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ABSTRACT 

In recent years, due to growing environmental and ecological concerns, many 

studies have focused on the use of renewable resources as a starting material or 

blending component in the polymer resin formation. To tap to the mass production of 

palm oil in Malaysia, this study focuses on developing a novel hybrid glass/kenaf fiber 

reinforced epoxy composites from acrylated epoxidized palm oil (AEPO) filled organo 

modified montmorrillonite nanoclay (OMMT) and cured with bio-based hardener. The 

effects of AEPO and OMMT loading on mechanical and thermal properties, 

morphology as well as water absorption properties of epoxy/AEPO nanocomposites 

were investigated. The amounts of AEPO in epoxy resin were varied at 10, 20 and 30 

wt% and the OMMT loadings were varied at 1, 1.5 and 2 phr. The results revealed that 

the impact strength and ductility properties of epoxy/AEPO resin improved with 

AEPO loading. The highest improvement of impact strength was indicated by 

epoxy/AEPO resin with 30 wt% AEPO loading, representing 57.8% higher than the 

neat epoxy resin. However, the strength and modulus of epoxy/AEPO resins were 

reduced with increasing of AEPO content. The addition of OMMT improved the 

modulus and thermal stability of nanocomposites with the optimum balanced 

properties at 10 wt% AEPO and 1.5 phr OMMT nanoclay loading. At this loading, 

tensile modulus of epoxy resin with 10 wt% AEPO loading improved 45.6 % higher 

than the neat epoxy/AEPO resin. The thermogravimetric analysis and dynamic 

mechanical analysis results also revealed that the thermal stability and glass transition 

temperature of epoxy/AEPO nanocomposites improved with the addition of OMMT 

up to 1.5 phr OMMT loading. The hybrid glass/kenaf fiber composites were fabricated 

using hand lay-up technique. The moisture absorption behaviour and its effects on the 

flexural properties of hybrid glass/kenaf fiber composites were investigated. The water 

absorption studies showed that the hybridization between glass and kenaf fibers 

significantly affected the water absorption and flexural strength of the composites. The 

alternated layering sequence of GKKG (where, G and K stands for glass and kenaf 

fiber, respectively) gave the best flexural properties of the resulted hybrid kenaf/glass 

fiber reinforced epoxy/AEPO filled OMMT composites. The overall results showed 

that montmorrilonite filled epoxy/AEPO hybrid kenaf/glass fiber composites are 

potential materials which could be utilized for applications in automotive panels, wall 

or floor panels, furniture, and housing construction materials. 
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ABSTRAK 

Dalam tahun-tahun kebelakangan ini, disebabkan oleh kebimbangan alam 

sekitar dan ekologi yang semakin meningkat, banyak kajian telah memberi tumpuan 

kepada penggunaan sumber yang boleh diperbaharui sebagai bahan permulaan atau 

komponen campuran dalam pembentukan resin polimer. Untuk memanfaatkan 

lambakan minyak kelapa sawit di Malaysia, kajian ini memberi tumpuan untuk 

membangunkan satu komposit baharu gentian kaca/kenaf hibrid bertetulang epoksi 

dari minyak kelapa sawit terepoksi terakrilasi (AEPO) terisi tanah liat montmorilonit 

yang diubahsuai organo (OMMT) dan diawet menggunakan pengeras berasaskan bio. 

Kesan pemuatan AEPO dan OMMT kepada sifat mekanikal dan haba, morfologi serta 

sifat penyerapan air bagi komposit nano epoksi/AEPO telah dikaji. Jumlah AEPO 

dalam resin epoksi diubah pada 10, 20 dan 30% berat dan muatan OMMT diubah pada 

1, 1.5 dan 2 phr. Hasil kajian menunjukkan bahawa sifat kekuatan hentaman dan 

kemuluran resin epoksi/AEPO bertambah baik dengan peningkatan muatan AEPO. 

Peningkatan kekuatan hentaman tertinggi ditunjukkan oleh resin epoksi/AEPO dengan 

muatan 30% berat AEPO, mewakili 57.8% lebih tinggi daripada resin epoksi asli. 

Walau bagaimanapun, kekuatan tegangan dan modulus resin epoksi/AEPO 

dikurangkan dengan peningkatan kandungan AEPO. Penambahan OMMT 

meningkatkan modulus dan kestabilan haba komposit nano dengan sifat-sifat 

keseimbangan optimum pada 10% berat AEPO dan 1.5 phr OMMT tanah liat nano. 

Pada muatan ini, modulus tegangan bagi resin epoksi dengan muatan 10 % berat AEPO 

dipertingkat sekitar 45.6% lebih tinggi daripada resin epoksi/AEPO asli. Keputusan 

analisis termogravimetrik dan analisis mekanikal dinamik juga menunjukkan bahawa 

kestabilan haba dan suhu peralihan kaca epoksi/AEPO komposit nano bertambah baik 

dengan penambahan muatan OMMT sehingga 1.5 phr. Komposit gentian kaca/kenaf 

hibrid telah disediakan menggunakan teknik bengkalai tangan. Tingkah laku 

penyerapan kelembapan dan kesannya terhadap sifat lenturan bagi komposit gentian 

kaca/kenaf hibrid dikaji. Kajian penyerapan air menunjukkan bahawa hibridisasi 

antara gentian kaca dan kenaf memberi kesan yang ketara kepada penyerapan air dan 

kekuatan lenturan komposit. Urutan berlapis berganti GKKG (di mana, G dan K 

masing-masing bermaksud gentian kaca dan kenaf) memberikan sifat lentur yang 

terbaik daripada keputusan komposit gentian kaca/kenaf hibrid bertetulang 

epoksi/AEPO terisi OMMT. Keputusan keseluruhan menunjukkan bahawa komposit 

montmorilonit terisi epoksi/AEPO gentian kenaf/kaca hibrid adalah bahan berpotensi 

yang boleh digunakan untuk aplikasi dalam panel automotif, dinding atau lantai, 

perabot, dan bahan pembinaan rumah.  

