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Abstract: Gully erosion destroys agricultural and domestic grazing land in many countries, especially
those with arid and semi-arid climates and easily eroded rocks and soils. It also generates large
amounts of sediment that can adversely impact downstream river channels. The main objective
of this research is to accurately detect and predict areas prone to gully erosion. In this paper, we
couple hybrid models of a commonly used base classifier (reduced pruning error tree, REPTree)
with AdaBoost (AB), bagging (Bag), and random subspace (RS) algorithms to create gully erosion
susceptibility maps for a sub-basin of the Shoor River watershed in northwestern Iran. We compare
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the performance of these models in terms of their ability to predict gully erosion and discuss their
potential use in other arid and semi-arid areas. Our database comprises 242 gully erosion locations,
which we randomly divided into training and testing sets with a ratio of 70/30. Based on expert
knowledge and analysis of aerial photographs and satellite images, we selected 12 conditioning
factors for gully erosion. We used multi-collinearity statistical techniques in the modeling process,
and checked model performance using statistical indexes including precision, recall, F-measure,
Matthew correlation coefficient (MCC), receiver operatic characteristic curve (ROC), precision–recall
graph (PRC), Kappa, root mean square error (RMSE), relative absolute error (PRSE), mean absolute
error (MAE), and relative absolute error (RAE). Results show that rainfall, elevation, and river
density are the most important factors for gully erosion susceptibility mapping in the study area.
All three hybrid models that we tested significantly enhanced and improved the predictive power
of REPTree (AUC=0.800), but the RS-REPTree (AUC= 0.860) ensemble model outperformed the
Bag-REPTree (AUC= 0.841) and the AB-REPTree (AUC= 0.805) models. We suggest that decision
makers, planners, and environmental engineers employ the RS-REPTree hybrid model to better
manage gully erosion-prone areas in Iran.

Keywords: gully erosion; watershed management; machine learning; hybrid models; GIS; Iran

1. Introduction

A global problem that seriously threatens soil and water resources is soil erosion [1–3]. Gully
erosion affects soil productivity, can trigger debris landslides and debris flows [4,5], and—if sufficiently
severe—can cause an undesirable buildup of sediment in waterways, reservoirs, and ponds [6,7].
Gullies are deep erosional channels on slopes and are commonly a product of ephemeral runoff during
periods of heavy rainfall. They provide pathways for water and sediment transport from the upper to
lower parts of watersheds. In some catchments, as much as one-third to one-half of the total sediment
output is a product of gully erosion [8,9], and gully erosion constitutes 10 to 94 percent of erosion at
the watershed scale [9,10]. Gully networks also lower the water table in eroded areas, reducing soil
moisture and potentially lowering crop yields on the damaged terrain.

Identifying areas that are susceptible to gully erosion can help land-use managers and planners
maintain soil and water resources [10]. Dealing with gullies after they begin to form is difficult and
expensive, thus it is better to plan and implement preventative and protective schemes before erosion
begins [11].

Past attempts to identify slopes susceptible to gully erosion have focused on topographic thresholds.
However, models that use only topographic thresholds typically fail to identify locations sensitive
to gully erosion [12,13]. They de-emphasize or ignore land-use, hydrological, climatic, and other
environmental factors that have key roles in gully erosion, and do not consider the rapid growth of
gully systems once they have initiated [14–17].

Scientists have used a variety of computational data mining methods and models in natural
hazard research, including studies of floods [18–28], wildfire [29], sinkholes [30], droughtiness [31,32],
earthquakes [33,34], land/ground subsidence [35,36], groundwater [21,37–44], and landslides [22,45–72].
These methods extract related patterns in historical data to predict future events [73]. Data mining
methods used to predict gully erosion include logistic regression (LR) [2,30,74–77], artificial neural
network (ANN) [20,48,78–80], random subspace (RS) [48,62,81], maximum entropy (ME) [82], artificial
neural fuzzy system (ANFIS) [56,83–86], support vector machine (SVM) [18,59,73], fuzzy analytical
network (FAN) [37], multi-criteria decision analysis (MCDA) [87,88], evidential belief function
(EBF) [88,89], classification and regression tree (CART) [90,91], random forest (RF) [39,52,92–94],
rotation forest (RoF) [95], weights of evidence (WofE) [96], frequency ratio (FR) [28,97], BFTree for
gully headcut [81], boosted regression [24], ADTree, RF-ADTree [73,76,98], and naive Bayes tree
(NBTree) [67].
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Accurate gully erosion susceptibility maps are required to predict, control, and mitigate
gully formation. This need has led researchers to apply and test a wide variety of data mining
methods in gully-prone areas. This study uses three hybrid models—Ada-REPTree, Bag-REPTree,
and RS-REPTree—to prepare gully erosion hazard zoning maps for the Rabat Turk watershed in
northwestern Iran and to compare the results with those obtained using other models. The study area
has an arid to semi-arid climate, a limited vegetation cover, and easily eroded bedrock, all of which
make it susceptible to gully erosion.

2. Materials and Methods

2.1. Study Area

The Rabat Turk watershed is located between Markazi and Isfahan provinces in northwestern
Iran (Figure 1). It is one of the catchments of the Shoor River watershed and has an area of about
242 km2. The lowest elevation in the watershed is 1807 m above sea level (a.s.l); its maximum elevation
is 2723 m a.s.l. The climate is arid and semi-arid, with average annual rainfall of 213 mm. Precipitation
is seasonal, with about 80% of the annual rainfall falling between December and early April [93]. Most
of the catchment is bare land, although some areas support agriculture and domestic animals. Gullies
are concentrated in the northern part of the watershed, and most are active [93] (Figure 2).

