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ABSTRACT 

The ongoing discussion on the use of Naturally Ventilated Double Skin Façade 

(NVDSF) has been propelled by continuous advancements in building envelope 

design. Existing studies on NVDSF include the impacts of cavity depths, glazing types 

and wall types on the thermal performance of the building. However, only a few 

studies have focused on its cooling load, heat transferred and the building Overall 

Thermal Transfer Value (OTTV). Therefore, this research evaluated the impacts of the 

NVDSF design parameters such as window-to-wall ratio (WWR), cavity depth (CD) 

and glass shading coefficient (SC) on heat transfer and cooling load and developed a 

dataset of correction factors to calculate OTTV for buildings with NVDSF for four 

cardinal orientations (east, north, south and west). An experiment was carried out using 

a simplified 5-storey air-conditioned commercial office building with a total area of 

5,760-meter square as the base-case model. Computer simulations were conducted 

using DesignBuilder v5.0.1.024 with EnergyPlus v8.3 simulation engine. The 

validation test conducted by comparing measured cavity air temperature with the 

simulation results showed that the software simulation is in good agreement with the 

measured data. Analysis of the study results revealed that naturally ventilated double 

skin façade was effective to minimize the solar heat gain and thermal transmittance. 

Proper combination of appropriate outer and inner glass panels will significantly 

reduce the solar heat gain as well as the resulting cooling load. The simulation model 

case with 0.2 m cavity depth outperformed all other tested cavity depths (0.2m, 0.4m, 

0.6m and 0.8m) both in value of heat transferred and cooling loads reduction. 

Furthermore, the study showed that heat transmitted through both single skin façade 

and NVDSF will increase as window to wall ratio and the glass shading coefficient 

increases. The findings corroborate the fact that a carefully designed NVDSF would 

save a considerable amount of building energy use in hot humid climate. Based on 

analysis of the simulation results, the study concludes by generating a set of 8192 

correction factors to calculate the OTTV of buildings with NVDSF in Malaysia. These 

correction factors are expected to ease the designer’s burden of simulation and speed 

up the construction documentation process for building with NVDSF as OTTV 

become a compulsory requirement for construction approval in Malaysia. 
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ABSTRAK 

Perbincangan berterusan tentang penggunaan Fasad Pengudaraan Semulajadi 

Dua Lapis (NVDSF) telah membawa kemajuan yang berterusan dalam reka bentuk 

luaran bangunan. kajian sedia ada NVDSF termasuk impak kedalaman rongga, jenis-

jenis kaca yang digunakan di tingkap bangunan dan jenis dinding terhadap prestasi 

haba bangunan. Namun begitu, hanya beberapa kajian memberi tumpuan kepada 

beban pendinginan, pemindahan haba dalam bangunan dan Nilai Keseluruhan 

Pemindahan Haba (OTTV). Oleh itu, kajian ini menilai impak parameter reka bentuk 

NVDSF seperti nisbah tingkap ke dinding (WWR), kedalaman rongga (CD), dan 

pekali kegelapan kaca (SC) pada pemindahan haba dan, beban pendinginan, dan 

merangka sebuah dataset faktor-faktor pembetulan untuk mengira OTTV terhadap 

bangunan-bangunan yang mempunyai NVDSF dari empat penjuru orientasi kardinal. 

(Utara, Selatan, Timur dan Barat). Satu eksperimen telah dijalankan di sebuah 

bangunan komersial lima tingkat yang mempunyai penghawa dingin dengan keluasan 

5,760 meter persegi sebagai model kes asas. Simulasi dalam komputer telah dijalankan 

dengan menggunakan aplikasi DesignBuilder v5.0.1.024 bersama enjin simulasi 

EnergyPlus v8.3. Ujian Pengesahan telah dijalankan melalui perbandingan suhu udara 

rongga bangunan yang diukur dengan hasil simulasi menunjukkan hasil simulasi dan 

hasil data di bangunan mempunyai keputusan yang sama. Analisis hasil kajian 

menunjukkan bahawa Fasad Pengudaraan Semulajadi Dua Lapis berkesan untuk 

mengurangkan penangkapan haba solar dan penghantaran haba dalam bangunan. 

