
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 1, 2020

570 | P a g e

www.ijacsa.thesai.org

Stemming Text-based Web Page Classification using

Machine Learning Algorithms: A Comparison

Ansari Razali1, Salwani Mohd Daud 2

Faezehsadat Shahidi4

Department of Informatics FTIR

Universiti Teknologi Malaysia

Kuala Lumpur, Malaysia

Nor Azan Mat Zin3

Faculty of Information Science & Technology

Universiti Kebangsaan Malaysia

Bangi, Selangor

Malaysia

Abstract—The research aim is to determine the effect of

word-stemming in web pages classification using different

machine learning classifiers, namely Naïve Bayes (NB), k-Nearest

Neighbour (k-NN), Support Vector Machine (SVM) and

Multilayer Perceptron (MP). Each classifiers' performance is

evaluated in term of accuracy and processing time. This research

uses BBC dataset that has five predefined categories. The result

demonstrates that classifiers' performance is better without word

stemming, whereby all classifiers show higher classification

accuracy, with the highest accuracy produced by NB and SVM at

97% for F1 score, while NB takes shorter training time than

SVM. With word stemming, the effect on training and

classification time is negligible, except on Multilayer Perceptron

in which word stemming has effectively reduced the training

time.

Keywords—Web page classification; stemming; machine

learning; Naïve Bayes; k-NN; SVM; multilayer perceptron

I. INTRODUCTION

The fast-growing number of websites in the World Wide
Web (WWW) necessitates efficient methodologies to locate
information from millions of web pages. Internet has become a
huge repository of information and thereby web page
documents need to be categorized to facilitate the indexing,
searching and web pages retrieval by the search engine [1]. An
automation of web pages classification can be achieved by
using machine learning. Supervised machine learning
algorithms are used for problem that has label and predefined
categories. Features that will be the input to the machine
learning algorithms is gathered through web data mining; a
process of extracting patterns from web pages data [2], which
comprises web pages content, hyperlinks or user logs usage.

For this article, only the web pages contents, specifically
texts are used as the features–images and audios are discarded.
This allows web pages classification to be carried out similar to
plain text document classification; words in the web pages are
vectorized and become the features that train the classifiers.
Pre-processing procedures such as stop word removal and
word stemming are commonly conducted before running a
machine-learning algorithm to reduce classifiers’ processing
time by reducing the features in the document. However, word
stemmer is known to produce errors to the resulting stemmed
words and this may affect classifiers’ classification accuracy,
which is measured by its precision and recall value [3].

The BBC dataset used in this research consists of news
articles that are predefined and labeled based on five
categories. Machine learning algorithms are used to extract and
learn prominent features that defines each category so that
future articles can be classified automatically. In webpages
searches, the speed of classification process is an important
factor that affects user experience. While this is important,
faster processing should not be justified on the expense of
classification accuracy. Thereby, this research evaluates word
stemming procedure on the classification speed and accuracy,
using different machine learning algorithms.

II. WEB PAGE CLASSIFICATION

Web page classification, or also called web page
categorization, is defined as a task to determine the category of
a web page. In a formal definition, let C = {c1,…ck} as
predefined categories, D = {d1,…dk} as web pages and A = D
x C as a decision matrix (Table I).

whereby each entry aij, (1 <i<N, 1<j<K) indicates whether
web page di is in category cj. Each aij 𝜖 {0,1}; 1 is when a web
page di fits category cj, 0 when it is not in cj. A web page can
be fitted in one category, multiple categories or none of the
categories. The objective of web page classification is to
estimate the unknown assignment function f: D x C → {0,1} by
means of a learned function f’: D x C → {0,1}, which is either
a classifier, model or hypothesis, such that f’ coincides with f
to maximum extent. The learned function f’ is derived from
performing machine learning over a training data which
consists of web pages that are labeled with their assigned
categories. The trained function f’ will then be used to classify
unseen data of web pages to its categories [23].