Appl. Sci. 2020, 9, x FOR PEER REVIEW 3 of 29 

gully-prone areas. This study uses three hybrid models—Ada-REPTree, Bag-REPTree, and RS-101 
REPTree—to prepare gully erosion hazard zoning maps for the Rabat Turk watershed in 102 
northwestern Iran and to compare the results with those obtained using other models. The study area 103 
has an arid to semi-arid climate, a limited vegetation cover, and easily eroded bedrock, all of which 104 
make it susceptible to gully erosion. 105 

2. Materials and Methods 106 

2.1. Study Area 107 
The Rabat Turk watershed is located between Markazi and Isfahan provinces in northwestern 108 

Iran (Figure 1). It is one of the catchments of the Shoor River watershed and has an area of about 242 109 
km2. The lowest elevation in the watershed is 1807 m above sea level (a.s.l); its maximum elevation is 110 
2723 m a.s.l. The climate is arid and semi-arid, with average annual rainfall of 213 mm. Precipitation 111 
is seasonal, with about 80% of the annual rainfall falling between December and early April [93]. 112 
Most of the catchment is bare land, although some areas support agriculture and domestic animals. 113 
Gullies are concentrated in the northern part of the watershed, and most are active [93] (Figure 2). 114 

 115 

Figure 1. Location of the study area and model training and validating gullies. 116 Figure 1. Location of the study area and model training and validating gullies.



Appl. Sci. 2020, 10, 2039 4 of 28

Appl. Sci. 2020, 9, x FOR PEER REVIEW 4 of 29 

 117 
Figure 2. Examples of gully erosion in the study area. 118 

2.2. Methodology 119 
A flowchart for the methodology used in this study is shown in Figure 3. The methodology 120 

involves the following steps: (1) preparing a gully erosion inventory map; (2) determining the 121 
appropriate gully erosion conditioning factors (factor ranking and selection); (3) modeling gully 122 
erosion susceptibility using REPTree and its ensembles—AdaBoost, bagging, and random subspace 123 
algorithms; (4) assessing the goodness-of-fit and prediction accuracy of the models, (5) generating 124 
flood susceptibility maps using a base classifier and its ensembles, and (6) assessing the goodness-of-125 
fit and prediction accuracy of the maps. 126 

2.2.1. Gully Inventory Map 127 
Accurately predicting and modeling gully erosion susceptibility requires a high-quality gully 128 

erosion map is essential, which thus must be carefully prepared. We obtained an inventory map with 129 
242 gully locations from the Administration of Natural Resources of Markazi Province. The gullies 130 
were mapped from aerial photographs and satellite images and were confirmed in the field. 131 
Typically, gullies in the study area have concave and vertical heads, indicating that they are active. 132 
Longitudinal profiles are typically straight to convex, but gully widths differ greatly. Gullies on 133 
agricultural land commonly have V-shaped cross-sections, whereas those on rangeland more 134 
commonly are U-shaped.  135 

Depending on map scale, a gully may be considered a point or a polygon. Most authors who 136 
have studied gully erosion consider the heads of gullies to be gully locations [76,99,100], because 137 
gully heads are the sources of much of the sediment carried by the gully channels and delivered to 138 
the fluvial system below [101,102]. However, some researchers have used grid cells to create gully 139 
polygons to prepare gully erosion susceptibility maps [92,103,104], whereas others have converted 140 
gully polygons to points using ‘feature to point’ tool in ArcGIS software [105]. However, an active 141 
gully is a dynamic landform, and its head moves landward over time as erosion proceeds. A gully 142 
consists of three parts: its head, the main channel, and its end point. For long gullies, we used these 143 
three points to define their locations. For short gullies, we considered only the head location point. 144 
For this study, we randomly selected 242 non-gully locations in the study area. We randomly chose 145 
70% (169) of the mapped gullies to construct the model for gully erosion; the remaining 30% (73) were 146 
used to evaluate the predictive performance of model (Figure 3). 147 

Figure 2. Examples of gully erosion in the study area.

2.2. Methodology

A flowchart for the methodology used in this study is shown in Figure 3. The methodology
involves the following steps: (1) preparing a gully erosion inventory map; (2) determining the
appropriate gully erosion conditioning factors (factor ranking and selection); (3) modeling gully
erosion susceptibility using REPTree and its ensembles—AdaBoost, bagging, and random subspace
algorithms; (4) assessing the goodness-of-fit and prediction accuracy of the models, (5) generating
flood susceptibility maps using a base classifier and its ensembles, and (6) assessing the goodness-of-fit
and prediction accuracy of the maps.
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2.2.1. Gully Inventory Map

Accurately predicting and modeling gully erosion susceptibility requires a high-quality gully
erosion map is essential, which thus must be carefully prepared. We obtained an inventory map with
242 gully locations from the Administration of Natural Resources of Markazi Province. The gullies
were mapped from aerial photographs and satellite images and were confirmed in the field. Typically,
gullies in the study area have concave and vertical heads, indicating that they are active. Longitudinal
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profiles are typically straight to convex, but gully widths differ greatly. Gullies on agricultural land
commonly have V-shaped cross-sections, whereas those on rangeland more commonly are U-shaped.