 

 

 

 

 

 

 

vii 



x 

 

TABLE OF CONTENTS  

 

TITLE PAGE 

  

 DECLARATION iii 

 DEDICATION iv 

 ACKNOWLEDGEMENT v 

 ABSTRACT vi 

 ABSTRAK vii 

 TABLE OF CONTENTS ix 

 LIST OF TABLES xiv 

 LIST OF FIGURES xvi 

 LIST OF ABBREVIATIONS xx 

 LIST OF SYMBOLS xxii 

 LIST OF APPENDICES xxiv 

  

CHAPTER 1 INTRODUCTION 1 

 1.1 Research Background  1 

 1.2 Problem Statement 6 

 1.3 Research Objectives 8 

 1.4 Scope of the Study 8 

    

CHAPTER 2 LITERATURE REVIEW 11 

 2.1 Polymer and Bio-Based Polymer Material 11 

 2.2 Palm Oil and It’s Properties 12 

 2.3 Epoxidized Vegetable Oils 16 

  2.3.1 Epoxidized Vegetable Oil-Polymer Blends 19 

 2.4 Acrylated  Epoxidized Vegetable Oil 20 

  2.4.1 Acrylated Epoxidized Vegetable Oil-

Polymer Blends 

 

22 

 2.5 Epoxy Resin 23 

 2.6 Hardener or Curing Agent 25 

ix 



xi 

 

  2.6.1 Bio-Based Epoxy Hardener 26 

   2.6.1.1 Bio-Based Phenalkamines 

Hardener 

 

27 

   2.6.1.2 Other Bio-Based Hardener 29 

 2.7 Vegetable Oil- Polymer Blends with Bio-Based 

Hardener  

 

31 

 2.8 Organo Modified Montmorrillonite (OMMT) 

nanoclay 

 

32 

  2.8.1 Incorporation of OMMT in VO/Polymer 

Resin 

 

35 

 2.9 Hybrid Kenaf/Glass Fibers 37 

  2.9.1 Properties of Hybrid Kenaf/Glass Fiber 

Reinforced VO/Epoxy Composites 

 

39 

 2.10 Water Absorption in Polymer Composites 41 

  2.10.1 Fickian Diffusion 41 

  2.10.2 Non-Fickian Diffusion 44 

 2.11 Factors Affecting the Water Absorption of Polymer 

Composites 

 

44 

 2.12 Effect of Water Absorption on Mechanical 

Properties of Polymer Composites 

 

47 

      

CHAPTER 3 METHODOLOGY 49 

 3.1 Research Design 49 

 3.2 Materials 51 

  3.2.1 Epoxy Resin 51 

  3.2.2 Hardener 52 

  3.2.3 The Mold 53 

  3.2.4 Epoxidized Palm Oil (EPO) 53 

  3.2.5 Organo Modified Montmorrillonite 

Nanoclay (OMMT)  

 

54 

  3.2.6 Glass Fiber Mat 55 

  3.2.7 Kenaf Fiber Mat 55 

  3.2.8 Acetone 55 

 3.3 Formulation and Preparation of Composites 56 

  3.3.1 Preparation of Acrylated Epoxidized Palm 

Oil (AEPO) 

 

56 

  3.3.2 Preparation of Epoxy/AEPO Bioresin 56 

x 



xii 

 

  3.3.3 Preparation of Epoxy/AEPO/OMMT 

Nanocomposites 

 

57 

  3.3.4 Preparation of Hybrid Kenaf/Glass Fiber 

Reinforced Epoxy/AEPO/OMMT 

Composites 

 

 

57 

 3.4 Testing and Characterization of Composites 60 

  3.4.1 Mechanical Test 60 

   3.4.1.1 Tensile Test 60 

   3.4.1.2 Izod Impact Test 60 

   3.4.1.3 Flexural Test 61 

  3.4.2 Thermogravimetric Analysis (TGA) 61 

  3.4.3 Dynamic Mechanical Analysis (DMA) 61 

  3.4.4 Fourier Transform Infrared Spectroscopy 

(FTIR)  

 

61 

  3.4.5 Water Absorption 62 

   3.4.5.1 Kinetics of Water Absorption 62 

  3.4.6 X-Ray Diffraction (XRD) 63 

  3.4.7 Morphological Study 63 

   3.4.7.1 Scanning Electron Microscopy 

(SEM) 

 

64 

   3.4.7.2 Transmission Electron 

Microscopy (TEM) 

 

64 

  3.4.8 Void Content 64 

      

CHAPTER 4 RESULTS AND DISCUSSION 67 

 4.1 Effects of Acrylated Epoxidized Palm Oil (AEPO) 

Loadings on Epoxy / AEPO Resin 

 

67 

  4.1.1 Tensile Properties 67 

  4.1.2 Flexural Properties 70 

  4.1.3 Impact Strength 72 

  4.1.4 Thermogravimetric Analysis (TGA) 73 

  4.1.5 Dynamic Mechanical Analysis (DMA) 76 

   4.1.5.1 Storage Modulus 77 

   4.1.5.2 Tangent delta 79 

  4.1.6 Water Absorption 81 

  4.1.7 Morphological Study 82 

xi 



xiii 

 

  4.1.8 Fourier Transform Infrared Spectroscopy 85 

 4.2 Effect of Organo Modified Montmorillonite 

(OMMT) Nanoclay Loadings on Epoxy / Acrylated 

Epoxidized Palm Oil (AEPO) Resin 

 

 

89 

  4.2.1 Tensile Properties 89 

  4.2.2 Flexural Properties 93 

  4.2.3 Impact Strength 96 

  4.2.4 Thermogravimetric Analysis (TGA) 97 

  4.2.5 Dynamic Mechanical Analysis (DMA) 102 

   4.2.5.1 Storage Modulus 102 

   4.2.5.2 Tangent delta 105 

  4.2.6 Water Absorption 108 

  4.2.7 X-Ray Diffractometer (XRD) Analysis 110 

  4.2.8 Transmission Electron Microscopy (TEM) 113 

  4.2.9 Balance Mechanical Properties 117 

 4.3 Effects of Moisture Absorption Behaviour on 

Hybrid Kenaf/Glass Fiber Reinforced Epoxy/AEPO 

Filled OMMT Composites as a function of different 

layering sequences and different environments (in 

distilled and salted water). 

