.my/jmes ◄ 

The conventional CRSA at RTP can be calculated by the following algorithm [42]: 

 

// Select Compensating Rod with Minimum Rod Position for Withdrawal 

if(SHUTDOWN==F){ 

  if(Current Control Mode==AUTO){ 

if(V3>0){    

       num_of_fully_up_CRs=0;  

for(i=1 ; i <5 ; i++){ 

         if(CR(i)_FULLY_UP==T){num_of_fully_up_CRs++;} 

         if( (Carrier Up Switch of CR(i)==F)&&(S(i)==F) ){ 

              HI_unavailability(i)=F; 

         } 

         else{ 

             HI_unavailability(i)=T; 

     } 

              }  

MIN_POS_COUNTER = min(CR(i)_POSITION_COUNTER+19000*HI_unavailability(i)); 

// i=1,..,4 

        for(i=1 ; i <5 ; i++){ 

if( (CR(i)_POSITION_COUNTER<=MIN_POS_COUNTER)&&(HI_unavailability(i)==F) ){ 

                                CR(i)_selected=T; 

                                CR(j)_selected=F; //(j!=i) 

                                } 

        } 

    } 

  } 

} 

// Select Compensating Rod with Maximum Rod Position for Insertion 

if(SHUTDOWN==F){ 

  if(Current Control Mode==AUTO){ 

      if(V3<=0){     

        for(i=1 ; i <5 ; i++){ 

           if( (Carrier Down Switch of CR(i)==F)&&(S(i)==F) ){ 

LOW_availability(i)=T; 

} 

           else{ 

LOW_availability(i)=F; 

} 

         }  

MAX_POS_COUNTER=max(CR(i)_POSITION_COUNTER*LOW_availability(i));// i=1,...,4 

        for(i=1 ; i <5 ;i++){ 

if( (CR(i)_POSITION_COUNTER>=MAX_POS_COUNTER)&&(LOW_availability(i)==T) ){ 

            CR(i)_selected=T; 

            CR(j)_selected=F; //(j!=i) 

          } 

        } 

    } 

  } 

} 

 

Figure 6. Conventional control rod selection algorithm. 

 

The algorithm only limited to control rod selection logic. The algorithm describes in “operating” status (SHUTDOWN 

== F) and current control mode in “automatic”, the conventional CRSA define a local variable to save the number of 

fully up control rods. If a rod is not fully up nor frozen status S(i), then it is declared to be available to move up more. 
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The V3 is the number of steps per cycle given by controller. The conventional CRSA get the minimum position of 

control rods and select the lowest control rod in up-movement (V3>0). The other control rods are deselected. The number 

19000 indicates 381mm and this big value makes it possible to get rid of an unavailable rod from minimum value 

calculation. 

The algorithm can be operated for the other way around to insert control rod or down-movement (V3<=0). The 

conventional CRSA declares that not fully down and not frozen control rods are available. Then, it will take the maximum 

value amongst only available control rods and defines the highest position using this value. 

A similar algorithm is used by conventional CRSA in [7] with a slightly different local variable name. For example, 

“CR(i)_POS_COUNTER” (rod position) is represented by “CR(i)_CrWorth” (rod worth) in [7]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. SCAR algorithm block diagram. 

 

The optimal solution with less complexity and time response for the selection rods is introduced in the nuclear reactor. 

The solution proposed named as a single control absorbing rod (SCAR) and the block diagram is presented in Figure 7. 

In SCAR, three different approaches are introduced for the three different conditions to achieve the optimum power 

control performance. During low power condition (subcritical state), only three rods that have the lowest control rod 

worth available will be selected i.e. Transient (TR) rod, Safety (SF) rod and Shim (SH) rod to reach a critical state. The 

highest rod worth value Regulating rod (RG) is selected during the transient region to boost up the tracking performance 

to reach the desired power. At steady-state conditions, the movement of the rod is fine-tuned using the lowest rod worth 

value.  