Depending on map scale, a gully may be considered a point or a polygon. Most authors who
have studied gully erosion consider the heads of gullies to be gully locations [76,99,100], because gully
heads are the sources of much of the sediment carried by the gully channels and delivered to the fluvial
system below [101,102]. However, some researchers have used grid cells to create gully polygons to
prepare gully erosion susceptibility maps [92,103,104], whereas others have converted gully polygons
to points using ‘feature to point’ tool in ArcGIS software [105]. However, an active gully is a dynamic
landform, and its head moves landward over time as erosion proceeds. A gully consists of three parts:
its head, the main channel, and its end point. For long gullies, we used these three points to define their
locations. For short gullies, we considered only the head location point. For this study, we randomly
selected 242 non-gully locations in the study area. We randomly chose 70% (169) of the mapped gullies
to construct the model for gully erosion; the remaining 30% (73) were used to evaluate the predictive
performance of model (Figure 3).

2.2.2. Gully Conditioning Factors

Gully erosion is a complex process that results from the interplay of numerous factors [106,107]. After
reviewing gully erosion literature and considering local conditions and available data, we selected 12
topographic, hydrological, geological, and anthropogenic factors for inclusion in the modeling process.

The topographic factors chosen for this study are elevation, aspect, slope gradient, plan curvature,
and profile curvature. The hydrological parameters are distance to rivers and drainage density.
We extracted topographic and hydrological factors from a digital elevation model (DEM) obtained
from ALOS PALSAR (Phased Array Type L-band Synthetic Aperture Radar) data, with a cell size
12.5 × 12.5 m (http://www.eorc.jaxa.jp/ALOS/en/aw3d30) and prepared in ArcGIS 10.3 [93].

The elevation map has four classes (1800–2000, 2000–2200, 2200–2400, and >2400 m a.s.l) (Figure 4a).
The highest gully frequency ratio (FR) is associated with the 1800-2000 m class (FR ratio = 1.16).
The gully aspect map (Figure 4b) has nine classes, and the highest FR values are in the east, northeast,
and southeast aspect classes, with values of, respectively, 1.30, 1.17, and 1.13. The slope gradient map
has five classes: 0–5%, 5–10%, 10–20%, 20–30%, and >30% (Figure 4c). The 5–10% class has the highest
FR value (1.23). Plan curvature was categorized as convex, flat, and concave forms (Figure 4d). Most
gully erosion in the study area occurs in areas mapped as flat (FR = 1.09). There are three classes of
profile curvature (< −0.35, −0.35–0.25, and >0.25) (Figure 4e). The <−0.35 class has the highest FR
value (1.18).

Hydrological factors (distance from river, drainage density, and rainfall) were extracted from the
stream network in the DEM using the Arc Hydro, Euclidean Distance, and Line Density in Spatial
Analysis tools in ArcGIS 10.3 [108]. Distance-from-river classes are 0–500, 500–1000, 1000–2000,
2000–3000, and >3000 m (Figure 4f). Gully erosion in the study area is greatest near rivers, and thus
the 0-500 m class has the highest FR (1.63). The drainage density map has five classes: 0–0.24,
0.24–0.64, 0.64–1.06, 1.06–1.62, and 1.62–2.46 km/km2 (Figure 4g). Gully erosion and drainage density
are positively correlated; therefore the 1.62–2.46 class has the highest FR value (4.32) and the 0–0.24
class has the lowest FR value (0.52). Annual rainfall data for the study area were obtained for the
period 1984–2014 from Robat Turk watershed weather stations operated by the Iran Meteorological
Organization. Based on previous related research [76], gully erosion and rainfall are inversely correlated.
The rainfall data were interpolated using the inverse distance weighting (IDW) interpolation tool in
ArcGIS 10.3 and placed into three classes: 148–159, 159–171, and 171–192 mm (Figure 4l). The largest
and smallest number of gullies in the study area are in, respectively, the 148–159 mm (FR = 2.15) and
171–192 mm (FR = 0 classes).

Bedrock lithology is an important factor in gullying [8], and eight types were extracted from a
1:100,000-scale geological map using ArcGIS 10.3 (Figure 4h). The highest and lowest FR values belong
to, respectively, the gypsum (Ekgy) class (4.43) and regional metamorphic rocks (pCmt2) (0.08).

http://www.eorc.jaxa.jp/ALOS/en/aw3d30
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Changing land use, for example deforestation and grazing, is an important cause of soil erosion [76].
For the current study, land use was inferred from Landsat 8 (OLI) satellite imagery and analyzed and
processed with the ENVI 5.4 software. The land-use map includes three classes—agriculture, bare land,
and rangeland (Figure 4i). Most gullies in the study area are found in the bare land class (FR = 1.21),
and lowest number are in the rangeland class (FR = 0.62).

The incidence of gully erosion is greatest in areas with limited vegetation cover. A normalized
difference vegetation index (NDVI) map of the study area was generated in ArcGIS 10.3 from Landsat
8 imagery acquired on 15 June 2017. This map is based on the formula (NIR-Red)/(NIR+Red), where
NIR (near-infrared) is band 5 and Red is band 4 of the Landsat 8 imagery. The map includes three
NDVI classes: −0.12–0.07, 0.07–0.12, and 0.12–0.37 (Figure 4j). The 0.12–0.37 map class has the largest
number of gullies.

Roads also affect gully erosion, as they intercept and concentrate overland flow [109,110]. This
factor is represented by distances of gully and non-gully sites from roads, which were determined by
vectorizing topographic maps and then transforming the data to a raster map using the Euclidean
Distance tool in Arc GIS 10.3. Five classes were defined: 0–100, 100–200, 200–500, 500–1000, and >1000 m
(Figure 4i). The largest and smallest number of gullies in the study area are, respectively, in the
200–500 m (FR = 1.10) and 0–100 m (FR = 0.73) classes.