 

 

 

 

118 

  4.3.1 Density and Void Fraction 119 

  4.3.2 Moisture Absorption Behaviour of Hybrid 

Kenaf/Glass Fiber Reinforced 

Epoxy/AEPO Filled OMMT Composites in 

Distilled and Salted Water 

 

 

 

120 

   4.3.2.1 Effect of Arranging Different 

Layered Fiber Sequences on the 

Moisture Absorption Behaviour 

of Hybrid Kenaf/Glass Fiber 

Reinforced Epoxy/AEPO Filled 

OMMT Composites   

 

 

 

 

 

120 

   4.3.2.2 Effect of Distilled Water and 

Salted Water on the Moisture 

Absorption of Hybrid 

Kenaf/Glass Fiber Reinforced 

Epoxy/AEPO Filled OMMT 

Composites 

 

 

 

 

 

124 

 4.4 Flexural Properties of Hybrid Kenaf/Glass Fiber 

Reinforced Epoxy/AEPO Filled OMMT Composites 

 

127 

  4.4.1 Effect of Arranging Different Layered 

Fiber Sequences on Flexural Properties of 

 

 

xii 



xiv 

 

 

 

 

 

 

  

Hybrid Kenaf/Glass Fiber Reinforced 

Epoxy/AEPO Filled OMMT Composites 

 

127 

  4.4.2 Effect of Moisture Absorption on Flexural 

Properties of Hybrid Kenaf/Glass Fiber 

Reinforced Epoxy/AEPO Filled OMMT 

Composites 

 

 

 

129 

 4.5 Morphology Studies of Dry and Wet Hybrid 

Kenaf/Glass Fiber Reinforced Epoxy/AEPO Filled 

OMMT Composites 

 

 

132 

      

CHAPTER 5 CONCLUSION AND RECOMMENDATIONS 137 

 5.1 Conclusions 137 

 5.2 Recommendation for Future Works 139 

    

REFERENCES 141 

APPENDIX A 159 

LIST OF PUBLICATIONS 161 

      

xiii 



xv 

 

LIST OF TABLES 

TABLE NO. TITLE PAGE 

   

Table 2.1 Fatty acid composition in various vegetable oils (Khot 

et al., 2001) 

 

13 

Table 2.2 The iodine value of some common fatty acid in VOs 

(Karak, 2012)  

 

15 

Table 2.3 The fatty acid composition of palm oil products, 

coconut oil and soy oil (Mba et al., 2015) 

 

16 

Table 2.4 Type one curing agents and their chemical structures 

(Ding, 2015) 

 

26 

Table 2.5 Properties of various types of natural and synthetic 

fibers (Mohanty et al., 2005) 

 

38 

Table 3.1 Properties of epoxy D.E.R.331 (Dow,2017) 52 

Table 3.2 Cardolite NX-2003D hardener properties (Data sheet 

for Cardolite® NX-2003D, Cardolite) 

 

52 

Table 3.3 EPO characteristics (Budi Oil Sdn. Bhd, 2015) 53 

Table 3.4 The physical and chemical properties of OMMT 

(Southern Clay Product Inc, USA, 2015)  

 

54 

Table 3.5 Chopped strand mat glass fiber properties (Euro-

Chemo Pharma Sdn. Bhd, 2016) 

 

55 

Table 3.6 General properties of acetone (Qrec, Malaysia) 56 

Table 3.7 Formulation of epoxy/AEPO resin blends 58 

Table 3.8 Formulation of epoxy/AEPO/OMMT resin 

nanocomposites 

 

59 

Table 3.9 Formulation of hybrid kenaf/glass fiber reinforced 

epoxy/AEPO/OMMT composites 

 

59 

Table 4.1 Thermal properties of epoxy/AEPO resins 76 

Table 4.2 Tg, maximum tan δ, and crosslinking density results of 

epoxy/AEPO resins 

 

80 

Table 4.3 Characteristic bands of epoxy/AEPO resin 89 

Table 4.4 The thermal properties of epoxy nanocomposites at 

various amount of OMMT 

 

100 

Table 4.5 The thermal properties of epoxy/AEPO 

nanocomposites at various amount of OMMT 

 

102 

xiv 



xvi 

 

Table 4.6 Tg, maximum tan δ, and crosslinking density results of 

epoxy and epoxy/AEPO resins at different OMMT 

loadings 

 

 

108 

Table 4.7 Diffraction peaks of epoxy and epoxy/AEPO 

nanocomposites 

 

112 

Table 4.8 Void content percentage of the hybrid kenaf / glass 

fiber reinforced epoxy/AEPO/OMMT composites 

 

119 

Table 4.9 Moisture absorption properties of hybrid kenaf/glass 

fiber reinforced epoxy/AEPO filled OMMT 

composites with different layering sequence 

 

 

122 

Table 4.10 Moisture absorption properties of hybrid kenaf/glass 

fiber reinforced epoxy/AEPO filled OMMT 

composites in distilled water and salted water 

 

 

127 

   

   

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

xv 



xvii 

 

LIST OF FIGURES 

FIGURE NO. TITLE PAGE 

   

Figure 2.1 Structures of triglyceride (Revelle and Harrington, 

1992)  

 

14 

Figure 2.2 Epoxidized triglyceride molecule (Mustapha, 

Rahmat, and Arsad, 2014) 

 

17 

Figure 2.3 Preparation of epoxidized vegetable oil by the insitu 

peracid method (Puing, 2006) 

 

18 

Figure 2.4 The mechanism of acrylated epoxidized triglyceride 

molecule (Salih et al., 2015) 

 

22 

Figure 2.5 Chemical structure of Diglycidyl ether of bisphenol-

A (DGEBA) epoxy (Ding, 2015) 

 

24 

Figure 2.6 The reaction mechanism to synthesize phenalkamine 

(Phatak and Rao, 2006) 