Kombinasi yang sesuai antara panel kaca luaran dengan dalaman akan mengurangkan 

penangkapan haba solar dengan berkesan serta dapat menambahkan beban 

pendinginan. Model Simulasi yang mempunyai rongga yang mempunyai kedalaman 

0.2 m lebih berkesan berbanding kedalaman yang lain (0.2 m, 0.4 m, 0.6 m, 0.8 m) 

dalam nilai penghantaran haba dan pengurangan beban pendinginan. Selain daripada 

itu, kajian ini menunjukkan bahawa penghantaran haba melalui fasad satu lapis dan 

NVDSF akan meningkat dengan meningcat nya nisbah tingkap ke dinding dan pekali 

kegelapan kaca. Hasil kajian ini menyokong fakta bahawa NVDSF yang direka bentuk 

secara teliti dapat memberi penjimatan tenaga di dalam bangunan yang berada dalam 

iklim panas dan lembab. Berdasarkan analisis hasil simulasi, kajian ini memberi 

kesimpulan dengan, menghasilkan satu set sebanyak 8192 faktor pembetulan untuk 

mengira OTTV bangunan yang mempunyai NVDSF di Malaysia. Dengan yang 

demikian, cabaran dalam mengira OTTV bangunan yang mempunyai NVDSF dapat 

disingkirkan walaupun indeks pengukuran untuk OTTV menjadi keperluan wajib 

untuk kelulusan pembinaan di Malaysia. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Introduction 

This thesis focuses on exploring the potential and application of Naturally 

Ventilated Double Skin Façade (NVDSF) in Malaysian building industry, to improve 

the commercial building energy consumption by reducing the Overall Thermal 

Transfer Value (OTTV). This Chapter presents the research background, problem 

statement, research gap, questions, objectives, scope, limitation, significance and the 

structure of the study. 

1.2 Research Background 

The primary goal of building from human history has been to protect man from 

weather element. The building envelope, comprising of the facade and the roof are the 

elements that shields the indoor space from the outside climatic conditions (Straube, 

2006a) and (Straube, 2006b). However, the conventional understanding of building 

envelope performance keeps changing as the construction materials and method 

changes due to advancement of technology and innovation. The inherent functional 

requirements of a building envelope are becoming more elaborate, from simply being 

durable and able to control climatic elements to other requirements that include, energy 

efficiency, carbon footprint control, fire safety and thermal comfort capacity (Kesik, 

2016). Building envelope is therefore the building component with solar heat 

management role, providing the necessary cooling and heating control without 

compromising the required aesthetics (Sadineni, Madala, Boehm, 2011). Balancing 

this condition is crucial for efficient functioning and performance of the building. 
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The emergence of modern architecture brought about a rapid increase in high 

rise buildings with glass façade. Both the postmodern and international architectural 

style are mostly characterized by the glass façade envelope which comes with its 

related cooling and heating energy issues – heat loss during the winter and solar gain 

during the summer, though it provides not only a good aesthetic view but also offer 

occupants an opportunity to take advantage of exterior views and potential natural 

ventilation (Elkadi, 2006). With this emerging building energy-use reduction as a 

major concern, the search for better approach to improve the energy efficiency of 

buildings has intensified (Hien et al, 2005; Santamouris, 2010). As a result, building 

design strategies to improve the energy performance using different shading designs, 

such as overhangs (Ossen, 2005; Lee and Tavil, 2007) and venetian blind (Simmler 

and Binder, 2008). 

Also, responsive facade technologies have been developed for high-end office 

buildings (Wigginton, 2002) in which the designers integrate additional building 

services into the facade system. By using building envelope systems can interact with 

the environment thereby reduce the amount of supplementary heating or cooling 

needed to maintain the indoor comfort (Azarbayjani, 2002). Different façade designs 

have demonstrably shown to vary in its performance with respect to their location. For 

example, the facade design requirements of building in tropical climate compared to 

buildings in cold and temperate climate differ significantly. As envelope designs of 

many commercial buildings in Malaysia follow the lead of modern architecture style 

on full glass facade which potentially lead to high energy use to provide a comfortable 

indoor environment, design strategies such as external or internal shading devices, 

Double Skin Facade (DSF) have been considered to be a better alternative (Baharvand 

et al., 2012; Sánchez et al., 2017; Aziiz et al., 2018). 