2.2.3. Gully Erosion Susceptibility Modeling

In this study, we prepared gully susceptibility maps using REPTree as a base classifier and
AdaBoost, bagging, and random subspace in ensemble models. The following subsections briefly
describe the four ensemble models.



Appl. Sci. 2020, 10, 2039 8 of 28

AdaBoost (AB)

AdaBoost (adaptive boosting) was the first boosting algorithm used for binary classification [111]
and is a starting point for understanding the concept of boosting. AdaBoost free users from the
complexities involved in detecting and choosing parameters.

The steps of the AdaBoost algorithm can be summarized as follows:
First, each data point is calculated as

w(xi, yi) =
1
n

, i = 1, . . . , n (1)

The obtained weights are updated after each step.
Second, a basic classifier Cb(Xi) is built from a training set and is applied to each training sample.

The error of this classifier εb is calculated as

εb =
n∑

i=1

wb(i)ξb(i) where ξb(i) =
{

0 Cb(xi) = yi
1 Cb(xi) , yi

(2)

The new weight for each iteration is

wb+1(i) = wb(i).exp(αbξb(i)) (3)

where αb is a constant that is calculated from the error of the classifier in each iteration

αb = ln((1− εb)/εb) (4)

The calculated weights in each iteration are generally normalized, and their sum is one.
This process is repeated in every step for b = 1, 2, 3, . . . , B, and then the ensemble classifier is built

as a linear combination of the single classifiers weighted by the corresponding constant αb:

C(x) = sign

 B∑
b−1

αbCb(x)

 (5)

Bagging (Bag)

Bagging is an ensemble learning method introduced by Breiman [112]. It creates parallel diverse
classifiers that are then coupled. Specifically, each bootstrap sample dataset is generated by randomly
drawing, with replacement, N instances (N is the size of the original training datasets). Then, a classifier
Ci is built from each bootstrap sample Bi, and C∗ is built from C1, C2, . . . , CT. Bagging output is the
class that is most often predicted by its sub-classifiers.

This algorithm can be summarized as follows:

Input: training set S, inducer T, integer T (number of bootstrap samples)

(1) for i = 1 to T {
(2) Si = bootstrap sample from S (sample with replacement)

(3) Ci = T
(
Si

)
(4) }
(5) C∗(x) = argmax

y∈Y

∑
i=Ci(x)=y 1

(6) Output: classifier C∗
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Random Subspace

The random subspace (RS) method [113] is an ensemble classifier technique in which each training
sample is defined as a p-dimensional vector Xi = (xi1, xi2, . . . , xip) and r<p features are randomly
selected from the p-dimensional dataset X in each iteration. Classifiers then are built into the random
subspaces and aggregated through majority voting.

The RS algorithm can be summarized as follows:

(1) Repeat for b = 1, 2, ..., B:

(a) Select a r-dimensional random subspace X̃b from the original p-dimensional feature space.

(b) Construct a classifier Cb(x) with a decision boundary Cb(x) = 0 in X̃b.

(2) Combine classifiers Cb(x), b = 1, 2, . . . , B by simple majority voting to obtain a final decision rule:

β(x) = armax
y∈[−1,1]

∑
b

δsgn
(
Cb(x)

)
.y (6)

where δi j is the Kronecker symbol and y ∈ [−1, 1] is a decision (class label) of the classifier.

Reduced-Error Pruning Tree (REPTree)

Quinlan [114] introduced a method based on information gain or variance to build a decision tree
that uses reduce-error pruning with back overfitting. The REPTree algorithm sorts values for numerical
attributes once; missing values are created using an embedded method by C4.5 in fractional instances.

2.2.4. Comparison and Validation of Gully Erosion Models and Susceptibility Maps

In this section, we introduce the evaluation metrics used in this study. We selected the most widely
used metrics based on the machine learning literature, which include machine learning performance
evaluation metrics and error metrics.

Machine Learning Evaluation Metrics

Machine learning evaluation metrics include true positive (TP), false positive (FP), precision,
recall, F-measure, Matthews correlation coefficient (MCC), receiver operatic characteristic curve (ROC),
and the precision recall (PRC) metric. All these metrics are obtained based on the four possibilities
shown in Table 1: true positive (TP), false positive (FP), true negative (TN), and false negative (FN).
TP and TN are the number of gully erosion pixels that correctly classified as, respectively, gully erosion
and non-gully erosion pixels. In contrast, FP and FN pixels are incorrectly classified as gully erosion
and non-gully erosion pixels, respectively [76]. The above-monitored metrics can be formulated
as follows:

Precision =
TP

TP + FP
(7)

Recall =
TP

TP + FN
(8)

F1 −measure = 2×
(Precision×Recall)
(Precision + Recall)

(9)

We used the Matthews correlation coefficient (MCC) [114] to check the quality of binary (two-class)
classifications. This metric has a range from -1 (total disagreement between prediction and observation
values) and +1 (perfect prediction). The MCC can be computed as

MCC =
(TP× TN) − (FP× FN)√

((TP + FP)(TP + FN)(TN + FP) − (TN + FN)
(10)
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The receiver operatic characteristic curve (ROC) is a popular and important metric to check the
general performance of a model [115]. Recall and 1-specificty (FP / (FP + TN)) are plotted, respectively,
on the x and y-axes of the ROC. A model with random performance has a straight diagonal line from
(0, 0) to (1, 1) on the plot, which thus serves as a reference line. The area under the ROC curve (AUC)
is a quantitative measure of the performance of the model. It ranges from 0 (inaccurate model) to 1
(perfect model) [21,116]. The PRC metric is a graph that provides a prediction of future classification
performance [117]. The x- and y-axes are, respectively, recall and precision metrics. The higher the
PRC line value, the better the performance of the model.