 

27 

Figure 2.7 Structure of phenalkamines based on cardanol, 

formaldehyde and diethylene triamine (Chrysanthos, 

2012) 

 

 

28 

Figure 2.8 General mechanism reaction of phenalkamines and 

DGEBA (Huang et al., 2012) 

 

29 

Figure 2.9 Chemical structure of tannic acid (Shibata and Nakai, 

2009) 

 

30 

Figure 2.10 Synthesis of terpene maleic anhydride (TMA) and 

maleopimaric acid (MPA) (Chang et al., 2014) 

 

31 

Figure 2.11 Idealized structure of montmorillonite (MMT) (Kop, 

2007) 

 

33 

Figure 2.12 Schematic illustration of polymer layer silicate 

nanocomposite (Dong et al., 2015) 

 

34 

Figure 2.13 Typical Fickian diffusion curve 43 

Figure 3.1 Experimental design flow sheet 51 

Figure 3.2 Mold for resin casting 54 

Figure 3.3 The laminated hybrid kenaf/glass fiber configuration 58 

Figure 4.1 Tensile strength of epoxy/AEPO resins 68 

Figure 4.2 Young’s modulus of epoxy/AEPO resins 69 

Figure 4.3 Elongation at break of epoxy/AEPO resins 70 

Figure 4.4 Flexural strength of epoxy/AEPO resins 71 

xvi 



xviii 

 

Figure 4.5 Flexural modulus of epoxy/AEPO resins 72 

Figure 4.6 Impact strength of epoxy/AEPO resins 73 

Figure 4.7 TGA analyses of epoxy/AEPO resins 75 

Figure 4.8 DTG curves of epoxy/AEPO resins 76 

Figure 4.9 Storage modulus temperature dependance of 

epoxy/AEPO resins 

 

78 

Figure 4.10 The change in storage modulus of epoxy/AEPO resin 

at 30 ºC 

 

78 

Figure 4.11 Temperature dependence of the loss factor tan δ of 

epoxy/AEPO resins 

 

80 

Figure 4.12 Water absorption of epoxy/AEPO resins 82 

Figure 4.13 Scanning electron micrographs of impact fracture 

surfaces of a) neat epoxy (at x80 magnification), b) 

neat epoxy (at x500 magnification), c) 90/10 = 

epoxy/AEPO (at x80 magnification), d) 90/10 = 

epoxy/AEPO (at x500 magnification), e) 80/20 = 

epoxy/AEPO (at x80 magnification), f) 80/20 = 

epoxy/AEPO (at x500 magnification), g) 70/30 = 

epoxy/AEPO(at x80 magnification), h) 70/30 = 

epoxy/AEPO(at x500 magnification) 

 

 

 

 

 

 

 

 

84 

Figure 4.14 High magnification SEM images of the impact 

fracture surfaces of a) 80/20 = epoxy/AEPO, b) 70/30 

= epoxy/AEPO resins 

 

 

85 

Figure 4.15 FTIR spectrum of epoxy, AEPO and epoxy/AEPO 

resins 

 

87 

Figure 4.16 The mechanism for the acrylated epoxidized 

triglyceride molecule 

 

87 

Figure 4.17 The crosslinking reaction mechanism for epoxy resin 

with bio-based hardener 

 

88 

Figure 4.18 The proposed complete reaction mechanism for 

epoxy/AEPO resin. 

 

88 

Figure 4.19 Tensile strength of epoxy and epoxy/AEPO 

nanocomposites at various AEPO loading 

 

91 

Figure 4.20 Tensile modulus of epoxy and epoxy/AEPO 

nanocomposites at various AEPO loading 

 

92 

Figure 4.21 Elongation at break of epoxy and epoxy/AEPO 

nanocomposites various AEPO loading 

 

93 

Figure 4.22 Flexural strength of epoxy and epoxy/AEPO 

nanocomposites at various AEPO loading 

 

95 

Figure 4.23 Flexural modulus of epoxy and epoxy/AEPO 

nanocomposites at various amount of AEPO 

 

96 

xvii 



xix 

 

Figure 4.24 Izod impact strength of epoxy and epoxy/AEPO 

nanocomposites at various AEPO loading 

 

97 

Figure 4.25 TGA analysis of epoxy nanocomposites at various 

amount of OMMT 

 

99 

Figure 4.26 DTG curves of epoxy nanocomposites at various 

amount of OMMT 

 

100 

Figure 4.27 TGA analyses of epoxy/AEPO nanocomposites at 

various amount of OMMT 

 

101 

Figure 4.28 DTG curves of epoxy/AEPO nanocomposites at 

various amount of OMMT 

 

101 

Figure 4.29 Storage modulus of epoxy resin at different amount 

of OMMT loadings 

 

104 

Figure 4.30 Storage modulus of epoxy/AEPO resin at different 

amount of OMMT loadings 

 

104 

Figure 4.31 Tangent delta of epoxy resin at different amount of 

OMMT loadings 

 

106 

Figure 4.32 Tangent delta of epoxy/AEPO resin at different 

amount of OMMT loadings 

 

107 

Figure 4.33 Water absorption of neat epoxy and epoxy/OMMT 

nanocomposites 

 

109 

Figure 4.34 Water absorption of neat epoxy/AEPO and 

epoxy/AEPO/OMMT nanocomposites 

 

110 

Figure 4.35 X-ray diffraction (XRD) pattern of epoxy/OMMT 

nanocomposites  

 

112 

Figure 4.36 X-ray diffraction (XRD) pattern of 

epoxy/AEPO/OMMT nanocomposites 

 

113 

Figure 4.37 TEM images of fracture surfaces of epoxy resin at 

different OMMT loading a) 100/1 (x 2k 

magnification), b) 100/1 (x 20k magnification), c) 

100/1.5 (x 2k magnification), d) 100/1.5 (x 20k 

magnification), e) 100/0/2 (x 2k magnification) and f) 

100/0/2 (x 20k magnification) 

 

 

 

 

 