Architects have adopted DSF for different purposes ranging from aesthetics, 

thermal comfort enhancement, acoustic insulation purpose, fire insulation and indoor 

light enhancement in some cases (Alavedra et al., 2003, Chow, 2013, Gavan et al., 

2010). Figure 1.1 summarises a number of user’s requirements for DSF adapted from 

different existing studies. Kalyanova (2008) and Ghaffarianhoseini et al. (2016) 

among many others also identified various advantages of DSF and its structure for 
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building performance. The 1.2 m ventilated double-glazed facade incorporated on the 

Securities Commission building in Malaysia is designed for multipurpose function that 

include walkaway space, maintenance purpose and acoustic buffer zone (Xin and Rao, 

2013).  

 

Figure 1.1 User’s requirements for NVDSF  

The concept of DSF system has been explored by many authors (Poirazis, 

2004). Saelens (2002) defines DSF on the basis of the envelope’s construction, the 

transparency of the façade surfaces and the cavity airflow.  Parra et al. (2015) in 

another study defines DSF as “a building typology consisting of two skins (a glazed 

outer layer and either a glazed or mixed inner layer) placed in such a way that air 

flows in the intermediate cavity. The cavity air ventilation (either natural or 

mechanical) is used for evacuating the radiative heat absorbed by the façade elements. 

The outer glazed skin can be single glazing or double glazing units with a distance 

from 20 cm up to 2 m from the inner skin. Sometimes, for radiation protection, solar 

shading devices are placed inside the cavity’’. Both mechanically ventilated DSF 

(Aleksandrowicz and Yezioro, 2018) and naturally ventilated DSF (Sánchez et al., 

2017) have been tested to perform well in warm or hot climate. Not only has ventilated 

double skin façade been studied in the tropical climate like Malaysia and Indonesia 

(Mulyadi, 2012; Baharvand et al., 2012; Rahmani et al., 2012), its application on the 

Securities Commission building and the recently completed Suasana PjH (Putrajaya 

Lot 2C5) indeed shows that NVDSF is becoming popular in Malaysia.  

Similarly, Overall Thermal Transfer Value (OTTV) was adopted as a voluntary 

measuring index to evaluate facade’s annual thermal performance with respect to its 
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solar heat transmission (Malaysia Standard 1525). The tool has since its adoption 

undergone series of reviews (Kannan, 1991; Deringer & Busch, 1992 and MS 

1525:2007). Selangor Uniform Building Amendment (No. 2) By-Laws 2012 states the 

provision for OTTV and Leong (2017) discussed incorporation of OTTV in the 

Uniform Building By-Law (UBBL) for necessary enforcement. The UBBL 

amendment under consideration stipulates that a ‘‘new or renovated non-residential 

buildings with air-conditioned space exceeding 4,000 square metres shall be designed 

to meet the requirements of MS 1525 with regards to OTTV (50 W/m2) and the roof 

thermal transfer value” (Malaysia, 1984; Selangor Uniform Building (Amendment) 

(No. 2) By-Laws 2012; Leong, 2017). This is to ensure that non-residential building 

with air-conditioned spaces adhere to this standard by reducing its environmental 

impact, the results of which aligns with the eleventh Malaysian eleventh plan on 

pursuing green growth for sustainability and resilience in Malaysia (M.M.E.A., 2015).  

Awawdeh and Tweed (2014) explained that the performance of a building 

envelope system can be assessed by either adopting a performance-based evaluation 

tool which provides systematic evaluation approach or by comparing the performance 

of the building under consideration to that of a standard building using key 

performance indicators such as annual energy consumption of the buildings per floor 

area. The assessment can be achieved by comparing the building to a target value 

which represents the maximum energy budget building. However, in the context of the 

present study the existing performance base method – OTTV is applicable in Malaysia. 

1.3 The Problem Statement 

Previous studies on surveys and building energy audits of office buildings in 

Malaysia showed a more than 40% carbon gases contribution to the overall greenhouse 

gas (Zakaria et al., 2012; Hassan et al., 2014), most of which is as a result of high 

energy use due to cooling load. Therefore, the works of Ossen (2005), Xin and Rao 

(2013), Lau et al. (2016) and Ariffin (2016) represent examples of a continuous 

exploration of different architectural design strategies to mitigate emissions from 

buildings by reducing its energy use and ensure thermal efficiency. Similarly, the 
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studies of Baharvand et al. (2012) and Rahmani et al. (2012) on DSF supports the 

claim that NVDSF can substantially reduce cooling load and improve building thermal 

performance. 