TABLE. I. DECISION MATRIX

Web Pages
Categories

C1 … Cj … Ck

d1 a11 … a1j … a1k

… … … … … …

di ai1 … aij … aik

… … … … … …

dn an1 … anj … ank

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 1, 2020

571 | P a g e

www.ijacsa.thesai.org

Web classification is almost similar to text classification,
but with additional steps because of special characteristics in
web pages:

 Web pages are semi-structured documents commonly
written in HTML that has information enclosed
between tags.

 Web pages have topological information about the link
graph which shows hyperlinks information with the
linked web pages.

In web page classification, there are multitude of potential
inputs that can be used by classifier, such as URL of the web
page, HTML tags frequency, the content of the tags and so on.

III. RELATED WORKS

Previous works on these algorithms use Naïve Bayes to
classify 4,887 website homepage contents into 10 categories
yielding 89% accuracy [4], k-NN shows higher accuracy as
compared to Naïve Bayes for text and document classification
despite showing low performance in terms of its fully
dependency on every sample in the training set [5]-[6], SVM
performed better than Naïve Bayes in classifying health and
non-health related websites [3], Naïve Bayes trumps k-NN and
SVM when classification is carried out to predict users’
personality based on Twitter texts [5], and automatic web page
categorization on educational based corpus is conducted using
seven classifiers, with high accuracy classifiers demonstrated
by Linear SVM, Logistic Regression, Multinomial Naïve
Bayes, and Multilayer Perceptron. Decision Tree is the worst
performed while k-NN is moderate.

An approach was used by extracting information from both
web pages contents and links structure as inputs to SVM and
neural network [7]. An improved k-NN classifier uses new
feature weighting and new distance weighted voting scheme
[8], and an improvement is suggested on the k-NN to adopt
density-based approach to manage unevenly distributed
dataset. The distance between k-NN and test data are adjusted
based on their difference of density [9].

The effect of word stemming to the performance of text
classification is arguable. A performed system should acquire
high number of relevant documents (high recall) and only a
few non-relevant documents (high precision). An evaluation of
Porter stemming based on information retrieval from a corpus
of 400 MEDLINE (Medical Literature, Analysis and Retrieval
System Online) shows improvement of precision and recall as
compared to information retrieval without using stemmer [10].

Researchers [11] argue that stemming has little impact on
the performance of text classification. Schofield et al [12] have
conducted experimental procedure to validate the outcome of
various stemmers on different type of text corpus. The study
concludes that generally stemmer yield no meaningful
improvement in likelihood and coherence and can even
degrade topic stability. The researcher claims that Porter
stemmer for instance just reduce the possible unigrams that can
be generated and does not appear to improve the model quality.
Statistical approach of stemming does not need to have built in
set of morphological rules as in rule-based approach; it learns
the rule by training on a well-formed corpus. Thus, it

overcomes Porter’s error. Nonetheless, statistical approach has
shortcomings such as dependency on corpus size and quality,
higher execution time and high storage use [13]-[14]. In this
report, we examine the effect of stemming to classifiers
performance.

Previous works recorded extensive discussions on web
pages classification using various types of machine learning
algorithms. Many literatures however focus solely on the
classification accuracy and does not include the processing
time in the results. Additionally, even less literature records the
difference in the accuracy and processing time with and
without word stemming.

IV. EXPERIMENTS

A. Dataset

This study uses dataset that originates from BBC News
website articles gathered by [15]. It consists of 2,225
documents that corresponds to articles on five topical areas
published on the BBC News website from year 2004 to 2005.
The articles are labeled based on the topics, namely ‘business’,
‘politics’, ‘entertainment’, ‘sport’ and ‘tech’. The BBC dataset
consists of 2,225 documents and is split randomly into training
and test dataset with the ratio of 80:20, which is a common
ratio used for this purpose [16]. After splitting, there are 1,780
documents in training and 445 in test dataset. The frequency
distribution for the dataset before and after splitting is shown
by Table II.

This dataset comes in the form of raw text files and
separated into five different folders based on their respective
topics. Data in these text files need to be collated in a
spreadsheet to enable further analysis and processes. Python
codes are used to combine all the data and subsequently
exported into a comma-separated values (.csv) spreadsheet file.
A column named as ‘newstype’ is created to indicate the news
category while column ‘news’ stores the news article.