115 

Figure 4.38 TEM images of epoxy/AEPO resin at different 

OMMT loading a) 90/10/1 (x 2k magnification), b) 

90/10/1 (x 20k magnification), c) 90/10/1.5 (x 2k 

magnification), d) 90/10/1.5 (x 20k magnification), e) 

90/10/2 (x 2k magnification) and f) 90/10/2 (x 20k 

magnification) 

 

 

 

 

 

116 

Figure 4.39 Balanced mechanical properties of epoxy and 

epoxy/AEPO resin with various amount of OMMT 

loadings 

 

 

118 

xviii 



xx 

 

Figure 4.40 Water absorption of hybrid kenaf/glass fiber 

reinforced epoxy/AEPO filled OMMT composites 

with different layering sequence 

 

 

121 

Figure 4.41 Initial stage of water absorption hybrid kenaf/glass 

fiber reinforced epoxy/AEPO filled OMMT 

composites with different layering sequence 

 

 

123 

Figure 4.42 Comparison between theoretical Fickian and 

experimental data of water absorption of hybrid 

kenaf/glass fiber reinforced epoxy/AEPO filled 

OMMT composites with different layering sequence 

 

 

 

124 

Figure 4.43 Water absorption of hybrid kenaf/glass fiber 

reinforced epoxy/AEPO filled OMMT composites in 

distilled and salted water 

 

 

125 

Figure 4.44 Diffusion coefficient of hybrid kenaf/glass fiber 

reinforced epoxy/AEPO filled OMMT composites in 

distilled water and salted water 

 

 

126 

Figure 4.45 Flexural strength and flexural modulus of hybrid 

kenaf/glass fiber reinforced epoxy/AEPO filled 

OMMT composites with different layering sequence 

 

 

129 

Figure 4.46 Flexural strength of hybrid kenaf/glass fiber 

reinforced epoxy/AEPO filled OMMT composites in 

distilled and salted water 

 

 

131 

Figure 4.47 Flexural modulus of hybrid kenaf/glass fiber 

reinforced epoxy/AEPO filled OMMT composites in 

distilled and salted water 

 

 

132 

Figure 4.48 Scanning electron micrographs of flexural fracture 

surfaces of 4K composites a) dry (x80 

magnification), b) dry (x500 magnification), c) 

immersed in distilled water (x80 magnification), d) 

immersed in distilled water (x500 magnification) e) 

immersed in salted water (x80 magnification) and f) 

immersed in salted water (x500 magnification) 

 

 

 

 

 

 

134 

Figure 4.49 Scanning electron micrographs of flexural fracture 

surfaces of GKKG composites a) dry (x80 

magnification), b) dry (x500 magnification), c) 

immersed in distilled water (x80 magnification), d) 

immersed in distilled water (x500 magnification) e) 

immersed in salted water (x80 magnification) and f) 

immersed in salted water (x500 magnification) 

 

 

 

 

 

 

135 

   

   

 

 

 

xix 



xxi 

 

LIST OF ABBREVIATIONS 

AEPO - Acrylated epoxidized palm oil 

AESO - Acrylated epoxidized soybean oil 

AEVO - Acrylated epoxidized vegetable oil  

ASTM - American Society for Testing and Materials 

BPA - Bisphenol-A 

CNSL - Cashew nut shell liquid 

DETA - Diethylenetriamine 

DGEBA - diglycidyl ether of bisphenol A 

DMA  - Dynamic mechanical analysis 

DSC - Dynamic scanning calirometry 

DTG - Derivative thermogravimetric 

ECO - Epoxidized castor oil 

EPO - Epoxidized palm oil 

EVO - Epoxidation of vegetable oil 

EPCH - Epichlorohydrin 

ESO - Epoxidized soybean oil 

EVO - Epoxidized vegetable oil 

EPO - Epoxidized palm oil 

FRP - Fiber reinforced polymer 

FTIR - Fourier transform infrared spectroscopy 

FWHM - Full width half maximum 

GPE - Glycerol polyglycidyl ether 

HT - Hydrotalcite-type 

HDPE - High density polyethylene 

IPDA - Isophoronediamine 

LENR - Liquid epoxidised natural rubber 

LDH’S - Layered double hydroxides 

MDA - Methylene- dianiline 

MFC - Microfibrillated cellulose 

MMT - Montmorillonite nanoclay 

xx 



xxii 

 

MPA - Maleopimaric acid  

MT - Metric tons  

NaOH - Sodium hydroxide 

NFRP - Natural fiber reinforced polymer composites 

OMMT - Organo modified montmorrillonite nanoclay 

phr - Part per hundred resin 

PP - Polypropylene 

PVC - Poly(vinyl chloride) 

RTM - Resin transfer molding 

SEM - Scanning electron microscope 

SPE - Sorbitol polyglycidyl ether 

TA - Tannic acid 

TEA - Triethylamine 

TEM - Transmission electron microscopy 

TETA - Triethytlene tetramine 

TMA - Terpene maleic anhydride   

UPE - Unsaturated polyester 

VO - Vegetable oil 

XRD - X-ray diffraction 

  

xxi 



xxiii 

 

LIST OF SYMBOLS 

wt% - Weight percent 

Td - Thermal decomposition temperature (°C) 

Tg - Glass transition temperature 

i.e. - That is 

ºC - Degree celsius 

mm/min - Millimetre per minute 

h - hour 

M - Molarity 

phr - Parts per hundred parts of resin 

rpm - Revolution per Minute 

cm - Centimetre 

nm - Nanometer 

% - Percent 

˚C/min - Degree celsius per minute 

MPa - Mega pascal 

mg - Milligram 

J - Joule 

kV - Kilovolts 

ρ - Density 

E’ - Storage modulus 

E’’ - Loss modulus 

GPa - Giga pascal 

J/m - Joule per meter 

J/m2 - Joule per meter square 

min  - Minutes 

mm - Milimeter 

N - Newton 

s - Second 

tan δ - Tan delta 

m2 - Meter square 

xxii 



xxiv 

 

kg - kilogram 

R  - Gas constant (8.314 J/K.mol) 