Table 1. Confusion matrix of machine learning models in this study.

Predicted Target

Gully Erosion (+) Non-Gully Erosion (−)

Actual target Gully erosion (+) TP FP

Non-gully erosion (−) FN TN

Error-Based Evaluation Metrics

Error-based indexes are the second group of evaluation metrics used to check the performance of
the gully erosion mapping. They include Kappa (K), root mean square error (RMSE), relative standard
error of the prediction (PRSE), mean absolute error (MAE), and relative absolute error (RAE), which
are formulated as

Kappaindex (K) =
A− B
1− B

(11)

A = (TP + TN)/(TP + TN + FN + FP) (12)

B = ((TP + TN)(TP + FP) + (FP + TN)(FN + TN)/
√
(TP + TN + FN + FP)) (13)

RMSE =

√√√√ n∑
i=1

(pi − ai)
2

n
(14)

PRSE =

n∑
i=1

(pi − ai)
2

n∑
i=1

(a− ai)
2

(15)

MAE =

n∑
i=1

∣∣∣pi − ai
∣∣∣

n
(16)

RAE =

n∑
i=1

∣∣∣pi − ai
∣∣∣

n∑
i=1

∣∣∣a− ai
∣∣∣ (17)

2.2.5. Factor Ranking and Selection by the Information Gain Ratio Technique

Several techniques for factor ranking and selection have been proposed, but the relative advantages
and weaknesses of these techniques are unknown [118]. Factor ranking techniques evaluate the
relevance of each factor independently and eliminate factors determined to be irrelevant or redundant.
They also search for the subset of factors that offers the largest reduction in dimensionality [118].
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In this study, we used the information gain ratio (IGR) method to select and rank the most
important factors for gully erosion modeling and susceptibility mapping. The IGR method is applied
as follows [119]:

Let T be the total number of tuples in the training dataset; Tj as the total number of positive or
negative tuples in the training dataset; v is the total number of classes in the dataset; and S is slope
angle, which is one of the gully conditioning factors.

GainRatio(Slope) =
Gain(Slope)

SplitIn f o(Slope)
(18)

where; SplitIn f o(T) = −
v∑

j=1

∣∣∣T j
∣∣∣
|T|

log2(

∣∣∣T j
∣∣∣
|T|

) (19)

Gain(Slope) = I(p, n) − E(Slope) (20)

E(Slope) = −
m∑

i=1

pi + ni

p + n
I(pi, n) (21)

I(pi, n) = −
p

p + n
log2

p
p + n

−
n

p + n
log2

n
p + n, (22)

E(Slope) represents the entropy of the slope angle factor in the training dataset, I(p, n) denotes the
information needed to satisfy a given training dataset, p is the total number of positive tuples in the
training dataset, n is the total number of negative tuples in the training dataset, and m is the number of
values for the slope angle factor.

3. Results

3.1. Correlation between Conditioning Factors and Gully Occurrence Using the Frequency Ratio Method

We used the frequency ratio method to calculate the probabilistic relation between gullies as a
dependent variable and conditioning factors as independent variables. Figure 5 presents FR values
for the classes of each conditioning factor. In the case of rainfall, the 148–159 mm class has the
highest FR value (2.15), followed by the 159–171 mm (0.29) and 171–192 mm (0) classes. The >1000 m
distance-from-road class had the highest FR value (1.63), followed by the 200–500 m (1.10), 500–1000 m
(0.96), 100–200 m (0.77), and 0–100 m (0.73) classes. In the case of NDVI, the 0.12–0.37 class has the
highest FR value (3.48). Bare land areas have the highest FR values in the land-use class (1.21). In the
case of drainage density, high FR values are associated high drainage density. The 1.62–2.46 km/km2

class, for example has a value of 4.32. For lithology, the Ekgy has by far the largest FR (4.43), followed
by Qft2 (1.02), PCK (0.34), and PCmt2 (0.08). No gullies are present on the other lithologies; therefore,
their values are 0. Areas located <500 m from rivers have a FR value of 1.63; the more distant classes
have 0 values. In the case of profile curvature, the highest FR value (1.18) is associated with the >0.25
class. Flat areas have a FR value of 1.09, which is higher than the values for convex and concave areas
(0.72 and 0.53, respectively). The highest FR value for the slope factor is 1.23 (5–10% class). Values
for the 0–5% and 10–20% classes are, respectively, 1.07 and 0.76; the 20–30% and >30% classes are 0.
Slopes with an eastern aspect have the highest FR value (1.30), following by slopes with northeastern
(1.17), southeastern (1.13), northern and flat (1.05), southwestern (0.94), northwestern (0.88), southern
(0.70), and western (0.68) aspects. Finally, all gullies are located in areas with an elevation range of
1800–2000 m a.s.l. (FR = 1.16).
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3.2. Analysis of Factor Multi-Collinearity

We examined the multi-collinearity of gully erosion conditioning factors using the variance
inflation factor (VIF) and tolerances (TOL). Values of VIF >10 and TOL <0.10 generally indicate a
multi-collinearity problem [120]. VIF and TOL values for the conditioning factors used in this study
are shown in Table 2. The highest VIF and the lowest TOL are, respectively, 2.673 and 0.184, which
indicate that there is not a multi-collinearity problem among the conditioning factors and, hence, all
factors can be used for gully erosion susceptibility mapping.

