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ABSTRACT 

Surfactant alternate carbonated water (SACW) injection is a novel mode for 

enhanced oil recovery (EOR), a method to produce residual oil. This process may 

overcome the shortcomings that seriously associate carbon dioxide (CO2) injection 

such as high CO2 mobility, viscous fingering and gravity override. Combinations of 

sodium dodecyl sulfate (SDS) surfactant and carbonated water (CW) system were not 

used for EOR yet. So, SDS and CW were selected for evaluating wettability, interfacial 

tension (IFT), and displacement stability. In addition, the oil recovery factor (RF) was 

evaluated at different reservoir conditions, carbonation levels and SACW injection 

cycles scenarios. The sessile drop method was used to measure the contact angle in 

presence of CW, SDS solution and a mixture of CW and SDS at different quartz 

sandstone reservoir conditions. A sandpack model was utilised for CW, SDS, water 

flood (WF) and CO2 flood to measure the displacement instability number (Isc). The 

obtained results revealed that combinations of SDS and CW system reduce the IFT 

and contact angle. The IFT values for SDS solution with and without carbonation were 

0.2 and 2 mN/m, respectively.  The respective contact angles for SDS solution with 

and without carbonation were 32° and 21.7° at 50°C and 1500 psi. The Isc for CW and 

WF were 11.6 and 10, respectively, which are considered stable at 60°C and 2750 psi. 

On the other hand, SDS and CO2 flood processes revealed unstable displacement. 

Moreover, low pH of CW system depicted a significant change in the SDS adsorption 

on the glass beads as compared to non-CW system. The 100% CO2 content, reservoir 

temperature of 60°C and pressure of 2750 psi increased RF up to 83.05, 84.42 and 

85.22%, respectively. The highest RF was 86.58% which procured from the largest 

SDS slug scenario. In conclusion, SACW may have a positive impact on the 

recoverable oil and it can display a technical knowledge to study other techniques for 

EOR.  
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ABSTRAK 

Suntikan air berkarbonat bersilih ganti dengan surfaktan (SACW) ialah mod 

baharu untuk perolehan minyak tertingkat (EOR), kaedah untuk pengeluaran minyak 

baki. Proses ini mungkin boleh mengatasi kelemahan yang serius berkaitan suntikan 

gas karbon dioksida (CO2), misalnya pergerakan CO2 yang tinggi, jejarian likat dan 

songsangan graviti. Gabungan sistem surfaktan natrium dodesil sulfat (SDS) dan air 

berkarbonat (CW) belum pernah diguna kan dalam EOR. Oleh itu, SDS dan CW 

dipilih untuk menilai kebolehbasahan, tegangan antara muka (IFT), dan kestabilan 

anjakan. Di samping itu, faktor perolehan minyak (RF) dinilai pada keadaan reservoir 

berbeza, tahap pengkarbonatan dan senario kitaran suntikan SACW. Kaedah titis sesil 

telah digunakan untuk mengukur sudut sentuh dengan kehadiran CW, larutan SDS dan 

campuran CW dan SDS pada keadaan reservoir pasir kuarza yang berbeza. Model pek 

pasir digunakan bagi CW, SDS, banjiran air (WF) dan banjiran CO2 untuk mengukur 

nombor ketidakstabilan anjakan (Isc). Keputusan yang diperoleh menunjukkan bahawa 

gabungan sistem SDS dan CW boleh mengurangkan IFT dan sudut sentuh. Nilai-nilai 

IFT untuk larutan SDS dengan dan tanpa pengkarbonatan masing-masing ialah 0.2 

mN/m dan 2 mN/m. Sudut-sudut sentuh bagi larutan SDS dengan dan tanpa 

pengkarbonatan masing-masing ialah 32° dan 21.7° pada 50°C dan 1500 psi. Nilai Isc 

bagi CW dan WF masing-masing ialah 11.6 dan 10, yang didapati stabil pada 60°C 

dan 2750 psi. Walau bagaimanapun, proses banjiran SDS dan CO2 menunjukkan 

anjakan yang tidak stabil. Selain itu, sistem CW dengan nilai pH yang rendah 

menunjukkan perubahan yang ketara terhadap penjerapan SDS pada manik kaca 

berbanding sistem tanpa CW. Sistem dengan 100% kandungan CO2, suhu reservoir 

60°C dan tekanan 2750 psi telah meningkatkan RF masing-masing kepada 83.05%, 

84.42%, dan 85.22%. Nilai tertinggi RF ialah 86.58% yang diperoleh daripada senario 

slug terbesar SDS. Kesimpulannya, SACW mungkin boleh memberi kesan yang 

positif terhadap perolehan minyak dan ia boleh menunjukkan pengetahuan teknikal 

untuk mengkaji teknik lain dalam EOR 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Overview  