B. Pre-Processing

The number of rows of a matrix corresponds to the number
of words in a document collection. There can be hundreds of
thousands of different words in the document collection. Pre-
processing is an effort to reduce these words, which is the input
feature for the machine learning classifiers, by cleaning up the
document, selecting and extracting feature word and perform
word stemming. These processes can improve computational
efficiency and classification effectiveness.

1) Cleaning up document: Text documents are broken

down into individual words through tokenization.

Tokenization is commonly followed with other pre-processing

steps such as removing stop words, punctuation, special

characters and word stemming. These individual words will be

selected and extracted to become features that represent

respective categories or labels. These words or features serve

as inputs to machine learning classifiers. After pre-processing,

there are a total of 389,548 features extracted from the whole

document collection. The process of cleaning text is important

to remove unnecessary and non-important elements of

sentences as show in Fig. 1.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 1, 2020

572 | P a g e

www.ijacsa.thesai.org

TABLE. II. FREQUENCY DISTRIBUTION

News type
Number of documents

(Before splitting)

Number of documents

(After splitting)

Business 510 399

Entertainment 386 312

Politics 417 331

Sport 511 403

Tech 401 335

Fig. 1. Cleaning up Process of Text Document.

2) Feature extraction and selection: Feature selection and

extraction is a process to reduce noise terms that are not

related to the categories of training document. To reduce these

noise terms, feature selection is first conducted to extract

index terms (features) that will become the predictor to

evaluate and assign unseen documents as belonging to the

appropriate category. Since feature selection reduces noise

terms, in effect it reduces vector dimensions and thus enable

classifiers to produce faster results. Training documents of

similar categories are represented with the same term vectors,

thus they can be closely located in term vector space.

For the first step in text categorization, we need to
transform the documents consisting of strings of characters into
a representation that is suitable for the learning algorithms and
the classification tasks. And the most commonly used
document representation is Vector Space Model (VSM), that
is, each document is represented by a vector of words. A word-
by-document matrix A is used for a collection of documents,
with each entry represents the occurrence of a word in a
document, that is, A=(a_ij), where (a_ij) is the weight of word
i in document j.

The weight value of each term can be computed by
different weighted schemes namely Boolean value, Term
Frequency (TF), Inverse Document Frequency (IDF), Term
Frequency and Inverse Document Frequency (TFIDF) [17].
The simplest approach of determining the weight is Boolean
weighting, which sets the weight (a_ij) to 1 if the word occurs
in the document and 0 otherwise. TF weighted scheme counts
the words that are most frequently occurring as shown by Fig.
2 which summarize the word count frequency from each of the
five categories in the BBC dataset.

3) Word stemming: Stemming is a feature term reduction

technique that is used by removing suffixes such as ‘ed’, ‘ing’

and ‘ily’. It reduces complexity and enable more efficient

information retrieval especially in data mining applications.

Nonetheless, stemming may create non-real words as the

stemmer does not check on grammatical rules during the

stemming process [18]. Lemmatization is an alternative that

checks on canonical forms of the words, but it is

computationally expensive and thus takes up more processing

time [19]. Porter stemmer is one of the most widely used

stemmer. Other types of stemmer include Lovins, Lancaster

and Porter2, which is also referred as Snowball [12]. Porter

Stemmer algorithm as shown in Fig. 2 is commonly used in

text classification. It is based on steps by which each step

removes a type of suffix by using substitution rules. Non-real

words such as ‘studi’ is a grouping stemmed words that

resulted from words that comes from a similar root namely

‘studied, studies, study, studying’ [12],[20],[21].

Feature selection and extraction through applying TF-IDF
and Porter Stemming are able to reduce dimensionality by
trimming down the number of features from 389,548 to
233,123 features.

C. Classification

There are 1,780 documents in training and 445 in test
dataset. The training dataset is used to train the machine
learning classifiers whereby the classifier learns the
characteristics of the dataset and the relations between these
documents and their predefined categories. Once the classifier
is fully trained, the test dataset is fed into the classifier as the
input and it will output the predicted categories for each
document. We compare few machine algorithms for the
classification stage, i.e. Naïve Bayes, k-NN, Support Vector
Machine (SVM), and Multilayer perceptron.