Table 2. Multi-collinearity statistics for the gully erosion affecting factors.

Parameters
Collinearity Statistics

Tolerance VIF

Land use 0.184 1.525

Lithology 0.674 1.354

NDVI 0.628 2.047

Plan curvature 0.492 1.254

Profile curvature 0.398 2.673

Rainfall 0.712 1.951

River density 0.420 2.322

River distance 0.324 1.875

Road 0.583 1.840

Slope 0.809 1.245

Aspect 0.856 1.030

Altitude 0.198 2.329

3.3. The Most Important Factors for Gully Modeling

The average merit (AM) values calculated by information gain ratio (IGR) technique are
summarized in Table 3. The results indicate that all factors can be included in gully erosion susceptibility
modeling because their AM values are greater than zero. However, rainfall, with an AM value of
0.225, is the most effective factor for gully erosion susceptibility mapping in the study area. It is
followed by elevation (AM = 0.186), river density (AM = 0.106), distance to river (AM = 0.093), land use
(AM = 0.086), lithology (AM = 0.083), distance to road (AM = 0.038), profile curvature (AM = 0.031),
aspect (AM = 0.028), NDVI (AM = 0.023), slope (AM = 0.020), and plan curvature (AM = 0.016).
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Table 3. The most effective factors for gully erosion occurrence.

Rank Conditioning Factor Average Merit Standard Deviation

1 Rainfall 0.225 ± 0.012

2 Altitude 0.186 ± 0.009

3 River density 0.106 ± 0.011

4 River distance 0.093 ± 0.015

5 Land use 0.086 ± 0.007

6 Lithology 0.083 ± 0.01

7 Profile curvature 0.031 ± 0.017

8 Road 0.038 ± 0.014

9 Aspect 0.028 ± 0.021

10 NDVI 0.023 ± 0.018

11 Slope 0.02 ± 0.016

12 Plan curvature 0.016 ± 0.018

3.4. Evaluation of Gully Erosion Susceptibility Models

We created four landslide susceptibility models (REPTree, AB-REPTree, Bag-REPTree, and
RS-REPTree) using the training dataset. The 10-fold cross-validation method was used to prevent
over-fitting and to decrease variability. Heuristic tests were used to find the best values for the
parameters of the four models; these are shown in Table 4.

Table 4. Parameters of algorithms utilized in this study.

Methods Algorithms Parameters

Base classifier Reduced-error pruning tree Seed, 1; The minimum total weight of the
instances in a leaf, 2; Number of folds, 10

Ensembles Bagging Seed, 1; The number of iterations, 10
AdaBoost Seed, 1; The number of iterations, 10

Random subspace Seed, 1; The number of iterations, 10

We validated gully erosion susceptibility models using error and machine learning comparison
metrics (Tables 5 and 6). The highest values of the Kappa metric were obtained for the RS-REPTree
model (0.61), followed by the Bag-REPTree (0.55), AB-REPTree (0.53), and REPTree (0.53) models.
The RS-REPTree model has the highest value (0.33) for the MAE metric, followed by the Bag-REPTree
(0.28), AB-REPTree (0.24), and REPTree (0.24) models. The RMSE, RAE, and RRSE metrics indicate
that the Bag-REPTree model (RMSE = 0.37, RAE = 56.62, and RRSE = 77.75) has the lowest error. It is
followed by the RS-REPTree model (RMSE = 0.38, RAE = 67.68, and RRSE = 77.57) and the AB-REPTree
model (RMSE = 0.43, RAE = 49.76, and RRSE = 86.49). The REPTree model has the highest error (RMSE
= 0.43, RAE = 79.76, and RRSE = 86.50).

Table 5. Evaluation of gully erosion susceptibility models using error metrics.

Models Kappa MAE RMSE RAE PRSE

REPTree 0.53 0.24 0.43 79.76 86.50

AB-REPTree 0.53 0.24 0.43 49.76 86.49

Bag-REPTree 0.55 0.28 0.37 56.62 75.30

RS-REPTree 0.61 0.33 0.38 67.68 77.57
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Table 6. Evaluation of gully erosion susceptibility models using machine learning metrics.

Models TP FP Precision Recall F-Measure MCC AUC PRSE

REPTree 0.774 0.226 0.776 0.774 0.773 0.549 0.819 0.782
AB-REPTree 0.768 0.232 0.77 0.768 0.767 0.537 0.844 0.838
Bag-REPTree 0.776 0.224 0.779 0.776 0.776 0.555 0.871 0.866
RS-REPTree 0.806 0.194 0.809 0.806 0.805 0.615 0.874 0.865

The machine learning comparison metrics shown in Table 6 indicate that the RS-REPTree model
performed best based on TP, FP, precision, recall, F-measure, MCC, AUC, and PRSE values. It is
followed by the Bag-REPTree, REPTree, and AB-REPTree models in terms of TP, FP, precision, recall,
F-measure, and MCC metrics. The AB-REPTree model performed better than the REPTree model in
term of the AUC and PRSE metrics.