Enhanced Oil recovery (EOR) may be generally a technical term for all 

processes that utilize to enhance oil production, it can be applied after the primary 

production operations (Kokal and Al-Kaabi, 2010; Khan and Islam, 2007). In the last 

decade, EOR was received more attention mainly as a result of increasing the price of 

crude oil as well as the high significant quantities of recoverable crude oil that present 

in the reservoirs (Ko et al. 2014). In other words, all of the oil reservoirs are discovered 

might be candidate for EOR implementations as a result of the reservoirs still contain 

huge amount of crude oil (Wall and Archer, 1986). The sequences of the oil production 

scenarios follow primary depletion, secondary recovery and finally tertiary recovery 

operations (Khan and Islam, 2007). Furthermore, there is about 20 to 50% of oil that 

can be recovered by primary and secondary methods (Park et al. 2015). These methods 

are utilized in sequence. 

Consequently, the utilization of chemical materials such as surfactants and 

carbon dioxide (CO2) gas can be used for EOR (Jangda et al. 2014). The surfactant 

significantly improves oil recovery. However, the adsorption of surfactant on the 

reservoir rock decreases the amount of surfactant in the aqueous phase. Similarly, CO2 

gas has a particular effectiveness in recovering oil as well (Jangda et al. 2014). 

Chemical flooding is a common term for injection operations which utilize 

particular chemicals such as surfactants that dissolved in the injection water for a 

purpose of improving oil recovery. The tertiary recovery scheme of surfactant flood 

that has been highly pursued throughout the past decades because of its ability to effect 

on the oil-water-interfacial tension and wettability alteration of the reservoir rock from 

an oil-wet surface to water-wet surface to extract the oil that remains trapped in the 
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formation (Hou et al. 2015; Alotaibi et al. 2011). The one of the essential parameters 

of the reservoir physical property is the wettability. This parameter may have an effect 

on the aqueous phase relative permeability, oil recovery, waterflooding characteristics 

and the residual oil allocation. Therefore, several operations need to be assessed in 

order to modify the reservoir rock wettability for EOR (Thomas, 2008; Morrow, 1990; 

Golabi et al. 2012; Hou et al. 2015). Therefore, the injection of surfactant solution into 

the reservoir can reduce the interfacial tension (IFT) between brine water and residual 

oil (Rosen, 2004) from the original value of 30mN/m to about 0.001mN/m which 

causes to decrease the capillary force (Hirasaki et al. 2011). This interfacial tension 

value might split up the oil into tiny droplets that can be displaced from the rock pores 

by water. 

Carbonated water flooding is another emerging EOR technique that utilize 

limited amount of CO2 dissolved in the injection water. CO2 gas has been 

implementing in many depleting oil reservoirs across the world to improve oil recovery 

for more than 30 years (Kechut et al. 2010). There are two methods can be used for 

CO2 injection (Kechut et al. 2011). Firstly, gas-based method, in which CO2 may be 

continuously injected in one rich phase or water alternating gas (WAG) injection. This 

technique requires very large quantities of CO2. Furthermore, the CO2 supercritical 

condition is normally injected which is above the critical temperature and pressure of 

31.1 °C and 1030 psi, respectively. The secondly method is called water-base method, 

the CO2 gas may be dissolved in brine water injection firstly, thereafter, the solution 

is injected into the reservoir followed by water flooding process. This technique 

scheme is known as carbonated water injection (CWI) (Kechut et al. 2011). Currently, 

some active research pursues in this area with the rationale that CWI can reduce gravity 

segregation encountered in conventional WAG processes. In this technology, CO2 is 

dissolved in water until the solubility limit is reached depending upon pressure, 

temperature, and injection water salinity, thereafter the obtained carbonated water is 

then injected into the reservoir as EOR mode. Solubility of CO2 in water decreases 

with increasing temperatures, it increases with increasing pressures, and it decreases 

with increasing water salinities. 
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1.2 Problem Statement 

Surfactant alternating carbonated water (SACW) is a novel mode which had 

never used for EOR yet. Some significant shortcomings may seriously associate with 

the tertiary process of CO2 injection such as high CO2 mobility, and viscous fingering 

(Bakhtiyarov et al. 2007; Jangda, 2014). In addition, gravity override issue, CO2 can 

tend to move to the top of formation and override the displaced fluids as a result of 

density difference between CO2 and other fluids. Therefore, this gravity effect is 

exploited by flooding from the top of the reservoir and displacing fluids down dip. 