The SCAR has design restrictions for fine-tuning in the safe mode such as error power control signal (power demand–

actual power) within pre-defined value at the steady-state region. This value was introduced in the system to remove 

unwanted control action consequently reduced fluctuation power error. When the error signal within the pre-defined 

value, the SCAR will choose the lowest rod worth value to move. Otherwise (not in a steady-state region), the SCAR 

using select the fast-acting rod (the highest rod worth value) to move. With this proposed approach, the execution time, 

the possibility of damaging the actuator (workload on CRDM) and the power chattering error can be reduced. The 

proposed SCAR algorithm is presented in Figure 8: 
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// Single Compensating Rod for Withdrawal 

if(SHUTDOWN==F){ 

  if(Current Control Mode==AUTO){ 

    if(V3>0 && (|Error Power Control Signal |>= Pre-defined Value)  ){ 

      for(i=3){ 

         if( (Carrier Up Switch of CR(i)==F)&&(S(i)==F) ){ 

            CR(i)_selected=T; 

            CR(j)_selected=F; //(j!=i) 

         } 

       else{ 

                         CR(i)_selected=F; 

                         CR(j)_selected=F; //(j!=i) 

         } 

}  

             }  

 } 

} 

// Single Compensating Rod for Insertion  

if(SHUTDOWN==F){ 

  if(Current Control Mode==AUTO){ 

      if(V3<=0 && (|Error Power Control Signal |>= Pre-defined Value)  ){ 

        for(i=3){ 

           if( (Carrier Down Switch of CR(i)==F)&&(S(i)==F) ){ 

            CR(i)_selected=T; 

            CR(j)_selected=F; //(j!=i) 

            } 

           else{ 

            CR(i)_selected=F; 

            CR(j)_selected=F; //(j!=i) 

} 

         }  

      } 

  }     

} 

 

Figure 8. SCAR algorithm 

 

The initial conditions of SCAR are similar to conventional CRSA which is the status is “operating” and the control 

mode is “automatic”. With SCAR, the number of fully-up control rods and the availability of declared control rods to 

move up will not be checked. To increase power, only one rod with the highest rod worth value i.e. RG (i=3) will be 

withdrawal. The same approach is used to reduce the reactor power. 

EXPERIMENTAL SETUP, RESULTS AND DISCUSSION 

In order to enhance the present controller performance, the development of a non-linear dynamic model of the reactor 

core using Equations. (1-4) with the original controller using Equation. (5) were necessary. The controller gains were set 

to 12.3, 0.08, 10 and 1e-7 for G1, G2, G3, and G4, respectively. The simulation model was validated by comparing the 

experimental data from RTP as depicted in Figure 9. It can be seen that the error between these two results has almost 

converged to zero at steady-state. The small differences between the simulation and the experimental results are because 

of the noise and system uncertainty as mention in [29]. However, in this study, the difference is negligible thus indicates 

that the developed RTP model using a non-linear analytical method can closely represent the actual dynamic of the RTP. 
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Figure 9. Comparison between experiment data and the model response at 750kWth. 

 

 

The control rod position dynamic can be represented by the simplest form of control rod position dynamic, i.e. pure 

integral function. However, this simplicity may lead to inaccuracy results where the difference in control rod worth value 

for each control rod is ignored. In order to ensure high accuracy in making the decision of rod selection, the control rod 

position dynamic is derived based on a set of actual input and output data using system identification (System ID) [43]. 

The comparison between the models is illustrated in Figure 10 and Figure 11. The step input shown in Figure 10 is the 

constant value of control rod velocity with 2.0355 mm/s (equal to 0.4071 mm/cycle) which is fed to the different types 

of control rod position dynamics in every 0.2 s/cycle.  

 

 

Figure 10. Three different methods to represent the control rod position dynamic. 
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Figure 11. The simulation result of the models in Figure 10. 

 

Referring to Figure 11, the control rod position dynamic based on System ID has 99% best fit thus provide a more 

accurate model to closely representing the actual rod drive mechanism compare to the pure integral function which has 

around 80% best fit. The model derived using System ID uses a set of actual input and output data of control rod drive 

mechanism while the pure integral method does not count the actual data. Thus, the control rod position dynamic based 

on System ID is more reliable to be implemented in representing the rod drive mechanism in the simulation. This model 

is then used in obtaining the reactivity worth value.  

In order to obtain the reactivity value, the step input shown in Figure 12 is assumed to be the control rod velocity 

determined by the controller to control the reactivity insertion rate in the reactor core which is Multiple-Inputs-Single-

Output (MISO) system [44]. The conventional CRSA and SCAR algorithm will translate the control rod velocity to 

control rod height parameter (control rod distance travel movement) and assigned as the first input in rod worth curve 

block. While the initial rod position at initial low power is assigned as the second input. The difference between these 

two inputs will be converted to rod worth value which indicates the required reactivity insertion from the control rods to 

increase the reactor power. 

 

 

Figure 12. Comparison between conventional CRSA and SCAR in obtaining the reactivity worth value. 
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Figure 13. The simulation results of the reactivity worth value for conventional CRSA and SCAR. 