However, considering all the parameters in the existing Malaysian OTTV 

formula which include the window-to-wall ratio (WWR), transmittance of wall (Uw), 

and fenestrations (Uf), shading coefficient (SC), solar factor (SF), wall absorption (α), 

the coefficient of temperature deference between wall (ΔT) and fenestration (DT), an 

extra parameter is introduced by the stack effect created in the cavity of a naturally 

ventilated double facade system. Oladokun (2015) of Green Earth Solution (GEDS) 

Sdn. Bhd confirmed the challenge to calculate OTTV for building with DSF during a 

Green Building Index Facilitator’s training in Kuala Lumpur. Also, one of the site 

Architects of the newly completed Suasana PjH complex raised similar issue during a 

site visit, stating that existing Malaysian OTTV formula (Equation 1.0) fall short to 

accurately calculate OTTV for building with NVDSF (Mohammed, 2017).  Figure 1.2 

illustrates an example of a fully glassed hypothetical building exposed to both direct 

and indirect solar radiation with potential of high OTTV. The impact of the parameter 

introduced by the cavity stack effect is illustrated in the next section. 

 

Figure 1.2 The need for NVDSF: Hypothetical fully glazed office building with 

impact of direct sunlight. 
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1.4 Research Hypothesis 

From existing theory and reviews, NVDSF provides sun shading from both 

direct and diffused solar radiation which in turn helps to reduce the transmitted solar 

heat gain into the building. The stack effect illustrated in Figure 1.3 introduces another 

parameter into the situation compared to the scenario presented in Figure 1.2. This 

additional parameter is potentially missing in the existing Malaysian OTTV formula. 

Therefore, the hypothesis of this thesis is that calculating OTTV for building 

incorporated with ventilated double skin façade will require a Correction Factor (CF) 

to multiply the existing formula given in the Malaysia Standard (MS 1525: 2014) as 

shown in Equation 1.1 (Chan & Chow, 2013). 

 

Figure 1.3 The research problem: Hypothetical office with NVDSF and the 

challenge to calculate OTTV. 

𝑂𝑇𝑇𝑉𝑊 =  15𝛼(1 − 𝑊𝑊𝑅)𝑈𝑊 + 6(𝑊𝑊𝑅)𝑈𝑓 + (194 ∗ WWR ∗ SC)            (1.0) 

𝑂𝑇𝑇𝑉𝐷𝑆𝐹 =  [15𝛼(1 − 𝑊𝑊𝑅)𝑈𝑊 + 6(𝑊𝑊𝑅)𝑈𝑓 + (194 ∗ WWR ∗ SC)]𝑋        (1.1) 

The function ‘X’ in equation 1.1 represents the impact of the constant air-flow through 

the cavity of the NVDSF. This correction factor multiplied with the result from OTTV 

of Single Skin Façade (SSF) calculates the corresponding OTTV for building 

incorporated with NVDSF (Chan & Chow, 2013). 
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1.5 The Research Questions 

The leading assumption in this study as discussions about the application and 

efficiency of NVDSF in Malaysia context grow among researchers is that thermal 

performance of buildings with NVDSF would be better than that with SSF. However, 

it is important to consider the challenge of calculating the OTTV being one of the 

building design submission requirements by authority. Therefore, the main research 

question can be posed as follows:  

Is the existing OTTV formula given in the MS 1525:2014 suitable for buildings 

incorporated with NVDSF? The following driving questions will be addressed to 

provide an answer to the main question: 

i. What are the parameters required for calculating building OTTV? 

ii. What is the impact of window-to-wall ratio (WWR) on transmitted solar heat 

gain and OTTV of a building with NVDSF? 

iii. What is the impact of shading coefficient (SC) on OTTV of a building with 

NVDSF? 

iv. How does the air-flow through the cavity of a NVDSF impact the solar 

transmission on cardinal orientation? 

v. What is/are the correction factor(s) required to calculate the OTTV for 

commercial buildings with NVDSF in hot-humid climate?  