These problems lead to earlier breakthrough and very poor macroscopic and 

microscopic sweep efficiencies. Thus, these phenomena might cause of the residual 

oil to be inaccessible to the injected CO2 and it is trapped by water. The improvement 

of well injectivity can be developed by surfactant alternating gas injection (SAG) as a 

result of gas mobility reduction at the flood front (Farajzadeh et al. 2016). However, 

the mobility of gas is high at the displacement contact between fluids because the 

viscosity of gas is less than viscosity of surfactant solution slug. Consequently, the 

instability of free gas slug can occur at earlier life of the process which leads to viscous 

fingering becomes high at flood front, early breakthrough, low recovery factor and 

slug of gas may be dramatically collapsed due to high gas velocity (Jangda, 2014). So, 

this issue can be severed when the water and oil viscosity ratio is unacceptable. 

In addition, natural reservoir pressure depletion of trapped fluids is another 

factor that influences the oil production rate due to hydrocarbons extraction 

continuously during primary recovery method (Meyer, 2007). The natural pressure of 

the reservoir may be declined to a particular value. Consequently, the remaining crude 

oil cannot be pushed by the slug towards production side anymore (Terry, 2001; 

Donaldson et al. 1989; Park et al. 2015). This issue needs to be assessed by usually 

secondary and tertiary recoveries method such as chemical flooding process (Thomas, 

2008; Jamaloei, 2009). 

Furthermore, the high IFT between immiscible fluids of water and oil into the 

reservoir is one of the most important factors that substantially cause trapped oil into 

the pours media. Consequently, the water and oil saturations and displacement process 
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are drastically effected by IFT. On the other hand, SACW technique may overcome 

these issues and restrict the mobility of the displacing fluid. 

There is a significant surfactant adsorption on the rock surface during 

surfactant solution flooding causes to strip surfactant from the aqueous phase which 

leads to decrease the performance of the system (Iglauer et al. 2010; Park et al. 2015; 

Thomas, 2008; Jamaloei, 2009). Thus, the surfactant content into the slug may be 

lessened (Ibrahim, 2006). So, this is considered significantly unfavorable phenomenon 

as well. 

There are few published data evaluating the performance of CWI under various 

conditions and injection scenarios which are carried out under consistent experimental 

conditions. Moreover, the capacity of the CWI technique to permanently store the 

injected CO2 is still a challenge and requires more detailed studies to investigate the 

effect of various conditions on the CO2 storage capacity of CWI. 

To the best of my knowledge, the combination of sodium dodecyl sulphate 

(SDS) surfactant solution and carbonated water was selected in this study work for 

EOR purpose. For the aim, this research firstly may depict the influence of SDS 

solution and carbonated water mixture on the IFT and wettability alteration. In 

addition, the SACW was experimentally applied for packed sandstone porous media 

in order to study the effectiveness of carbonation level, reservoir pressure and 

temperature on the recovery factor. The SACW were applied to investigate the 

effectiveness of slug sizes of SDS solution and carbonated water on the oil recovery 

factor. The impact of combination of SDS solution and carbonated water on the 

recovery factor has not been comprehensively investigated yet. No reported simulation 

work or experimental study has been published for this oil recovery technique yet. It 

may depict a positive impact for EOR. Furthermore, the reasonable CO2 solubility 

range into the injection brine water needs to be achieved when CW utilizes for EOR. 

An experiment study of SACW process for a sandpack sample should thus be 

undertaken in order to indicate if the proposed EOR is technically feasible. 
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1.3 Objectives  

Based on the above referred problem statements, consequently, the objectives 

of this research are as follows: 

1. To determine the wettability behaviour, IFT reduction and instability 

displacement of surfactant and carbonated water system at reservoir 

conditions.     

2. To evaluate the feasibility and oil recovery efficiency of SACW flooding 

in quartz sand porous media.  

3. To determine the optimal oil production strategy using different SACW 

injection scenarios.   

 

1.4 Scope of Research Study 

To achieve the objectives, the scope of this study included the following: 

1. Interfacial tension measurement was carried out in room condition since 

there is no suitable equipment that can be used to determine the IFT in 

reservoir conditions. A set of carbonated water was prepared in high 

pressure and temperature condition’ and the pressure’ were gradually 

decreased until room conditions. Therefore, the determination of IFT 

between oil and brine water was conducted with different surfactant 

concentrations and different salinity concentrations of 10,000, 20,000 and 

30,000 ppm at ambient condition. In addition, the determination of IFT 

between oil and carbonated water was conducted with different surfactant 

concentrations and different salinity concentrations such as 10,000, 20,000 

and 30,000 ppm at ambient condition. 