1) Naïve bayes: Naïve Bayes uses vector analysis method

that is based on the concept of conditional probability or

Bayes theorem to measure documents relevancy. The

probability of class a to be the category for document b is

given by:

𝑃(𝑎|𝑏) =
𝑃(𝑎)𝑃(𝑏|𝑎)

𝑝(𝑏)
 (1)

From the training dataset, the classifier calculates the
probability value of each feature term belonging to certain
category. It is based on the fraction of time a term appears
among all terms in documents of a category. The sum of
probabilities for each category of each term occurring in the
document is calculated that enables the classification of a new
document. This classifier is called ‘naïve’ because each term is
assumed to occur independently from each other [6].

There are several types of Naïve Bayes, among them are
Multinomial, Boolean and Bernoulli. For text classification,
Multinomial Naïve Bayes is mostly used due to its
computational efficiency and relatively good predictive
performance. It uses multinomial distribution with the
classification features consisting of the number of word
occurrences or the weight of the word [22]. In this project, the
weight of the word is used which is obtained from TF-IDF.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 1, 2020

573 | P a g e

www.ijacsa.thesai.org

Fig. 2. Five Steps of Porter Stemmer [10].

2) k-Nearest Neighbor (k-NN): is a non-linear lazy

learning classifier that delays learning process until a new

document appear to be classified. It compares the new

document directly with the training documents and computes

their similarity score by measuring the distance between the

documents by using Euclidean distance or cosine similarity.

Euclidean distance is used in this project as it the most widely

used distance metrics in k-NN classification. K-NN use the

similarity score to rank the document's neighbors among the

training document vectors. The k-nearest neighbors are used

to predict the category of the new document [23].

3) Support Vector Machine (SVM): Support Vector

Machine (SVM) is a powerful technique for classification.

The state-of-the-art in text classification usually applies

machine learning techniques such as SVM [24]. However,

SVM is not suitable for large datasets or text corpora, because

the training complexity of SVM is highly dependent on the

input size [25]. Comparing the processing time, SVM takes

longer time than NB and k-NN during classifier training but is

faster than k-NN during classification. SVM is a universal

learner. It is a linear learner in its basic form, but can be

configured to learn polynomial classifiers, radial basic

function (RBF) networks and three-layer sigmoid neural nets

by applying appropriate kernel function. In a classification

procedure carried out on big text corpora, [25] concluded that

RBF and Sigmoid kernels need higher time to build model and

requires additional parameters as compared to linear SVM. It

is difficult to determine its parameterization with imbalanced

data.

4) Multilayer Perceptron Multilayer Perceptron (MLP):

also known as Artificial Neural Networks (ANN), is a

multilayer, feed-forward neural network that contains nodes at

the input layer, hidden layer and output layer. Having these

multi-layers allows MLP to learn non-linear functions.

Neurons in the hidden layer and output layers have biases that

acts as weight. The purpose of learning is to assign the right

weights to these edges that minimize the cost function. By

entering vectors, these weights can determine the output

vector.

MLP trains using backpropagation error method.
Backpropagation error is a supervised learning method that
computes the error at the output and used by gradient descent
optimization to adjust the edge weights by calculating the
gradient of the loss function. This adjustment is repeated
iteratively, and iteration ends when the output error is below
the established standard.

The problem with training MLP is to minimize error
function E which is defined by the sum of square differences
over all data in the training set. A simplified equation for error
function E for an MLP with weights n is given as:

𝑚𝑖𝑛
𝑤∈ℝ𝑛

 𝐸(𝑊) (2)

with w∈R^n is column weight vector with components

w_1,ω_2,… ω_n. There are various approaches to improve

the efficiency of error minimization process, and one of the
common methods used for text classification is quasi-Newton,
which uses second order derivative related information [26].