1.6 The Research Gap 

Table 1.1 below presents the summary of the some of the literature review that 

are related to this present study. These studies include evaluating the performance and 

optimization of various envelop design elements of DSF to either achieve a lower 

energy use, enhance indoor ventilation or to evaluate the OTTV of other of façade 

design. However, only few researchers discussed OTTV of a double skin façade. 
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Literature review shows that there are many studies on the potential of different 

kinds of DSF and their advantages (Poirazis, 2004, Gratia, and De Herde, 2007). The 

design and construction of the Securities Commission building with a 1.2m cavity in 

Malaysia marked the early adoption of DSF in the Country and provided grounds for 

more studies on the viability of the façade system. However, the studies submitted by 

both Rahmani (2012) and Baharvand (2012) only go so far to consider the indoor air 

temperature of an office and classroom attached to a ventilated DSF respectively, but 

no explicit work on DSF’s impact on both cooling loads and Overall Thermal Transfer 

Value.  

Similarly, the study conducted by Nikpour et al. (2012) on overall thermal 

transfer value focused on the impact of self-shading on solar heat transmission through 

the façade by evaluating the building OTTV in Malaysia. Yet, they do not cover the 

impact of a ventilated second skin and its various design parameters on the resulting 

OTTV.   

The study presented by Chan and Chow (2014) covered the OTTV calculation 

of building with DSF where a series of correction factors were developed. This study 

provided the necessary insight for the present study although the solution it provides 

is not applicable in Malaysia because of climate differences. For instance, Hong Kong 

has four seasons and the use of air conditioner runs from April through October unlike 

in Malaysia. Also, the Hong Kong version of overall thermal transfer value considers 

only the solar radiation through fenestration and the conduction through opaque wall 

while the conduction through fenestration is considered insignificant. Whereas, the 

Malaysian OTTV version adequately considers all forms of solar transmission 

(conductive and radiative) through facade components. Therefore, this thesis attempts 

to focus on the making OTTV calculation of building integrated with NVDSF easier 

in Malaysia and the general concept employed in the present study will not only be 

applicable in Malaysia but would also be useful for similar climatic hot and humid 

regions. 
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Table 1.1 Summary of previous researches related to DSF, building energy use 

and OTTV 

Researcher(s) 
Climatic 

Zone 

Objective 

(Parameters) 
Methodology Result/limitation 

Pomponi, 

Barbosa and 

Piroozfar (2017) 

Cold and 

Humid; 

warm and 

humid 

 

To compare the possible 

thermal comfort in 

building model with a 

DSF in cold and warm 

climates. 

IES-VE and CFD was 

used to determine & 

assess indoor thermal 

conditions. 

The results from this study 

indicate that careful design of 

DSF can enhance natural 

ventilation, reduce energy 

demand and CO2 emission. 

Andelković et al., 

(2014) 

Temperate The study was designed 

to investigate natural 

ventilation potential in a 

multi-storey naturally 

ventilated DSF. 

Measured data from an 

experimental setup on 

the NE orientation 

The results show that a double 

skin facade does not necessarily 

reduce energy consumption 

except when it is carefully 

designed. 

Chan & Chow 

(2013) 

Sub-Tropical 

 

Calculation of the 

Overall Thermal 

Transfer Value of 

building with green 

roof 

Data from an existing 

building case was 

collected for energy 

simulation validation 

purpose  

Overall Thermal Transfer Value 

formula for building with green 

roof is developed. However, the 

researcher noted that the results 

viability should be verified in 

another climate. 

 Joe et al. (2013) Temperate To evaluate the 

performance of a 

multi-storey building 

integrated with DSF 

system 

The researcher 

compared measured 

data from the target 

building to parametric 

simulation results 

The simulation data showed a 

15.8% and 7.2% reduction of in 

cooling and heating loads 

respectively 

Hamza (2008) Hot arid 

climate 

To Compare the 

performance of a SSF 

building with DSF 

system 

The methodology 

involves simulation of 

a generic building 

space with an Air-

conditioner. 

The result indicates that a 

reflective glass in a double skin 

facade system outperforms a 

single skin façade with reflective 

glass in arid climate context.  

Baharvand et al., 

(2012) 

Hot and 

Humid 

 

To examine the 

integration of DSF and 

solar chimney to 

enhance internal air 

velocity. 

DesignBuilder CFD 

was used to simulate 

the natural ventilation 

of selected classroom 

Provides possibility to enhance 

internal natural ventilation with 

integration of DSF and solar 

chimney if proper optimizations 

have been implemented. 

Rahmani et al. 

(2012) 

Hot and 

Humid 

 

To determine the 

impact of different 

cavity depths on indoor 

air temperature of 

building with DSF. 