E - Young modulus 

P - pressure 

g/eq - Equivalent weight 

Tmax - Maximum degradation temperature 

IS  - Impact strength 

kg/L - Kilogram per liter 

KOH/g - Potassium hydroxide (KOH) per gram 

g cm-3 - Gram per cubic centimeter 

μm - Micrometer 

mm2 - Milimeter square 

Mmol/kg - Millimoles per kilogram 

mPa.s - Millipascal-seconds 

g/ml - Gram per mililiter 

ppm - Part per million 

  

xxiii 



xxv 

 

LIST OF APPENDICES 

APPENDIX TITLE PAGE  

A Calculation of crosslinking density 153 

 

 

 

 

xxiv 



 

1 

 

CHAPTER 1  

 

 

INTRODUCTION 

1.1 Research Background 

In recent years, increasing environmental awareness and growing global 

concerns towards the depletion of non-renewable resources, as well as concerns over 

the threat of global warming, have created a groundswell of interest in products 

compatible with the environment. Therefore, attention is being given to developing 

bio-based polymer resins using renewable feedstocks as a starting materials or 

blending component in the polymer resin formation as an alternative to replace the 

existing thermoset petroleum-based polymer resins such as epoxies, polyester, and 

polyurethanes. Bio-based polymers are polymer derived from natural resources such 

as sugars, polysaccharides, vegetable oils, lignin, lipids, proteins, or other monomers. 

Bio-based polymers have received a great deal of interest in their ability to replace 

petroleum based polymers in both research and industrial applications. This is due to 

their renewability, biodegradability properties, and low cost (Karak, 2012).  

Among these, vegetable oils (VOs) represent as the most important and 

promising options because of their versatility, availability, renewability and 

biodegradability properties (Saurabh et al., 2008). VOs consist of various chemical 

structure and composition which enable them to be activated for condensation 

polymerization with the addition of curing agent or with the addition of latent catalyst 

(Sharma and Kundu, 2008). Furthermore, global production of VOs has increased 

every year, making them a valuable source to produce VO-based resins, which can 

substitute for petroleum-based polymer resins. Using renewable materials to produce 

VO-based polymer can contribute to environmental sustainability.  

Vegetable oils (VOs) have diverse chemical structure and compositions that 

enable them to be used as a starting materials in the production of VO-based polymer 
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resins. There are several types of vegetable oils have used to produced VO-based 

resins, which are soybean oil, linseed oil, sunflower oil, jathropa oil, canola oil, and 

corn oil (Adekunle et al. , 2012; Alsagayar et al 2015; Roudsari, Mohanty and Misra, 

2014; Supanchaiyamat, 2012). The global production of most vegetable oil has 

increased every year. Based on data from the Food and Agriculture Organization of 

the United Nation, palm oils have the largest oil production volume and consumption 

of all vegetable oils (Food and Agriculture Organization of the United Nation, 2018). 

For example, in 2017/2018, the global production of palm oil was around 70.5 million 

metric tons. Malaysia is one of the greatest producers of palm oil in the world. Palm 

oil is primarily used for cooking in the form of cooking oil, shortening, and margarine 

as well as industrial feedstocks in the form of biodiesel fuels, paints, candles, 

cosmetics, and soap (Mba, Dumont and Ngadi, 2015). However, the potential of palm 

oil to produce VO-based resins is underreported compared to other vegetable oils such 

as soybean oil and linseed oil. Expanding palm oil applications is expected to increase 

profit returns in the agricultural sector while reducing the burden from petroleum- 

based products. Therefore, it is beneficial to use palm oil to produce VO-based 

polymer resins.  

Epoxidized palm oil (EPO) is a potential candidates as a substitution for 

petrochemical-based resin. A study on the blending epoxidized palm oil (EPO) with 

epoxy resin has been conducted by Alsagayar and his co-workers (2015). The authors 

used synthetic epoxy resin mixed with EPO and cured with synthetic amine hardener. 

Their findings show that the incorporation of EPO into epoxy resin increased the 

ductility and toughness properties, however decreased the thermal, tensile and flexural 

properties of the epoxy/EPO resin. Therefore, to facilitate more cross-linked structures 

between the palm oil and the polymer matrix, further modification of EPO is required. 

Acrylation is a common method used to further modify epoxidized vegetable oil to 

increase its reactivity and introduces more polymerizable functionalities such as 

acrylate and hydroxyl groups. Some studies have reported that the incorporation of 

acrylated epoxidized vegetable oil into polymer resin exhibited better mechanical and 

thermal properties than epoxidized vegetable oil polymer resin (Paluvai, Mohanty and 

Nayak, 2015; Saithai et al., 2013).  
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There are two main methods for producing VO-based polymer resins: the direct 

synthesis of VO and blending VO with polymer resin. The direct synthesize of VOs is 

more challenging and thus satisfactory results have not yet been reached because of its 

relatively low strength compared to petroleum-based epoxy resins that limits its 

applications (Mohanty, Misra and Drzal, 2005; Stemmelen et al., 2011; Takahashi et 

al., 2008). Several authors have reported on the blending of petroleum-based epoxy 

resins with VOs (Gogoi, Boruah and Dolui, 2015; Paluvai, Mohanty and Nayak, 2015; 

Sarwono, Man and Bustam, 2012). The partial replacement of petroleum-based epoxy 

resin with functionalized VO may produce materials with acceptable properties and a 

low overall cost with improved processability. There are many researchers that have 

reported on the blending of VOs with polymer resins such as epoxy, polyester, 

polyurethane, and poly(lactic acid) (Alsagayar et al., 2015; Auvergne et al., 2014; 

Bordes, Pollet and Averous, 2009; Chaudhari et al., 2013; Chieng et al., 2014; Pfister, 

Xia, and Larock, 2011; Roudsari et al., 2014; Stemmelen et al., 2011).   