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 1, 2020

574 | P a g e

www.ijacsa.thesai.org

Activation functions is an important element in ANN. Its
purpose is to convert input signal of a node into non-linear
property before channeling the signal to output signal, which
then will be the input to the next layer in the stack. Non-
linearity enables ANN in modelling complicated, high
dimensional and not linearly separable big dataset. There are
various types of activation functions, among mostly used are
sigmoid, tanh and Rectified Linear Units (ReLU). Activation
functions using sigmoid and tanh is less suitable for learning
because its small derivatives can lead to vanishing gradient;
when the neuron’s activation saturates at either tail of 0 or 1,
the gradient at these regions is almost zero. This will cause
very slow or no learning during backpropagation as the weights
are updated with small values. In this respect, ReLU function is
less susceptible to this vanishing gradient issue because it has
an identity derivative in the positive region [27]. Any negative
elements are set to ‘0’; with no exponentials, multiplication nor
division operations. Its gradient computation is simple and, in
this way ReLU can speeds up neural networks training.

Although the number of hidden layers and nodes are an
important determinant in ANN performance and processing
time, there is no standard method on their selection. One of the
method applicable is try and error approach [28]. Hidden layer
size is arbitrarily selected, and the outcome is observed.

V. RESULTS AND DISCUSSIONS

Table III summarize the results obtained from the
experiments done for word stemming and without word
stemming. Dataset is classified using Multinomial Naïve
Bayes with the best classification outcome is achieved by using
parameter Laplace smoothing and without word stemming; F1
score of 0.97, training time of 0.02 seconds and classification
time of 0.78 seconds.

The best classification outcome for k-NN is achieved by
using parameter k = 31 and without word stemming; F1 score
of 0.96, training time of 0.007 seconds and classification time
of 0.91 seconds.

Linear SVM without word stemming provides the best
score with F1 of 0.97, training time of 11.37 seconds and
classification time of 3.14 seconds. RBF and Sigmoid by far
performed worse than linear SVM.

ANN classification is carried out using ReLU as an
activation function. Generally, word stemming results in lower
F1 score but reduces the training time. ANN with 3 layer and
each layer containing 1,000 nodes shows the best F1 but long
training time of 716.95 seconds. A more balanced 2-layer ANN
with 50 nodes each takes only 15 seconds of training time and
0.73 seconds of classification time. This is taken as the best
classification parameter and outcome for ANN. Another
observation is ANN with three hidden layers performs no
better than with one hidden layer. It does however introduce
complexity and extends the training time.

Based on the Table IV and Fig. 3, in terms of classifiers’
performance in classification, generally all of the classifiers
perform at a high F1 score. The difference is marginally very
low between the classifiers. Naïve Bayes and SVM each score
0.97 while k-NN and Multilayer Perceptron each get 0.96. All
of the classifiers performed better with higher F1 score without
word stemming. The effect of stemming on the training and
classification time (as shown in Fig. 4) is negligible on all
classifiers, except for Multilayer Perceptron. Stemming
effectively reduced training time in Multilayer Perceptron
modelling phase.

TABLE. III. MOST COMMON WORDS IN EACH CATEGORY

Category Politics Tech Business Entertainment Sport

Party People Company Film Win

Labour Game Firm Award Game

Government Mobile Market Star Play

Election Technology Rise Music Time

People Phone Sale Win Player

Blair Service Bank Band England

Minister User Share Actor Match

Tory Firm Economy Director Team

Plan Music Price Oscar Final

Brown Software Growth Album Club

TABLE. IV. CLASSIFIER’S BEST PERFORMANCE COMPARISON

Classifier Stemming Precision Recall F1 Training time (seconds) Classification time (seconds)

Naïve Bayes No 0.97 0.97 0.97 0.02 0.78

k-NN No 0.96 0.95 0.96 0.007 0.91

SVM No 0.98 0.97 0.97 11.37 3.14

Multilayer Perceptron No 0.97 0.96 0.96 18.17 0.73

Naïve Bayes Yes 0.94 0.95 0.95 0.02 0.70

k-NN Yes 0.92 0.92 0.92 0.007 0.98

SVM Yes 0.95 0.95 0.95 10.23 2.3

Multilayer Perceptron Yes 0.94 0.93 0.94 15.00 0.60

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 1, 2020

575 | P a g e

www.ijacsa.thesai.org

Fig. 3. Classifier Accuracy Comparison.