 

In conventional CRSA, the conventional rod position algorithm with reactivity worth curve has been outlined with 

initial rod position 214 mm (10% FP) for all control rods (SH 214 mm =$1.779, SF 214 mm=$1.918, RG 214 mm 

=$2.653, TR 214 mm=$2.148) for the reactor at low power (critical) shown in Figure 12 [34]. For the SCAR algorithm, 

the reactivity worth curve is obtained at different initial rod positions, SF rod ($2.658) and SH rod ($2.430) at 284 mm, 

TR rod at 280 mm ($2.679) and RG rod at 100 mm ($0.73). 

However, by referring to the control rod worth behaviour graph for RTP in [41], both conventional CRSA and SCAR 

have almost identical total of reactivity worth value which is $8.498. Total maximum reactivity worth value to fully lift-

up all the control rods (at 381 mm) is about $13.144. Thus, the remaining reactivity is required to compensate for the 

power of the reactor. In conventional CRSA, four control rods are considered to be selected for reactivity insertion. In 

contrast, SCAR solely relies on the RG rod for the reactivity insertion thus no selection process is required.  

The result between conventional CRSA and SCAR in obtaining the reactivity worth value is shown in Figure 13. The 

SCAR provided the most responsive reactivity compare to the conventional CRSA due to the high rate of reactivity 

inserted and reduced the complexity and time depending (delay time) on the selection rods in the nuclear reactor. The 

highest rod worth value, the more positive reactivity will be given to the reactor consequently the more power is produced. 

In addition, the SCAR can reduce switching time delays and time constants significantly in the actuators from moving 

four control rods to a single rod during the transient.  

The application program for conventional CRSA and SCAR algorithm is developed using C/C++ language. This 

language is converted to MATLAB Simulink via computer simulation. For verification purposes based on experimental 

data, the program is written in C/C++ language is converted to NetArrays code (RTP Corp.) as shown in Figure 14 due 

to real-time hardware implementation using Distributed Control System (DCS). 
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Figure 14. The converted process for conventional CRSA and SCAR algorithm using C/C++ language to NetArrays 

code for experimental setup approach. 

 

To evaluate the performance of the proposed SCAR, the simulations and experimental data of the proposed FCA-

SCAR is applied to load tracking where the pre-defined value is set as 1%. The performance of SCAR is compared with 

the FCA-conventional CRSA (FCA-CRSA) as shown in Figure 15. The safety parameter constraint is also included in 

the design of the controller. In this study, FCA using the same parameter constraint (23 steps per cycle for control rod 

speed) on the mechanical limits of the control rods as in [38]. Initial low power at 10% FP nominal core power. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15. The power tracking performance using conventional CRSA (cCRSA) and SCAR via MATLAB Simulink 

simulation and experimental results. 
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Figure 16. The experimental data for the velocity of the control rod using conventional CRSA (cCRSA) and SCAR. 

 

Based on observation from Figure 15, FCA-SCAR ensures a stable power without causing the reactor to automatic 

trip. The result of SCAR shows a short rising time and the rate of power change less than the trip limit parameter (33.3%/s) 

[38]. However, small oscillations still can be observed at 60% FP due to the rate of power increment constraint by FCA.  

Figure 16 shows the output signal of the FCA controller for velocity of the control rod, V3. From the experimental 

result obtained, the response from SCAR produced a good result in terms of reduced input actuation signal at CRDM. It 

is difficult to regulate control rods at low power 10%FP (0 s to 40 s) due to noisy conditions. However, both conventional 

CRSA and SCAR are good in eliminating the steady-state error and makes the reactor power output follow the power 

demand at steady-state. The SCAR used only one Regulating rod (the highest reactivity worth) to compensate the reactor 

power at steady-state whereas conventional CRSA used 4 rods. The conventional CRSA still can provide a better result 

with minimum chattering signal without fine-tuning at steady-state in a short time range; 200 s to 300 s in Figure 15 and 

presented in Table 1. Both CRSAs are not suffering from the chattering effect for a short time reactor operation. To 

capture the presence of switching imperfections such as switching time delays to select control rods and small time 

constants in the different actuators required long time operation more than 30 minutes based on previous data operation 

from RTP. The performance summary of conventional CRSA and SCAR at transient is tabulated in Table 2 quantitatively. 

The percentage of overshoot can be calculated using the equation in [12]. 

 

Table 1. Chattering error without fine-tuning in short time operation. 

 Conventional CRSA SCAR 

Min (%) 74.6652 74.5447 

Max (%) 75.4262 75.5322 

ece 0.7610 0.9875 

 

 

Table 2. Summary of performance of conventional CRSA and SCAR at 750kWth. 