Flovent CFD 

simulation of air-

conditioned building 

used in the study.  

Increasing the cavity size up to 

one meter reduces solar heat 

gains in the building, the DSF has 

its efficiency reduced, 

overheating and cost. 

Nikpour et al. 

(2012) 

Hot and 

humid 

To evaluate the OTTV 

of self-shaded building 

in Malaysia context, in 

relation to the building 

energy use.   

Experimental and 

analytical approaches 

The result shows that self-shaded 

building results in a much lower 

OTTV and hence lower energy 

building use.  

Vijayalaxmi 

(2010) 

Varies: 

temperate, 

Hot and 

Humid 

 

To review the Overall 

Thermal Transfer Value 

concept and discuss 

both the significant and 

limitations 

Calculation of Overall 

Thermal Transfer 

Value of chosen 

building case. 

The research observed that 

overall thermal transfer value 

must be defined in reference to 

the local context to avoid errors. 

Also, the study suggests that 

Overall Thermal Transfer Value 

should be considered at pre-

design stage for better efficiency 

and application. 
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1.7 The Research Objectives 

The goal of the research is to dive deeper into the ongoing discussion about the 

application of NVDSF in Malaysia by assessing and evaluating the impact of the 

ventilated double skin façade in reducing the solar heat transmission into the building. 

Thereby develop a set of correction factor for calculating the OTTV of buildings 

incorporated with NVDSF in Malaysia. 

Other specific objectives of the study are as follows: 

i. To determine the important parameters for calculating OTTV of conventional 

façade.  

ii. To evaluate the impact of window-to-wall ratio (WWR) on transmitted solar 

heat and OTTV of a NVDSF. 

iii. To evaluate the impact of shading coefficient (SC) on OTTV of a NVDSF 

model. 

iv. To evaluate the effect of air flow through the cavity of NVDSF on solar 

transmission on cardinal orientation. 

v. To develop a series of correction factor to calculate OTTV of Malaysian 

commercial building integrated with NVDSF.  

1.8 The Research Scope and Limitation 

Most of the reviewed literature point out many justifiable reasons for DSF 

application in Malaysian context with respect to its thermal comfort and performance 

potential (Ramani, 2012 and Bahavard, 2013). The recently completed Suasana PJH 

(Putrajaya Lot 2C5) complex and the envelope design features affirms that. Therefore, 

it is crucial to ease the OTTV calculation process for this kind of facade design for 

designers to meet the present-day design documentation requirement. This research 

scope focuses on the impact of cavity air flow on OTTV of building incorporated with 

NVDSF under Malaysia climate context. 
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The thermal performance evaluation and analysis in this study focus on the 

amount of solar heat transmitted through two types of building facades: the single skin 

facade and NVDSF. While there are many variables that could impact the solar heat 

transmission through the components of either SSF and NVDSF, this research analysis 

is limited to the impact of window-to-wall ratio, the glazing material’s shading 

coefficient and the incorporated cavity depths on four orientations (East, West, North 

and South) of the building model. 

Apart from the solar heat transmission, the impact of air flow through the cavity 

of NVDSF on cooling load and the corresponding OTTV is also evaluated using the 

chosen simulation tool by comparing the results. However, the air temperature, 

humidity as it relates to occupants’ thermal comfort in the office spaces is not dealt 

with in this thesis. The mechanical operating system remains constant in all the tested 

cases for both daily and annual simulations. The working schedule for the office is 

considered from 9.00 hour to 17.00 hour. 

A simple generic open-plan office model was selected for the experiment to 

capture the solar transmission through the façade of different orientations. The energy 

and OTTV analysis of NVDSF case is performed and discussed in reference to that of 

the base case. The base case is designed to replicate the model used by Kannan (1991) 

in the development of existing OTTV formula as much as possible. These assumptions 

are adopted to simplify the calculation process.  