3.5. Development of Gully Erosion Susceptibility Maps

We calculated gully erosion susceptibility indices for each cell based on the results of the
ensemble models. We then constructed gully erosion susceptibility maps for the study area using the
Ada-REPTree, Bag-REPTree, REPTree, and RS-REPTree models (Figure 6). Gully erosion susceptibility
classes (low, moderate, high, and very high) were created using the natural breaks method. For
example, in the case of the Ada-REPTree map, the four susceptibility classes have values of 0.00–0.13,
0.13–0.42, 0.42–0.78, and 0.78–1.00 (Figure 6a). Comparison of the four maps indicates that the REPTree
model predicts a larger part of the watershed as having high and very high erosion susceptibilities.
More generally, the maps show that most cells of low erosion susceptibility are located on steep slopes
in the marginal parts of the watershed. The high and very high susceptibility classes cover the northern
and central parts of the watershed where most of the observed gully sites are located.Appl. Sci. 2020, 9, x FOR PEER REVIEW 16 of 29 
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3.6. Evaluation and Comparison of the Models

Evaluation of model performance is an important step in the spatial modeling process [88].
In this study, we evaluated the performance of the four ensemble models using the area under the
ROC curve (AUC), standard error (SE), and 95% confidence interval for the training and testing
datasets. The logistic regression (LR) model was used as a benchmark method. ROC curves for the
training dataset are shown in Figure 7. The curves show that all tested ensemble models perform
well in spatially predicting gully erosion susceptibility. However, the ROC curve for the REPTree
model falls below the curves of the other models. Other results of the goodness-of-fit analysis of
the training dataset are shown in Table 7. These results indicate that RS-REPTree model has the best
performance with the highest AUC (0.874), lowest SE value (0.0191), and narrowest 95% CI (0.834–0.907).
Sequentially, the Bag-REPTree, AB-REPTree, and REPTree models have slightly lower performances.
Finally, the performances of three ensemble models are better than that of the benchmark LR model.

Table 7. ROC curve using the training dataset.

Variable AUC SE
95% CI

Lower Bound Upper Bound

REPTree 0.819 0.0238 0.774 0.859

AB-REPTree 0.844 0.0210 0.801 0.881
Bag-REPTree 0.871 0.0191 0.830 0.905
RS-REPTree 0.874 0.0191 0.834 0.907

LR 0.825 0.0222 0.780 0.864
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Model performances for the testing dataset based on the ROC curve, AUC, SE, and 95% CI
values are shown in Figure 8 and summarized in Table 8. All models performed well, but the
proposed new ensemble model, RS-REPTree, has the highest prediction capability based on its AUC
(0.860), SE (0.0315), and 95% CI (0.793–0.912). It is followed by the Bag-REPTree (AUC = 0.841), LR
(AUC = 0.824), AB-REPTree (AUC = 0.805), and REPTree (AUC = 0.800) models. Overall, our results
show that the new ensemble models of REPTree outperform and outclass the standard REPTree model
in gully erosion susceptibility mapping.Appl. Sci. 2020, 9, x FOR PEER REVIEW 20 of 29 
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Table 8. ROC curve using the validation dataset.

Model AUC SE
95% CI

Lower Bound Upper Bound

REPTree 0.800 0.0383 0.725 0.862

AB-REPTree 0.805 0.0368 0.731 0.866
Bag-REPTree 0.841 0.0329 0.771 0.896
RS-REPTree 0.860 0.0315 0.793 0.912

LR 0.824 0.0350 0.751 0.882

4. Discussion

Obtaining reliable map of gully erosion susceptibility remains yet a challenge for managers,
land use planners, and engineers. To address this challenge, researchers are proposing new models
and testing them in different gully-prone regions around the world. In this paper, we propose and
evaluate three ensembles of the REPTree model for gully erosion susceptibility mapping. The modeling
process is based on an investigation of the relationships between spatial locations of gullies in the
Rabat Turk watershed and a suite of different geo-environmental factors. We demonstrate that rainfall,
elevation, river density, distance to rivers, land-use, and lithology are important factors for gully
erosion in the study area. In contrast, plan curvature, slope, NDVI, aspect, and distance to roads are
the less important.

An examination of the literature suggests that conditioning factors for gully erosion are area-specific
and cannot be reliably extrapolated to other regions. For example, Amiri et al. [121] identified land-use
as the most important factor in their study areas, whereas Rahmati et al. [122] and Garosi et al. [92]
reported that distance from rivers is the most important factor in their studies. Furthermore, the slope
factor, which we and Rahmati et al. [122] ranked as a relatively unimportant factor, was among the
most effective factors identified by Rahmati et al. [97]. These differences call for further research on
controls of gully erosion in different landscapes.

The ensemble learning techniques used in this study (AB, bagging, and RS) improved the
goodness-of-fit and prediction performance of REPTree. Among these techniques, random subspace
outperformed the other two techniques in improving both the training and validation of the base
REPTree model. The RS ensemble learning technique performed better than the other techniques
in decreasing the variance, bias, and noise of the modeling process, and protected the models from
over-fitting. The superiority of the RS ensemble learning technique stems from the use of random
subspaces for aggregating the base classifiers, which results in better performance compared to the
original feature space [112]. In addition, the base classifier works better using smaller subspaces, as
shown by Pham et al. [123]. The literature includes numerous successful applications of RS ensemble
learning techniques for predicting different types of natural hazards. For example, Tien Bui et al. [76]
showed that the naive Bayes tree performed better when used in combination with the RS technique
for landslide modeling, and Shirzadi et al. [62] demonstrated that the RS technique improved the
performance of the alternating decision tree base classifier.