Fig. 4. Classifier Training and Classification Time Comparison.

0.935

0.94

0.945

0.95

0.955

0.96

0.965

0.97

0.975

0.98

0.985

Precision Recall F1

Naïve Bayes kNN SVM Multilayer Perceptron

0

2

4

6

8

10

12

14

16

Training time (seconds) Classification time (seconds)

Naïve Bayes kNN SVM Multilayer Perceptron

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 1, 2020

576 | P a g e

www.ijacsa.thesai.org

VI. CONCLUSION

All of the classifiers produce respectable accuracy with
very low marginal differences, which is not decisive. A larger
dataset with larger number of categories may present higher
complexity and dimensionality to the classifiers and perhaps
with such challenges there will be a distinct best performer.
This study exclusively uses Porter stemmer to perform word
stemming. Future works may attempt the use of other word
stemmer or lemmatization. Lemmatization may extend the
processing time as it checks on canonical form of words.
Nonetheless, it is interesting to observe on whether a correct
grammar and real words produced from lemmatization will
increase, instead of reducing, classifiers’ accuracy as observed
with Porter stemmer in this study.

ACKNOWLEDGMENT

The authors would like to express greatest appreciation to
Ministry of Education, Malaysia and Universiti Teknologi
Malaysia (UTM) for the financial support (grant number:
Q.K130000.2538.19H12). Last but not least, we also
appreciate Advanced Informatics at Razak Faculty of
Technology and Informatics (FTIR), UTM for their support in
conducting this research.

REFERENCES

[1] A. Videira and N. Goncalves, “Automatic Web Page Classification
Using Visual Content.” in 10th Int. Conf. on Web Information Systems
and Technologies, WEBIST 2014, Barcelona, Spain, April 2014,
pp.279-294.

[2] M. Allahyari, S. Safaei, S. Pouriyeh, E.D. Trippe, K. Kochut, M. Assefi,
and J.B. Gutierrez, “A Brief Survey of Text Mining: Classification,
Clustering and Extraction Techniques”, J. ArXiv, vol. abs/1707.02919,
August 2017.

[3] A. Siddiqui, M. Adnan, R. A. Siddiqui and T. Mubeen, "A comparative
study of web pages classification methods applied to health consumer
web pages," in 2nd Int. Con. on Computing Technology and Information
Management, ICCTIM 2015, Johor, Malaysia, 2015, pp. 43-48.

[4] A.S. Patil and B.V. Pawar, “Automated Classification of Web Sites
using Naive Bayesian Algorithm,” in Int. MultiConference of Engineers
and Computer Scientists, IMECS 2012, Hong Kong, March 2012, vol. 1,
pp. 14-16.

[5] A. Moldagulova and R. Sulaiman, “Using KNN Algorithm for
Classification of Textual Documents,” in 8th Int. Conf. on Information
Technology, ICIT 2017, Amman, Jordan, May 2017, pp. 665-671.

[6] V. Bijalwan, V. Kumar, P. Kumari, and J. Pascual, “KNN based
Machine Learning Approach for Text and Document Mining”, Int. J. of
Database Theory and Application, vol. 7(1), pp. 61–70, 2014.

[7] M. Chau and H. Chen, “A Machine Learning Approach to Web Page
Filtering Using Content and Structure Analysis,” Decision Support
Systems, vol. 44, pp. 482–494, 2008.

[8] J. Alamelu Mangai, Satej Milind Wagle, and V. Santhosh Kumar, “A
Novel Web Page Classification Model using an Improved k Nearest
Neighbor Algorithm” in 3rd Int. Conf. on Intelligent Computational
Systems, ICICS 2013, Singapore, April 2013, pp. 50-53.

[9] K. Shi, L. Li, H. Liu, J. He, N. Zhang and W. Song, "An improved KNN
text classification algorithm based on density," in IEEE Int. Conf. on
Cloud Computing and Intelligence Systems, Beijing, 2011, pp. 113-117.