 Conventional CRSA SCAR 

Settling Time (Ts) 119.0 s 88.0 s 

Percent Overshoot (%) 0.8316 % 0.7095% 

Rise Time (Tr) 74.0 s 41.5 s 

 

The workload on CRDM when to increase power level from 10% FP to 75% FP can be measured by the summation 

values of the velocity of the control rod (steps per cycle) from Figure 16. It can be verified in Table 3 that the SCAR with 

a large change in power demand can reduce the workload in small steps. The 3,176 steps workload is required within 280 

s equal to 56.2152 mm which is the control rod distance travel for SCAR. The conventional SCAR takes long-distance 

about 87.1194 mm to perform the same task. 
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Table 3. The workload on CRDM (40s-320s). 

 Conventional CRSA SCAR 

|Sum| V3 (steps/cycle) 4922 3176 

 

During steady-state, the SCAR will choose the lowest rod worth value of the control rod to move, the less positive or 

negative reactivity will be given to the reactor consequently the less power is produced or reduced at reactor core. As a 

result, it reduced the error power deviation (fluctuation power error) and the FCA controller can be minimized the control 

rod movement (reduced workload). 

To evaluate the fine-tuning performance of the proposed SCAR, the experimental data of conventional CRSA is 

applied and started with four control rods. Then, the operation is continuous by reducing the number of control rods for 

fine-tuning at steady-state. The overall power control performance analysis is done using the gathered operation data for 

every 500 ms from RTP shown in Figure 17. The proposed SCAR compensates two or three control rods at steady-state 

in long time operation by freezing the highest rod worth value (RG rod) first. The current computer system checks if two 

or more control rods are frozen, the alarm dual control rod failure will be activated. For safety purposes, in the case of 

single rod failure and not solely depend only one rod to regulate reactor power at a steady-state region, two control rods; 

SF and SH rods which have about the same reactivity worth value will be needed for continuous operation. Figure 18 

shows a closer view of chattering error at 75% FP between FCA-CRSA and FCA-SCAR during fine-tuning in a long-

time operation. Overall, both CRSA are suffering from the chattering effect as expected within an acceptable range (±1% 

or 2%).  

In order to reduce the chattering effect due to residual noise from neutron detector measurement and the presence of 

switching imperfections, the noise filter is used. From many types of noise filters, the moving average filter is selected as 

it is one of the favourable noise filters [45]. By referring to Figure 18, the fluctuation power error is higher without a filter 

for both conventional CRSA and SCAR thus hard to observe the data trends. However, with the increase in the number 

of moving average filters, slow changes in value are produced which allows easier data trend observation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17. The fine-tuning performance at steady-state with different numbers of the control rod. 
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Figure 18. Comparison of fine-tuning performance at steady-state with different numbers of average point. 

 

Table 4. Chattering error with fine-tuning during steady-state and with different numbers of average points. 

 
Conventional CRSA SCAR 

4 rods 3 rods 2 rods 

ece 1.4498 1.2572 1.1898 

Average 2 points, ece 1.4498 1.2572 1.1873 

Average 3 points, ece 1.4498 1.2524 1.1865 

Average 5 points, ece 1.4474 1.2061 1.1705 

 

Table 4 presents the behaviour of using the different number of control rods for tuning at the high-power level. In 

overall, based on Table 2 to 4, the analysis shows that a SCAR offers generally better results than the conventional CRSA 

with the reduction in rise time up to 44%, workload up to 35%, settling time up to 26% and chattering error up to 18% of 

the nominal value. In addition, implementing a noise filter by taking a moving average can help in reducing the chattering 

error with the increase number of average points. However, a new SCAR design is not fully integrated (design separately) 

with the current controller and additional study is necessary in order to achieve the most effective SCAR for RTP. 

CONCLUSIONS 

The power tracking performance for a reactor can be improved by modifying the conventional Control Rod Selection 

Algorithm (CRSA). Instead of using four control rods, this paper proposed a Single Control Rod Algorithm (SCAR) that 

has less complexity and time response (delay time) for the selection of rods in the nuclear reactor. The proposed SCAR 

with FCA control strategy is useful for types of nuclear reactors have a big difference in control rod worth values to 

regulate reactor power by using the reactivity insertion control rod. With the utilization of SCAR, it is proved that the rise 

time, settling time, chattering and power fluctuation error can be reduced. Overall, the study is expected to significantly 

improve core power control at nuclear reactor by using SCAR to provide a fast response with reduced computational 

complexity, high accuracy and reduce overall operational cost through minimizing control rod drive damage. Future 

works include integrating the SCAR algorithm with the controller to reduce the complexity of the system, provide direct 

control and improved safety.   
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