Our results suggest that the Bagging technique is the second-best ensemble learning method for
improving REPTree performance, which is in line with previous findings. For example, Hong et al. [124]
reported that bagging, used in combination with the j48 decision tree, has higher predictive capacity
than the single j48 and AB-j48 models alone. In another study, Bui et al. [58] reported that the functional
tree (FT) model with bagging outperforming the AB-FT method.

Although our study is the first to use REPTree in combination with ensemble learning techniques for
gully erosion modeling, this approach has been used by Pham et al. [123] for predicting landslides. They
ranked the ensemble models in terms of prediction capability, from best to worst, to be: BA-REPTree
(AUC = 0.872), rotation forest REPTree (AUC = 0.872), RSRETree (AUC = 0.864), and MultiBoost
REPTree (AUC = 0.855). The differences in their results and ours suggest that the techniques are case-
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and site-specific and that their performances depend heavily on the datasets that are trained and
built upon.

Although it is difficult to directly compare the results of this study with those reported from
other regions, we suggest that our ensemble models perform better than the generalized linear
model (AUC = 0.71), boosted regression tree (AUC = 0.84), multivariate adaptive regression spline
(AUC = 0.83), and ANN (AUC = 0.84) models used by Garosi et al. [104]; the certainty factor model
(AUC = 0.82) used by Azareh et al. [82]; and the Fisher’s linear discriminant analysis (AUC = 0.76),
logistic model tree (AUC = 0.77), and NBT (AUC = 0.78) models of Arabameri et al. [125]. In contrast,
however, our models were outperformed by the maximum entropy (AUC = 0.88, 0.90) models used
by Azareh et al. (2019) and Kariminejad et al. [107]; BFTree and its ensembles (bagging and RS)
(AUC = 0.92) used by Hosseinalizadeh et al. [81]; and the multivariate additive regression splines
(AUC = 0.91), SVM (AUC = 0.88), and FR (AUC = 0.96) models employed by Gayen et al. [126]. Again,
these different results are attributable to local differences in the environments in which the models
were used.

Our field survey indicated that gullies in the study area are located along tributaries near the main
river in the Rabat Turk study area. Erosion is initiated by focusing of runoff along these tributaries,
gradual gully retrogression, and piping above gully heads. Gullies on the east side of the river have
lower slopes than those on the west side of the river, perhaps because there is little vegetation in the
former areas. There is also more upslope area for gully development on the west side of the river,
allowing for more flow with the gully system. Our results are in agreement with the findings of
Vandekerckhove et al. [127] and Bergonse and Reis [128], who argued that gullies are mainly formed
through extreme runoff related to slope-area relations. The gully erosion susceptibility map of the
study area obtained using the RS-REPTree ensemble model accurately predicts observed gullies along
the main river and its tributaries.

Despite the improved prediction performance provided by ensemble models, the difficulty
associated with proper parameter tuning still restricts their development and application. In this study,
we manually tuned the parameters of the ensemble methods through a trial-and-error process [129,130].
There are, however, several optimization techniques (e.g., metaheuristic optimization algorithms) that
can significantly speed up the process of model building [131,132]. Nevertheless, ensemble models
are easy to develop within open-source WEKA software and do not require advanced programming
knowledge. They can be applied to types of environmental research that involve datasets with a
number of geo-environmental variables and a set of presence/absence locations of the phenomenon
being modeled. Such datasets can be generated with automated GIS techniques from accessible
geospatial data (e.g., DEM, soil, lithology, and meteorological records).

5. Conclusions

Gully erosion is an advanced stage of water erosion and sediment production that can transfer
large volumes of sediment into stream channels, resulting in environmental damage. It is a common
problem in arid and semi-arid landscapes, and therefore, prediction and mapping of areas susceptible
to gully erosion are of interest to soil scientists, natural resource authorities, and land managers.
Accordingly, researchers have used a variety of machine learning methods to understand the causes of
gully erosion and to produce reliable erosion susceptibility maps [133].

We addressed this problem by studying gully erosion in a sub-basin of the Shoor River watershed
in Isfahan Province (Iran), which has a semi-arid climate and a human-impacted landscape. We used
12 conditioning factors tested by the information gain ratio method, and REPTree coupled with the AB,
BA, and RS ensemble learning methods to model gully erosion and produce gully erosion susceptibility
maps. The following are key conclusions of our study:

(1) Rainfall, elevation, and river density are the most important factors for gully erosion in the
study area. Most gully erosion sites are located in areas of lower rainfall and lower elevation.
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(2) REPTree and all its ensembles yielded a high goodness-of-fit and prediction accuracy during
the modeling process, but the ensemble RS-REPTree performed best. RS decreased over-fitting and
noise in the training datasets, which resulted in better prediction. It successfully predicted gully erosion
locations and allowed us to produce an accurate gully erosion susceptibility map of the study area.

(3) Modeling gully erosion is a complicated task, with many uncertainties. The proposed machine
learning model is an easy-to-use, inexpensive decision-making tool that can supplement expensive
field surveys. It also provides managers with guidance on what further information might be needed
to provide a more accurate map of gully erosion.

(4) Gully erosion susceptibility maps are essential products for hazard analysis and management.
We recommend our proposed ensemble RS-REPTree model for predicting gully erosion in other
semi-arid and arid areas. However, the performance of this model depends on the quality of the
data used.

(5) We recommend further research on other hybrid data mining methods, as well as ensemble
boosting algorithms with REPTree. We also recommend further sensitivity analysis of gully erosion
conditioning factors.
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