Epoxy resin is the most commonly used thermoset in the polymer industry and 

has widely used in high performance applications in the aerospace, marine, 

automotive, and building industry (Bao et al., 2011; Jaillet et al., 2013; Mohanty et al., 

2005). This is due to its unique chemical and physical properties such as good 

mechanical properties, good electrical and heat resistance, excellent chemical 

resistance, high stiffness, low shrinkage, and excellent fiber-matrix adhesion to many 

substrates(Bao et al., 2011; Jaillet et al., 2013; Norhakim et al., 2014). However, it has 

disadvantages such as brittleness and low impact strength (Mohanty et al., 2005). 

Previous studies have proved that the incorporation of vegetable oils into epoxy resins 

may lead to a substantial improvement in toughness and brittleness properties 

(Norhakim et al., 2014; Tan and Chow, 2010; Tayde and Thorat, 2015). Higher 

amounts of VO can result in higher impact energy absorption in VO/polymer resins. 

However, the addition of VO decreases resin stiffness and thermal properties of resins 

(Sarwono et al., 2012a; Silverajah et al., 2012; Tan and Chow, 2010a). Therefore, some 

fillers need to be added to balance the toughness and stiffness performance of the 

VO/epoxy resin. 
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There are several types of nanomaterials that have been used as reinforcing 

filler for VO/polymer nanocomposites such as nanoclays, graphene, carbon nanotube, 

silica and alumina. Among these, organo modified montmorillonite nanoclay platelets 

(OMMT) is the most commonly used reinforcement fillers for polymer 

nanocomposites. This is because OMMT is natural mineral that is inexpensive and has 

a higher aspect ratio and large surface area that can provide sufficient interface 

interaction with polymer resin (Wang, 2014a). In nature, clays are hydrophilic and are 

not compatible with hydrophobic polymers. In this case, pre-treatment of clays using 

amino acids, organic ammonium salts, or tetra organic phosphonium is necessary. The 

well dispersed intercalated or exfoliated forms of nanolayer silicates for modified clays 

in vegetable oil-based polymer resin were reported allowing a slightly enhancement in 

stiffness and thermal properties at low level loadings. Therefore, this led to improve 

stiffness-toughness balance of vegetable oil/polymer resin comparable to 

commercially available synthetic neat epoxy resins (Miyagawa et al., 2004; Wang, 

2014a).  

VO/epoxy resins may be reinforced with natural or synthetic fibers to produce 

partially or fully green composites. Glass fibers are the most commonly used 

reinforcement for fiber reinforced polymer composites. Glass fibers possess excellent 

strength with less varied properties and have been extensively used in many high 

performance applications such as in the structural and marine industries. Glass fibers 

are inexpensive compared to other synthetic fibers such as carbon and aramid fibers 

and are compatible with many different materials. However, the main disadvantages 

of glass fibers is that they are produced from petroleum-based products, which are not 

a renewable resource and are not environmentally friendly.  

Recent years have witnessed a huge interest in developing other types of 

reinforcement with natural origin as an alternative to traditional synthetic fibers in 

polymer composite systems. Kenaf fibers are a commonly used natural fibers 

reinforcement for most VO-based or green polymer composites. They are inexpensive 

and have excellent characteristics such as good tensile and modulus properties 

compared to other natural fibers (Nishino, Hirao and Kotera, 2006). Kenaf fibers have 

received extra attention over man-made fibers such as aramid or carbon because they 
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are renewable, low density, non-toxic, non-abrasive, cheap, completely or partially 

recyclable, and biodegradable (Aji et al., 2009). However, natural fiber composites are 

still limited to the structural applications, owing to their poor durability, high water 

absorption, and low fire resistance properties than synthetic fiber composites 

(Muhammad et al., 2016; Ramesh, Palanikumar and Reddy, 2016). Therefore, this 

study focused to develop hybrid composites with two or more types reinforcing fibers 

in a single matrix.  

The hybridization of kenaf and glass fibers composites has received significant 

attention over single reinforcing fiber composites such as natural fiber composites or 

glass fiber composites. The inclusion of hybrid fibers in polymer composites offers a 

good compromise in terms of mechanical and thermal properties in addition to a low 

cost and reduced environmental impact (Ghani et al., 2012; Muhammad et al., 2016; 

Salleh et al., 2012). Moreover, the addition of glass fiber and natural fiber to polymer 

composites increases the mechanical properties and significantly decreases the water 

uptake of the composites (Akil et al., 2014; Silva et al., 2016).  

The moisture absorption characteristics of natural fiber are very important to 

producing good hybrid composites. The water absorption of polymer composites has 

a deleterious effect on their mechanical performance. As a result, it is essential to 

understand the moisture diffusion behaviour of polymer composites to predict long-

term performance and optimize structural design. Therefore, in this study, the effect of 

acrylated epoxidized palm oil (AEPO) and OMMT contents on the mechanical and 

thermal properties of VO/epoxy resin and its morphology were analysed. The 

mechanical, thermal, and morphological properties as well as water absorption 

behaviour of hybrid kenaf/glass fiber reinforced epoxy/AEPO filled OMMT 

composites were also investigated. It is expected the output of this research study can 

produce new composite materials that is suitable for automotive and housing 

construction applications. 
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1.2 Problem Statement 

Epoxy resin is a popular thermoset resins due to its good mechanical and 

thermal properties, excellent adhesion, low shrinkage upon curing, and its ability to be 

processed under a variety of conditions. Epoxy resin has wide applications in the 

automotive, marine, construction, and aircraft industries. However, it is produced from 

petrochemical products, which are not sustainable or eco-friendly. Continued reliance 

on this material might result in diminishing petroleum resources in the future. 

Therefore, to preserve the environment the study of VO/epoxy resin is necessary.  

There are numerous studies on the development of VO/epoxy resin. Vegetable 

oil (VO) has been reported as the most promising option for the production of 

VO/epoxy resin. However, the direct synthesis of epoxy resins from VO does not offer 

satisfactory properties due to the low strength and higher moisture absorption of the 

produced resins, which limit their applications. Therefore, blending epoxy with 

vegetable oil is required. Nevertheless, there has been no study conducted on the 

blending of epoxy resin with acrylated epoxidized palm oil (AEPO). Therefore, in this 

study the blending of epoxy resin with AEPO was studied.  