[10] W. Abdessalem, “A New Stemmer to Improve Information Retrieval,”
Int. J. Network Security and Its Applications (IJNSA), vol. 5, pp. 143-
154, Jul 2013.

[11] M. Toman, R. Tesar, and K. Jezek, “Influence of Word Normalization
on Text Classification,” in InSciT, Oct 2006, pp. 354-358.

[12] A. Schofield and D. Mimno, “Comparing Apples to Apple: The Effects
of Stemmers on Topic Models,” Transactions of the Association for
Computational Linguistics, vol. 4, pp. 287-300, 2016.

[13] X. Jinxi, W.C. Bruce, “Corpus-based Stemming Using Co-occurrence of
Word Variants,” ACM Transactions on Information Systems, vol.
16(1), pp. 61-81, 1998.

[14] D. Patel, M. Patel, and Y. Dangar, “A Survey of Different Stemming
Algorithm,” Int. J. of Advance Engineering and Research Development,
vol. 2(6), pp. 50-53, 2015.

[15] D. Greene and P. Cunningham, “Practical Solutions to the Problem of
Diagonal Dominance in Kernel Document Clustering,” in 23rd Int.
Conf. on Machine Learning, ACM, Jun 2006, pp. 377-384.

[16] E. Setiani and W. Ce, "Text Classification Services Using Naïve Bayes
for Bahasa Indonesia," in Int. Conf. on Information Management and
Technology, ICIMTech, Jakarta, Indonesia, 2018, pp. 361-366.

[17] Singh, K. Nareshkumar, Devi, H. Mamata, Mahanta, A. Kakoti,
“Document Representation Techniques and Their Effect on Document
Clustering and Classification: A Review,” Int. J. Advanced Research in
Computer Science, vol. 8(5), pp. 1781-1784, 2017.

[18] Q.S. Mahdi, K.H. Qadir, and R.L. Falih, “Web Page Classification by
Using Neural Networks,” Zanco J. Pure Applied Sciences, vol. 23,
2011.

[19] S. Raschka, “Naïve Bayes and Text Classification I – Introduction and
Theory.” J. ArXiv, 2014.

[20] C. Naik and V. Kothari, “Document Classification using Neural
Networks Based on Words,” Int. J. Advanced Research in Computer
Science, vol. 6(2), pp. 183-188, 2015.

[21] B.L. Devi and A. Sankar, “Feature Selection for Web Page
Classification Using Swarm Optimization,” Int. J. of Computer and
Information Engineering, vol. 9(1), pp. 340-346, 2015.

[22] B.Y. Pratama and R. Sarno, “Personality Classification Based on Twitter
Text Using Naïve Bayes, KNN and SVM,” in Int. Conf. on Data and
Software Engineering, Yogyakarta, Indonesia, 2015, pp. 170-174.

[23] B. Choi and Z. Yao, “Web Page Classification,” Foundations and
Advances in Data Mining, Springer, 2005.

[24] J.H. Wang and H.Y. Wang, “Incremental Neural Network Construction
for Text Classification,” in Int. Symposium on Computer, Consumer and
Control, Taichung, Taiwan, 2014, pp. 970-973.

[25] R. Romero, E. L Iglesias, and L. Borrajo, “A Linear-RBF Multikernel
SVM to Classify Big Text Corpora,“ BioMed Research Int. 2015.

[26] I.E. Livieris, “Improving the Classificaiton Efficiency of an ANN
Utilizing a New Training Methodology,” Informatics, vol. 6, p.1, 2019.

[27] S. Eger, P. Youssef, I. Gurevych, “Is it Time to Swish? Comparing Deep
Learning Activation Functions Across NLP Tasks,” in Con. on
Empirical Methods in Natural Language Processing, Brussels, Belgium,
2018, pp. 4415-4424.

[28] F.S. Panchal, and M. Panchal, “Review on Methods of Selecting
Number of Hidden Nodes in Artificial Neural Network,” Int. J.
Computer Science and Mobile Computing, IJCSMC, November 2014,
vol. 3, pp. 455 – 464.