1.9 Significance of Study 

The goal of this study is to demonstrate the effect of ventilated double skin 

façade with respect to lowering the building cooling load and reducing the calculated 

OTTV. The study is also expected to produce a database of correction factors from 

which professionals designing buildings with NVDSF can select for easy calculation 

of the OTTV as required in Malaysian Standard (MS 1525:2014; Selangor Uniform 

Building (Amendment) (No. 2) By-Laws 2012; Leong, 2017). 
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Furthermore, this study is expected to add to existing body of knowledge on 

the subject both locally and beyond. The research results will provide additional value 

to existing building design standard in Malaysia as it relates to building integrated with 

NVDSF. Achieving this goal would contribute towards achieving the sustainable 

development aspect of the eleventh Malaysian plan which includes providing 

sustainable buildings with minimal impact possible on the environment (MMEA, 

2015). Finally, this research output is expected to be of value to building authorities 

that is responsible to either develop or improve existing building energy standards for 

better energy efficiency as well as to other construction professionals who are 

responsible for submitting construction documents to approving authority.  

1.10 Thesis Structure 

The thesis is structured into six chapters and the summary is given below: 

Chapter one presents the background issues of this research which includes: 

the research problem statement, the research gap, research objectives and questions, 

the identified research hypothesis. Also, the chapter discuss the scope and limitations 

to the study. The Chapter conclude with the significant of study and the overall 

structure of the thesis. 

Chapter two is divided into four sections that generally explore the issues 

around building envelope thermal performance and the evaluations. Section one 

reviews the evolution of building envelope and how its functional requirements have 

changed over the years. Also, the Double Skin Façade background, its classifications 

based on cavity ventilation mode and the cavity partitioning are reviewed. In section 

two, the principle of heat transfer through envelope components and how the physical 

properties of these components affect the envelope overall thermal performance is 

reviewed. Section two also presents a quick review mode of heat gain in building that 

may impact building cooling load. With focus on NVDSF and its thermal performance, 

a quick review of previous studies on NVDSF is also presented to identify façade 

parameters that researchers have considered important. An extensive review of 
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different methods employed by researchers to evaluate thermal performance of 

NVDSF is presented in section three. In section four, a review of commercial building 

energy standards is presented, with focus on Malaysian standard to understand the 

state-of-the-art on overall thermal transfer value. 

Chapter three is designed to describe the research methodology for this study. 

Therefore, the first section presents the process and validation result of the chosen 

simulation tool (DesignBuilder) identified in Chapter two. The statistical tool selected 

for the validation is also discussed. Models employed in existing studies are presented 

leading to the definition and development of a simplified commercial building Base 

Case (BC) with NVDSF model cases. Also, section three presents the characteristics 

and the simulation assumptions employed in this study along with the construction 

materials and thermo-physical properties for the chosen model. DesignBuilder (DB) 

simulation procedure, the software setup and the results analysis criteria are finally 

presented in section four of this Chapter. 

Chapter four presents the results and analysis of daily solar heat transmitted 

through the model facades. Also, the impact of incorporated ventilated cavity on the 

base case daily solar heat gain is evaluated and presented from the data obtained from 

NVDSF model daily simulation. The following simulation results are analysed: 

1. The impact of window-to-wall ratio on daily solar transmission through 

the building façade, 

2. The impact of shading coefficient on daily solar transmission through the 

building façade, 

3. The impact of NVDSF on daily solar transmission through the facade 

system into the building. 

4. The relationship between cavity depth and the daily solar heat 

transmitted through NVDSF. 

Chapter five presents the annual simulation results of both base case and 

NVDSF models with focus on identified parameters to achieve the main objectives of 
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this thesis. This Chapter is presented in four sections: section one presents the annual 

heat transmission, the cooling load and the OTTV of building with conventional 

facades. The results of the correlation study that would help to understand the 

relationship between the amount of annual heat transfer through the facade and the 

corresponding OTTV is presented in section two. The effect of ventilated cavity on 

annual cooling load of models with NVDSF on the cardinal orientations is presented 

in section three. Finally, section four discusses the correction factors (CF) developed, 

the validation result of the CF and conclude with how these factors can be used to 

calculate the needed OTTV for building with NVDSF. In summary, the following 

parameters is evaluated: 

1. The effect of different window-to-wall ratio on annual heat gain and 

cooling load, 

2. The effect of glass shading coefficient on both annual cooling load and 

solar transmission, 

3. The effect of ventilated cavity on both annual solar heat gain and cooling 

load, and 

4. The relationship between the annual solar heat gain by conventional 

façade and the corresponding OTTV. 

Chapter six presents a general overview of the research. The set-out objectives 

along with the questions posed in Chapter one is reviewed to present the thesis 

conclusion and contributions. The Chapter also identify possible directions for future 

research and recommendation on the study’s findings. 
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