The blending of epoxy with VO has been reported on by many researchers (Pin, 

Sbirrazzuoli, and Mija, 2015; Sarwono, Man, and Bustam, 2012b; Tayde and Thorat, 

2015). They found that that the incorporation of VO into epoxy resins enhanced epoxy 

resin toughness properties and indirectly overcame the major limitations of epoxy 

resins, which are brittleness and low impact strength. However, the addition of VO 

reduces the stiffness performance of the resulting VO/epoxy resin. Therefore, the 

addition of a fiber or filler such as organo modified montmorrillonite nanoclay 

(OMMT) is required to balance the toughness and stiffness properties of the VO/epoxy 

resin. In this study, the effect of OMMT loading on the mechanical and thermal 

properties, morphology as well as water absorption of epoxy/AEPO nanocomposites 

were investigated.  

In order to produce green composites from a VO/polymer resin, it is necessary 

to use natural fibers as reinforcement. Kenaf fiber is the most common reinforcing 
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fiber used to reinforce VO/polymer composites. This is due to its lower cost and high 

specific mechanical and biodegradability properties. However, kenaf fiber exhibits 

lower mechanical and thermal properties as well as lower moisture absorption 

resistance than synthetic fiber composites. Therefore, it is important to investigate 

materials with enhanced durability properties and good thermo-mechanical 

performance.  

Previous studies have shown that the hybridization of natural fiber and 

synthetic fiber can be used to produce composites with balanced properties that could 

not be attained with a mono-fiber composites. Thus, in this study, kenaf fiber was 

hybridized with glass fiber. Glass fiber was chosen because it is relatively inexpensive 

compared to other synthetic fibers such as Kevlar and carbon fiber and it has excellent 

tensile strength, stiffness, and good corrosion resistance. In literatures, the fibers layer 

sequences have also been reported to have an important effect on the mechanical 

performance of hybrid composites. The different laminate fiber-stacking sequence is 

assumed could increase the strength, stiffness and water retention properties of the 

composites. Thus, the effect of different layering sequences of kenaf and glass fibers 

were investigated in this study.  

Nevertheless, the mechanical properties of hybrid natural fiber and synthetic 

fiber composites can be affected by moisture humidity uptake. Durability is the main 

issue for polymer composites that are used as structural materials. In order to develop 

composites that have good long term performance, it is essential to provide a basis for 

their structural design in specific environmental conditions. Hence, the study of the 

water absorption behaviour of polymer composites in distilled and salt water are 

necessary to facilitate the optimum design and fabrication of composite structures.  

In this study, the potential use of acrylated epoxidized palm oil (AEPO) as part 

of an epoxy resin in hybrid kenaf/glass fiber reinforced composites was investigated. 

To date, there has been no study on the hybrid kenaf/glass fiber reinforced 

epoxy/AEPO filled OMMT composites reported in the literature.  
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1.3 Research Objectives 

The overall objective of this study was to produce a new composite with least 

amount of synthetic materials toward green product based on acrylated epoxidized 

palm oil (AEPO) blend with synthetic epoxy resin, organo modified montmorrillonite 

nanoclay (OMMT) as nanofiller and kenaf and glass fibers as reinforcement. The detail 

of the objectives are: 

 

1. To examine the effect of acrylated epoxidized palm oil (AEPO) loading on the 

mechanical and thermal properties, morphology, as well as water absorption of 

epoxy/AEPO resins. 

 

2. To investigate the effects of organo modified montmorrillonite nanoclay 

(OMMT) loadings on the mechanical and thermal properties, morphology as 

well as water absorption of epoxy/AEPO nanocomposites. 

 

3. To study moisture absorption behaviour and its effects on the flexural properties 

of hybrid kenaf/glass fiber reinforced epoxy/AEPO filled OMMT composites as 

a function of different layering sequences and different environments (in distilled 

and salt water). 

1.4 Scopes of the Study 

To achieve the research objectives, the study scopes are as follows:  

 

1. Preparation of acrylated epoxidized palm oil (AEPO) in accordance to the 

method reported by Habib and Bajpai (2011). The functional groups present in 

AEPO were characterized by using fourier transform infrared spectroscopy 

(FTIR). 

 

2. Preparation of epoxy/AEPO resin by direct mixing of AEPO with epoxy resin. 

Amounts of AEPO added into epoxy resin were varies at 10, 20 and 30 wt%. The 
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effects of AEPO loading on mechanical properties of epoxy/AEPO resin were 

investigated by determining tensile, flexural, impact properties. The thermal, 

thermophysical, morphology and water absorption of epoxy/AEPO resin were 

characterized by using TGA, DMA, scanning electron microscope (SEM) and 

water absorption test.  

 

3. Preparation of epoxy/AEPO/OMMT nanocomposites by adding various amounts 

of OMMT content at 1, 1.5, and 2 phr. The effects of organo modified 

montmorrillonite nanoclay (OMMT) loadings on mechanical properties of 

epoxy/AEPO/OMMT nanocomposites were evaluated by determining tensile, 

flexural, impact properties. The thermal, thermophysical, morphology and water 

absorption of epoxy/AEPO/OMMT nanocomposites were characterized by using 

TGA, DMA, TEM and water absorption test. The formulation of 

OMMT/AEPO/epoxy resin with the best stiffness-toughness balance was chosen 

for composite preparation. 

 

4. Preparation of hybrid kenaf/glass fiber reinforced epoxy/AEPO filled OMMT 

composites by using hand lay-up technique. Kenaf fiber mat and chopped strand 

mat glass fibers were arranged in different laminate layers configurations for 

composite fabrication. The moisture absorption behaviour of hybrid composites 

were determined by water absorption. Two different types of water solutions 

were used: distilled water and salt water (3.5% NaCl solution). The effects of 

water absorption on flexural properties of hybrid composites as a function of 

different layering sequences and different environments (in distilled and salt 

water) were evaluated. The morphology of hybrid composites was characterized 

by using SEM. 
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