2. Determination of surface tension of brine water was carried out with 

different surfactant concentrations and different salinity concentrations of 

10,000, 20,000 and 30,000 ppm at ambient condition. 
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3. The investigation of fluid displacement instability index such as water 

flooding, surfactant flooding, carbonated water flooding and CO2 gas 

flooding was conducted at reservoir conditions. 

4. The sessile drop method was used for wettability measurements as follows: 

a) The contact angle between crude oil, carbonated water and quartz 

sandstone was investigated at several temperatures (40°C, 50°C and 

60°C), but at constant salinity and pressure of 30,000 ppm and 2000 

psi, respectively. In addition, contact angle was measured at saline 

water concentrations of 30,000 ppm and 10,000 ppm, while 

temperature and reservoir pressure were constant at 40°C and 2000 psi 

respectively. 

b) The contact angle between crude oil, carbonated water and quartz 

sandstone was measured at several concentrations (0.0%, 50% and 

100%) of carbonation level, but at constant temperature, salinity, and 

reservoir pressure of 60°C, 30,000 ppm and 2000 psi, respectively. 

d) The contact angle between crude oil, carbonated water mixed with 

solution of SDS concentration of 0.01wt% and quartz sandstone was 

examined at temperature of 40°C, 50°C and 60°C, salinity of 30,000 

ppm and reservoir pressure of 1500 psi. In addition, a new model was 

generated for this work. 

5. The oil flow rate and oil recovery factor were investigated during SACW 

and the effectiveness of some important parameters on improvement oil 

recovery factor were studied as follows: 

a) CO2 concentration effect was run at 0.0, 50, 100% 

b) Reservoir pressure effect was run at 1500, 2100 and 2750 psi 

c) Reservoir temperature effect was run at 40°C, 50°C and 60°C 

d) Tertiary mode effect of SACW cycles: 

i. First experiment: (Three cycles, each cycle contains slug size 

ratio of 0.25PV CW and 0.75PV surfactant) 

ii. Second experiment: (Three cycles, each cycle contains slug 

size ratio of 0.50PV CW and 0.50PV surfactant) 

iii. Third experiment: (Three cycles, each cycle contains slug 

size ratio of 0.75PV CW and 0.25PV surfactant) 
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1.5 Significant of the Study  

Since the SACW is a new technique and may viable option for EOR. Therefore, 

this proposed study intends to exhibit the ambiguity about dependence of oil recovery 

on SACW cycles particularly at different CO2 ratios in water (GWR) and to assess the 

ability of the process to produce a tertiary oi1 recovery from a sandpack core sample. 

In addition, the purpose of flooding cycle schemes is to reduce CO2 velocity into pore 

space which leads to improve areal and vertical sweep efficiency and may procure the 

greatest potential impact on recovery factor (Pritchard and Nieman, 1992). 

Consequently, this study shall depict to what extend the effective of this process for 

incremental oil recovery. 

Moreover, carbonated water has additional values in addition improving 

residual oil recovery. An added positive merit on carbonated water is the process of 

storing CO2 gas that contained in the carbonated water into rock formation. The 

process of sequestration of CO2 into a mineral solid would be done simultaneously 

with the introduction of carbonated water. Thus, this becomes another option of carbon 

capture and storing which ideally improve both oil recovery and nature conservation. 

This significance of carbonated water injection will surely become a factor of 

attraction in application of carbonated water in maturing field. 

In addition, the use of SACW injection for EOR purpose is a new task in 

petroleum engineering and it needed to be examined and validated prior to it 

implemented in a full field scale. SACW usage for EOR faces with a huge question 

that is how combination of carbonated water and surfactant solution has an advantage 

for EOR process. This depicts that CO2 is trapped into the porous media which causes 

water/oil IFT reduction and oil mobilization at low saturation. So, the residual oil 

saturation is effectively reduced. Therefore, these phenomena may enhance surfactant 

flooding and reflect a positive impact on the surfactant solution performance instead 

of additional any other chemicals. Therefore, the SACW might be undertaken in order 

to diminish surfactant amount and to avoid utilizing chemical materials that associate 

surfactant flooding such as alkaline and polymer. 
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